
Probabilistic Artificial Intelligence
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes

probabilistic artificial intelligence ii

Contents

1 Probability review 1

1.1 Random variables 1

1.2 Multivariate Gaussians 2

1.3 Kalman filters 3

1.4 Entropy 4

2 Bayesian linear regression 6

3 Gaussian processes 7

3.1 Learning and inference 8

3.2 Kernel functions 8

3.3 Model selection 9

3.4 Efficiency 10

4 Variational inference 12

4.1 Training 13

4.2 Inference 15

5 Markov chain Monte Carlo 16

5.1 Markov chains 16

5.2 Sampling 18

5.3 Proposal distributions 18

6 Bayesian neural networks 21

6.1 Variational inference 22

6.2 Markov chain Monte Carlo 22

6.3 Monte Carlo dropout 23

6.4 Probabilistic ensembles 23

6.5 Calibration 23

7 Active learning 25

7.1 Sampling strategies 25

8 Bayesian optimization 28

8.1 Acquisition functions 28

9 Markov decision processes 30

9.1 Bellman expectation equation 30

9.2 Policy iteration 31

9.3 Value iteration 31

10 Reinforcement learning 33

10.1 Model-based 33

10.2 Model-free 34

10.3 Model-free deep RL 35

10.4 Model-based deep RL 40

probabilistic artificial intelligence iii

List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A→ B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

T ∈ Rd1×···×dn Tensor

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

θ ∈ Θ Parametrization of a model, where Θ is a compact sub-
set of RK

X Input space

Y Output space

D ⊆ X ×Y Labeled training data

probabilistic artificial intelligence 1

1 Probability review

Probability is formalized by a probability space (Ω,F , P), where Ω is
a set of atomic events, F ⊆ 2Ω is the set of non-atomic events, and
P : F → [0, 1] is the probability measure that assigns probabilities to
events.

The following axioms hold:

P(Ω) = 1 (Normalization)

P(A) ≥ 0 ∀A ∈ F (Non-negativity)

A1, . . . , An ∈ F ∧
n⋂

i=1

Ai = ∅ =⇒ P

(
n⋃

i=1

Ai

)
=

n

∑
i=1

P(Ai) (σ-additivity).

1.1 Random variables

Events are cumbersome to work with, so we can define random variables
X : Ω→ D for some set D. Then, we can give a probability to X assuming
state x,

P(X = x) = P({ω ∈ Ω : X(ω) = x}).

Instead of random variables X, we can also define random vectors X =

[X1(ω), . . . , Xn(ω)]. Then, we can specify the joint distribution P(X1 =

x1, . . . , Xn = xn) = P(X = x) succinctly.

For random variables, we have the following rules,

• Product rule,

P(X1:n) = P(X1)
n

∏
i=2

P(Xi | X1:i−1);

• Sum rule,

P(X1:i−1, Xi+1:n) = ∑
xi

P(X1:i−1, Xi = xi, Xi+1:n);

• Bayes rule, where we compute the posterior P(X | Y) from the likelihood
P(Y | X), prior P(X), and marginal P(Y),

P(X | Y) = P(Y | X)P(X)

P(Y)
;

• A random variable X is independent from Y if the following holds for
all values,

PX1···Xn(x1, . . . , xn) = PX1(x1) · · · PXn(xn);

• Random variables X and Y are conditionally independent given Z if the
following holds for all x, y, z,

PXY|Z(x, y | z) = PX|Z(x | z)PY|Z(y | z).

probabilistic artificial intelligence 2

1.2 Multivariate Gaussians

Suppose we have n binary variables, then we need 2n − 1 parameters.1,2 1−1, because we do not need to specify the last
parameter, since it will be whatever is remaining of
the total probability.
2 In other words, the parametrization of the distri-
bution grows exponentially.

Also, if we want to compute the joint distribution over all n variables,3

3 I.e., do inference.

we would have to sum up 2n−1 terms according to the sum rule. In con-
clusion, binary random variables scale poorly. Furthermore, we would
need a lot of data to estimate the distribution.

The solution to these problems are multivariate Gaussians,

N (x; µ, Σ) =
1

2π
√

det(Σ)
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
,

where µ ∈ Rn and Σ ∈ Sn
++.4 Thus, the joint distribution over n Gaussian 4 Σ is an n× n positive semi-definite matrix.

variables requires only n2 + n parameters.

−3 −2 −1 0 1 2 3

−2

0

2

Figure 1.1. Bivariate Gaussian distribution with
Σ = I.

−3 −2 −1 0 1 2 3

−2

0

2

Figure 1.2. Bivariate Gaussian distribution with

Σ =

[
1 1/2

1/2 1

]
.

If x1 increases, the probability of a higher x2 in-
creases as well.

Let X ∼ N (µ, Σ) be a d-dimensional Gaussian random vector, then
the following properties hold,

• Let A be an index set, then the marginal distribution of variables
indexed by A is the following,

XA ∼ N (µA, ΣAA).

Thus, it is simply a look-up to get a subset marginal distribution;

• Let A and B be index sets, then the marginal distribution of variables
indexed by A, conditioned on B, is the following,

XA | XB ∼ N (µA|B, ΣA|B),

where

µA|B = µA + ΣABΣ−1
BB(xB − µB)

ΣA|B = ΣAA − ΣABΣ−1
BBΣBA.

Notice that ΣABΣ−1
BB removes the interdependencies of B and adds the

dependencies of B with A. Further notice that the dependency of A
and B added scales linearly with the mean difference xB − µB.

Further, notice that ΣA|B only depends on which random variables are
observed, not what values those random variables are, because it does
not depend on xB;

• Let M ∈ Rm×d be a matrix, then Y = MX is a also a Gaussian,

Y ∼ N
(

Mµ, MΣM⊤
)

.

Notice that m is not necessarily equal to d, so we can transform a
d-dimensional random vector to any dimensionality m;

• Let X ′ be another d-dimensional Gaussian, then Y = X + X ′ is also a
Gaussian,

Y ∼ N
(
µ + µ′, Σ + Σ′

)
.

probabilistic artificial intelligence 3

1.3 Kalman filters

· · ·X1 X3X2

Y1 Y2 Y3

Figure 1.3. Directed graphical model of a Kalman
filter with hidden states Xt and observables Yt.

Definition 1.1 (Kalman filter). A Kalman filter is specified by a Gaus-
sian prior over the states,

X0 ∼ N (µ, Σ),

and a conditional linear Gaussian motion model and sensor model,

Xt+1
.
= FXt + ϵt F ∈ Rd×d, ϵt ∼ N (0, Σx) F is assumed to be known.

Yt
.
= HXt + ηt H ∈ Rm×d, ηt ∼ N (0, Σy) H is assumed to be known.,

respectively.

From the directed graphical model in Figure 1.3, we can observe the
following conditional independences,

Xt+1⊥X1:t−1, Y1:t−1 | Xt

Yt⊥X1:t−1 | Xt

Yt⊥Y1:t−1 | Xt−1.

These lead to the following factorization of the joint distribution,

p(x1:t, y1:t) =
t

∏
i=1

p(xi | x1:i−1)p(yi | x1:t, y1:i−1)

= p(x1)p(y1 | x1)
t

∏
i=2

p(xi | xi−1)p(yi | xi).

We now want to do Bayesian filtering on a Kalman filter, which involves
keeping tack of an agent’s state using noisy observations Y. It is described
by the recursive scheme in Figure 1.4.

p(x0)

t← t + 1

p(xt+1 | y1:t)

prediction
(based on motion model)

yt

observation

p(xt | y1:t)

update
(based on sensor model)

Figure 1.4. The recursive scheme of Bayesian filter-
ing.

probabilistic artificial intelligence 4

We can do the update by the following,

p(xt | y1:t) =
1
Z

p(xt | y1:t−1)p(yt | xt, y1:t−1)

=
1
Z

p(xt | y1:t−1)p(yt | xt).

Furthermore, we can do the prediction by the following,

p(xt+1 | y1:t) =
∫

p(xt+1, xt | y1:t)dxt

=
∫

p(xt+1 | xt, y1:t)p(xt | y1:t)dxt

=
∫

p(xt+1 | xt)p(xt | y1:t)dxt.

In general, these distributions are very complicated, but for Gaussians
(as in the Kalman filter), they can be expressed in closed form. The
general formula for the Kalman update is as follows, given the prior belief
Xt | y1:t ∼ N (µt, Σt),

Xt+1 | y1:t+1 ∼ N (µt+1, Σt+1)

µt+1
.
= Fµt + Kt+1(yt+1 − HFµt)

Σt+1
.
= (I − Kt+1H)(FΣtF⊤ + Σx),

where Kt+1 is the Kalman gain,

Kt+1
.
= (FΣtF⊤ + Σx)H⊤(H(FΣtF⊤ + Σx)H⊤ + Σy)

−1.

The term (yt+1 − HFµt) measures the error in the predicted observation
and the Kalman gain Kt+1 measures the relevance of the new observation
compared to the prediction.

1.4 Entropy

Definition 1.2 (Entropy). Entropy measures the expected surprisal
of a distribution p,

H[p] .
= Ex∼p[− log p(x)].

− log p(x) is also called the surprisal value of x, because it decreases
as the probability grows, and is exactly 0 if the probability is 1.

Definition 1.3 (Kullback-Leibler divergence). Kullback-Leibler diver-
gence (KL divergence) is a common metric that measures dissimilar-
ity between two distributions p and q,

KL(p∥q) .
= Eθ∼p

[
log

p(θ)
q(θ)

]
.

Intuitively, KL(p∥q) measures the information loss when approxi-
mating p with q.

probabilistic artificial intelligence 5

Definition 1.4 (Mutual information). Given random variables X and
Y, the mutual information I(X; Y) quantifies how much observing
Y reduces uncertainty about X, as measured by its entropy, in expec-
tation over Y.

I(X; Y) .
= H[X]− H[X | Y],

where H[X] and H[X | Y] quantify the uncertainty about X before
and after observing Y.

Properties (Mutual information). Mutual information is symmetric,

I(X; Y) = I(Y; X).

Mutual information is positive (information never hurts),

I(X; Y) ≥ 0.

Example 1.5 (Mutual information of noisy Gaussian observations).
Let

X ∼ N (µ, Σ)

Y = X + ϵ, ϵ ∼ N (0, σ2
n I).

Then,

I(X; Y) = H[Y]− H[Y | X]

= H[Y]− H[ϵ]

=
1
2

log(2πe)ddet
(

Σ + σ2
n I
)
− 1

2
log(2πe)d(σ2

n I)

=
1
2

log det
(

I + σ−2
n Σ

)
.

Definition 1.6 (Conditional mutual information).

I(X; Y | Z) .
= H[X | Z]− H[X | Y, Z]

= I(X; Y, Z)− I(X; Z).

probabilistic artificial intelligence 6

2 Bayesian linear regression

Bayesian linear regression (BLR) is a model that is able to provide an un-
certainty measure about its predictions due to a lack of data.5 It does so 5 This is called epistemic uncertainty.

by outputting a probability distribution over possible outputs y⋆ given
input x⋆. The variance of this distribution measures the uncertainty of
the model at this point and the mode corresponds to its best estimate. It
does this by not considering a single set of weights, but rather all possible
weights, assigning each a probability via Bayes rule. Recall the posterior,

p(w | X, y) ∝ p(y | w, X) · p(w, X),

where we can compute the maximum a posteriori (MAP) estimate and
use that as our weights, multiplying it with the input x⋆. However, by
considering every plausible function and giving it a probability according
to how well it models the data, we can compute the uncertainty of the
model. Instead of using only the mode of the posterior, we will use the
full posterior of w by taking the integral over all of them. This allows us
to assign a probability distribution to any point (x⋆, y⋆),

p(y⋆ | x⋆, X, y) =
∫

p(w, y⋆ | x⋆, X, y)dw Sum rule

=
∫

p(w | x⋆, X, y) · p(y⋆ | w, x⋆, X, y)dw Product rule

=
∫

p(w | X, y) · p(y⋆ | w, x⋆)dw.

Notice that each model w’s prediction p(y⋆ | w, x⋆) is weighted by its
probability p(w | X, y). In general, this integral is intractable, but by
assuming that the prior and likelihood are independently Gaussian,

w ∼ N (0, σ2
p I)

yi | w, xi ∼ N (w⊤xi, σ2
n),

it becomes tractable. Firstly, the posterior is given by the following,6 6 Notice that Σ̄ does not depend on y. Since the co-
variance matrix measures the uncertainty, this tells
us that the uncertainty only depends on where we
observed data, not what we observed. Intuitively,
this makes a lot of sense.

w | X, y ∼ N (µ̄, Σ̄)

µ̄ = (X⊤X + σ2
n I)−1X⊤y

Σ̄ = (σ−2
n X⊤X + I)−1.

By taking advantage of the Gaussian distribution properties, we can
compute the distribution of y⋆ given a point x⋆. Let’s say f ⋆ = w⊤x⋆ =
x⋆⊤w, then

f ⋆ | x⋆, X, y ∼ N (x⋆⊤µ̄, x⋆⊤Σ̄x⋆).

Adding aleatoric noise y⋆ = f ⋆ + ϵn results in the following,

y⋆ | x⋆, X, y ∼ N (x⋆⊤µ̄, x⋆⊤Σ̄x⋆ + σ2
n).

The epistemic uncertainty Σ̄ is uncertainty about the model due to a
lack of data, while the aleatoric uncertainty σ2

n is irreducible noise that is
always present in data.

probabilistic artificial intelligence 7

3 Gaussian processes

BLR can only make linear predictions, because it is linear in the parame-
ters. However, we might want to make non-linear predictions. We could
apply BLR on non-linearly transformed data,7 but the computational cost 7 This would mean redefining f (x) to

f (x) = ϕ(x)⊤w,

with e.g.
ϕ(x) =

[
1 x x2]⊤ .

would increase with the dimensionality of the feature space.

An alternative way of looking at it is considering inference directly in
function space. We use Gaussian processes (GP) to describe distributions
over functions. They are formally defined as an infinite collection of
random variables, of which any finite number have a joint Gaussian
distribution. GPs are specified by a mean function µ : X → R and a
kernel function k : X ×X → R, and written as the following,8 8 In other words, we sample functions from a GP

defined by a mean and kernel function.

f ∼ GP(µ, k).

Now, we would want a finite Gaussian distribution over a marginal
{x1, . . . , xm} ⊆ X (stored by matrix X) of the infinite collection of random
variables X . If we assume a normal prior on the weights,

w ∼ N (0, I),

then the distribution over f = w⊤X⊤ = Xw becomes the following,

f ∼ N
(

X⊤0, X⊤ IX
)
= N

(
0, X⊤X

)
.

Notice that the data points enter as inner products, thus we do not nec-
essarily need to let them linearly depend. We could also use any kernel
function,9

9 Formally, k(x, x′) = ϕ(x)⊤ϕ(x′) for some feature
function ϕ. But, using a kernel function k instead
makes it more computationally efficient, because
the dimensionality of the Gaussian does not scale
with the output dimensionality of the feature func-
tion.

f ∼ N (0, k(X, X))

with

k(X, X) =

k(x1, x1) · · · k(x1, xm)

...
. . .

...
k(xm, x1) · · · k(xm, xm)

 .

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

Figure 3.1. A priori samples of a Gaussian process
with the periodic kernel. The second plot shows the
kernel function w.r.t. x = 0.

We can sample function realizations from a Gaussian process, by tak-
ing n equidistant points from X as matrix X ∈ Rn×d. Then, we assume
µ(x) = 0 and compute k(X, X) to make a multivariate Gaussian distri-
bution over f ∈ Rn. Lastly, we sample a vector from this multivariate
Gaussian distribution and interpolate between the points to form the
function realization. Notice that GPs parametrize a probability distribu-
tion over functions.

Figure 3.1 shows samples of a prior Gaussian process with the periodic
kernel,

k(x, x′) = σ2 exp
(
− 2
ℓ2 sin2

(
π
|x− x′|

p

))
,

where σ2 is the overall variance, ℓ is the lengthscale, and p is the period.
It also shows the periodic kernel function w.r.t. x = 0. As can be seen,

probabilistic artificial intelligence 8

pairs of points (x, x′) with high covariance k(x, x′) have close values in
all sampled function realizations. This makes sense, since k parametrizes
the covariance.

3.1 Learning and inference

Adding aleatoric noise, we define the observed data y to have the follow-
ing distribution,

y ∼ N (0, k(X, X) + σ2
n I).

Now, suppose that we observe data y for datapoints X, and want to
predict the probability distribution of y⋆ for x⋆ given the observed data.
We can define the following a priori joint distribution,10

10 Notice that this is a priori because we have not
observed (conditioned on) any data points yet. We
are only specifying the joint distribution over y and
f ⋆.

[
y
f ⋆

]
| x⋆, X ∼ N

(
0,

[
k(X, X) + σ2

n I k(X, x⋆)
k(x⋆, X) k(x⋆, x⋆)

])
,

where

k(X, x) =

k(x1, x)

...
k(xm, x)

 .

Then, we can derive the conditional distribution, using the conditional
property of multivariate Gaussian distributions, as

f ⋆ | x⋆, X, y ∼ N (µ⋆, k⋆),

where

µ⋆ = k(x⋆, X)(k(X, X) + σ2
n I)−1y

k⋆ = k(x⋆, x⋆)− k(x⋆, X)(k(X, X) + σ2
n I)−1k(X, x⋆).

Adding aleatoric noise, we get the probability distribution over y⋆:

y⋆ | x⋆, X, y ∼ N (µ⋆, k⋆ + σ2
n).

3.2 Kernel functions

Suppose we have two covariance functions,

k1 : X ×X → R, k2 : X ×X → R,

c > 0, and f is a polynomial with positive coefficients or the exponential
function. Then, the following functions are valid covariance functions,

k(x, x′) = k1(x, x′) + k2(x, x′)

k(x, x′) = k1(x, x′) · k2(x, x′)

k(x, x′) = c · k1(x, x′)

k(x, x′) = f (k1(x, x′)).

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

Figure 3.2. The periodic kernel function hyperpa-
rameters used are σ2 = 1, ℓ = 1, and p = 3. The
second plot shows the covariance w.r.t. x = 0.

probabilistic artificial intelligence 9

Definition 3.1 (Stationary and isotropic kernels). A kernel function
k is stationary if its function only depends on the difference between
its arguments, i.e., k(x, x′) = k(x− x′). It is isotropic if it only depends
on the ℓ2-distance between its arguments, i.e., k(x, x′) = k(∥x− x′∥2)

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

x = 0
x = 3/2

x = −1

Figure 3.3. Posterior linear kernel. The second plot
shows the covariance w.r.t. several points.

The following is a list of popular kernels,

• Linear kernel,
k(x, x′) = x⊤x′ + σ2

0 .

Its posterior can be seen in Figure 3.3;

• Gaussian kernel (a.k.a. Squared Exponential or RBF),

k(x, x′) = exp

(
−∥x− x′∥2

2
2ℓ2

)
.

Points that are close together have a high covariance, while points
further away have a lower one. This is what makes it smooth, and
continuous. Its posterior can be seen in Figure 3.4;

• Exponential kernel,

k(x, x′) = exp
(
−∥x− x′∥

ℓ

)
.

Points that are close together have a high covariance. However, be-
cause it uses the ℓ1-distance, the covariance function is not smooth,
but “linear on two sides“. This is why it has so many peaks. Its poste-
rior can be seen in Figure 3.5.

3.3 Model selection

As can be seen in Figures 3.2 to 3.5, the hyperparameters matter a lot for
whether a GP can model the datapoints correctly. These hyperparameters
can be learned by maximizing its predictive performance on the data.
(Hyperparameter fitting on the training data does not cause overfitting.
This will become clear.)

Suppose we have data {(x⋆i , y⋆i)}n
i=1, then we would like to choose

hyperparameters, such that the performance on this data is maximized.
There are several choices for measuring predictive performance. The
most naive option is mean squared error,

MSEθ(y⋆, x⋆) = (y⋆ − µ⋆
θ (x⋆))2.

This metric ignores aleatoric (σ2
n) and epistemic (k(x⋆, x⋆)) uncertainty,

thus it will not work well for measuring the performance of GPs. Another
option is to just add the variance to the loss, so it also will be minimized,

˜MSEθ(y⋆, x⋆) = MSEθ(y⋆, x⋆) + k⋆θ(x⋆, x⋆).

probabilistic artificial intelligence 10

The problem with this is that it encourages low epistemic uncertainty
which will cause the loss function to favor models that have low epistemic
uncertainty without it necessarily being true. Furthermore, it still ignores
the aleatoric uncertainty.

The Bayesian perspective provides an alternative approach: maximiz-
ing the likelihood of the data,

ℓℓθ(y⋆, x⋆) = N (y⋆; f ⋆θ (x⋆), σ2
n)

= N (y⋆; µ⋆
θ , k⋆θ(x⋆, x⋆) + σ2

n).

We can optimize θ as follows,

θ̂ = argmax
θ

p(y⋆ | X⋆, θ)

= argmax
θ

∫
p(y⋆ | f , X⋆, θ)p(f | θ)d f

= argmax
θ

N (y⋆; 0, k(X⋆, X⋆) + σ2
n I)

= argmin
θ

− logN (y⋆; 0, k(X⋆, X⋆) + σ2
n I)

= argmin
θ

n
2

log 2π +
1
2

log det
(

k(X⋆, X⋆) + σ2
n I
)
+

1
2

y⋆⊤(k(X⋆, X⋆) + σ2
n I)−1y⋆

= argmin
θ

1
2

log det
(

k(X⋆, X⋆) + σ2
n I
)

︸ ︷︷ ︸
complexity penalty

+
1
2

y⋆⊤(k(X⋆, X⋆) + σ2
n I)−1y⋆︸ ︷︷ ︸

“goodness“ of fit

.

As can be seen, the loss function seeks a balance between the “goodness“
of the fit and complexity. If we increase the aleatoric uncertainty σ2

n , we
increase the goodness of the fit, but increase the complexity. This is how
it prevents over- and underfitting and is the reason why we do not need
a validation dataset.

3.4 Efficiency

The time complexity of computing the posterior is Θ(n3)11 and the space 11 For BLR, this is O
(
dn2).

complexity of storing k(X, X) is Θ(n2). The main approaches for accel-
erating GP posterior computation are exploiting parallelism (GPU),12 12 This yields a significant speedup, but does not

address the cubic scaling in n.local GP methods, kernel function approximations, and inducing point
methods.

Local GP methods. The basic idea is that, for covariance functions that
decay with distance,13 we only need to condition on close points to x. I.e., 13 Think of stationary kernels such as the Gaussian

and exponential kernels.to make a prediction at point x, we only need to condition on points x′

where |k(x, x′)| ≥ τ for some threshold τ. The problem with this method
is that it is still expensive if there are many close points.

Kernel function approximation. The key idea of approximating kernel
functions is that we can construct an m-dimensional feature map with

probabilistic artificial intelligence 11

m≪ n that approximates the true kernel function,

k(x, x′) ≈ ϕ(x)⊤ϕ(x′) ϕ(x) ∈ Rm.

Then, apply BLR. The computational cost becomes O
(
nm2 + m3) instead

of O
(
n3).

An example is Random Fourier Features (RFF) that reduces station-
ary kernels to their Fourier transform. Then, samples from this m times
and defines it as the feature map ϕ. The problem with RFFs is that they
approximate the kernel function globally, however this might not be nec-
essary, since we only need accurate representation for the training and
test points. −3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

x = 0
x = 3/2

x = −1

Figure 3.4. Posterior Gaussian kernel. The second
plot shows the covariance w.r.t. several points.

−3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3

x = 0
x = 3/2

x = −1

Figure 3.5. Posterior exponential kernel. The sec-
ond plot shows the covariance w.r.t. several points.

Inducing point methods. The idea behind inducing point methods is that
we won’t need all data. In areas where there are a lot of data points,
we can safely throw some away. This method needs to figure out which
points are safe to throw away, i.e., find inducing points U that we need to
keep to approximate well. This can be done by choosing them randomly
or we could treat U as hyperparameters and maximize the marginal
likelihood of the data.

probabilistic artificial intelligence 12

4 Variational inference

Remark. From now on, X will be omitted and treated as a constant.

In Bayesian learning, we want to compute the following probability
distribution to make predictions given the data,

p(y⋆ | x⋆, y) =
∫

p(y⋆ | x⋆, θ)p(θ | y)dθ,

where we marginalize over all possible models θ. Furthermore, we com-
pute the posterior as follows,

p(θ | y) =
1
Z

p(θ)
n

∏
i=1

p(yi | xi, θ).

However, in general, these equations are intractable.14 Gaussian pro- 14 The integral is intractable, because distributions
are not conjugate in general. The posterior is in-
tractable, because of the normalizer Z.

cesses solved this problem by assuming that the prior and likelihood
are Gaussian.15 But, in some cases, it is not realistic to assume Gaussian 15 Because the Guassian has a conjugate prior.
distributions.16 Variational inference solves this problem by approximat- 16 E.g. in logistic regression, the likelihood is mod-

eled by a Bernoulli distribution.ing the intractable distribution p by a simpler one q that is “as close as
possible“,

p(θ | y) =
1
Z

p(θ, y) ≈ q(θ | λ) = qλ(θ),

where λ are called the variational parameters. Thus, we have reduced
the problem to optimization, i.e., maximizing the similarity between dis-
tributions p and q, where q is part of a variational family Q that is easy
to work with.

probabilistic artificial intelligence 13

Example 4.1 (Laplace approximation). A simple way of approximat-
ing intractable integrals is Laplace approximation which is a Gaus-
sian approximation to the posterior. Let’s define a function ψ(θ)

.
=

log p(θ | y), then the Laplace approximation of ψ can be computed
from the second-order Taylor expansion around the posterior mode,

ψ(θ) ≈ ψ(θ̂) + (θ − θ̂)⊤∇ψ(θ̂) +
1
2
(θ − θ̂)⊤Hψ(θ̂)(θ − θ̂)

= ψ(θ̂) +
1
2
(θ − θ̂)⊤Hψ(θ̂)(θ − θ̂).

Then,

p(θ | y) = exp(ψ(θ))

≈ exp
(

ψ(θ̂) +
1
2
(θ − θ̂)⊤Hψ(θ̂)(θ − θ̂)

)
= exp(ψ(θ̂)) · exp

(
1
2
(θ − θ̂)⊤Hψ(θ̂)(θ − θ̂)

)
=

1
Z
· exp

(
−1

2
(θ − θ̂)⊤H−1

ψ (θ̂)(θ − θ̂)

)
= N (θ; θ̂, Λ−1)
.
= q(θ),

where θ̂ = argmaxθ p(θ | y) and Λ = −Hθ log p(θ | y)

Intuitively, the Laplace approximation matches the shape of the
true posterior around its mode, but may not represent it accurately
elsewhere. Often, this leads to extremely overconfident predictions.

4.1 Training

When training, we want to find the distribution in the variational family
Q that minimizes the KL divergence with p,17

17 When approximating p with q, we can either min-
imize the reverse or the forward KL divergence.
The reverse KL divergence KL(q∥p) typically acts
more greedily and places most of its mass where
p has a lot of mass, while the forward KL diver-
gence KL(p∥q) tries to cover most of the probability
mass of p. Thus, the forward KL divergence is more
desirable, but it requires sample from p, which is
intractable (the whole reason we are doing this).
Thus, we have to resort to using the reverse KL
divergence.

probabilistic artificial intelligence 14

q⋆ = argmin
qλ∈Q

KL(qλ∥p)

= argmin
λ

∫
qλ(θ) log

qλ(θ)

p(θ | y)
dθ

= argmin
λ

∫
qλ(θ) log

qλ(θ)
1
Z p(y | θ)p(θ)

dθ

= argmax
λ

∫
qλ(θ)(log p(y | θ) + log p(θ)− log Z− log qλ(θ))dθ

= argmax
λ

∫
qλ(θ)

(
log p(y | θ)− log

qλ(θ)

p(θ)

)
dθ

= argmax
λ

∫
qλ(θ) log p(y | θ)−

∫
qλ(θ) log

qλ(θ)

p(θ)
dθ

= argmax
λ

Eθ∼qλ
[log p(y | θ)]︸ ︷︷ ︸

expected likelihood

− KL(qλ∥pprior)︸ ︷︷ ︸
“stay close to prior“

.

Thus, minimizing KL(qλ∥p) is equivalent to maximizing the expected
likelihood, while remaining close to the prior distribution.

To show that minimizing the KL divergence is an adequate method of
model selection, we will show that it lower bounds the evidence,

log p(y) = log
∫

p(y, θ)dθ Sum rule

= log
∫

qλ(θ)
p(y, θ)

qλ(θ)
dθ

= log Eθ∼qλ

[
p(y, θ)

qλ(θ)

]
≥ Eθ∼qλ

[
log

p(y, θ)

qλ(θ)

]
Jensen’s inequality

= Eθ∼qλ

[
log

p(y | θ)p(θ)
qλ(θ)

]
= Eθ∼qλ

[log p(y | θ)]− KL(qλ∥pprior).

Thus, minimizing

L(λ) = Eθ∼qλ
[log p(y | θ)]− KL(qλ∥pprior)

can safely be used to find an appropriate model for the data, since a
lower bound on the evidence gets maximized.

However, there is one problem: we want to compute the gradient of
an expectation w.r.t. q, but q depends on λ. Thus, we cannot compute the
gradient in its current form. To solve this we use the reparametrization
trick.

probabilistic artificial intelligence 15

Definition 4.2 (Reparameterization trick). Suppose we have a ran-
dom variable ϵ ∼ ϕ sampled from a base distribution, and consider
θ

.
= g(ϵ, λ) for some invertible function g. Then, the following holds:

Eθ∼qλ
[f (θ)] = Eϵ∼ϕ[f (g(ϵ, λ))].

Thus, after reparametrization, the expectation is w.r.t. to distribution
ϕ that does not depend on λ. Thus, we can compute the gradient
∇λL(λ).

Example 4.3 (Reparametrization trick for Gaussians). Suppose we
use a Gaussian variational approximation,

qλ(θ)
.
= N (θ; µ, Σ).

Then, we can reparametrize θ = g(ϵ, λ) = Σ1/2ϵ + µ, where ϕ =

N (0, I), because

θ = Σ
1/2ϵ + µ ∼ N (µ, Σ

1/2 IΣ1/2⊤) = N (µ, Σ).

4.2 Inference

To perform inference using the variational approximation, we need to
compute the integral over all models θ,18 18 The key insight here is that parameters θ do not

matter, only their results f ⋆.

p(y⋆ | x⋆, y) =
∫

p(y⋆ | x⋆, θ)p(θ | y)dθ

≈
∫

p(y⋆ | x⋆, θ)qλ(θ)dθ

=
∫ ∫

p(y⋆ | x⋆, θ, f ⋆)qλ(θ | f ⋆)p(f ⋆ | x⋆, θ)dθd f ⋆ Marginalize over f ⋆

=
∫ ∫

p(y⋆ | f ⋆)p(f ⋆ | x⋆, θ)qλ(θ)dθd f ⋆

=
∫

p(y⋆ | f ⋆)
∫

p(f ⋆ | x⋆, θ)qλ(θ)dθd f ⋆

=
∫

p(y⋆ | f ⋆)qλ(f ⋆ | x⋆)d f ⋆ Marginalize out θ.

Thus, we have reduced the high-dimensional integral over the parameters
θ to a one-dimensional integral over f ⋆. While this integral is generally
still intractable, it can be approximated efficiently.

probabilistic artificial intelligence 16

5 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods seek to approximate the
intractable distribution p by drawing m approximate samples from p,

p(y⋆ | x⋆, y) =
∫

p(y⋆ | x⋆, θ)p(θ | y)dθ

= Eθ∼p(·|y)[p(y
⋆ | x⋆, θ)]

≈ 1
m

m

∑
i=1

p
(

y⋆ | x⋆, θ(i)
)

. Law of large numbers

Using Hoeffding’s inequality, we can compute a bound on the error,

p

(∣∣∣∣∣Eθ∼p(·|y)[p(y
⋆ | x⋆, θ)]− 1

m

m

∑
i=1

p
(

y⋆ | x⋆, θ(i)
)∣∣∣∣∣ > ϵ

)
≤ 2 exp

(
−2mϵ2

)
.

Thus, the probability of error decreases exponentially in m. To get a
probability ≤ δ of error > ϵ, we need

2 exp(−2mϵ2) ≤ δ

−2mϵ2 ≤ log
δ

2

m ≥ log 2− log δ

2ϵ2

samples. Intuitively, if we want a lower error or lower probability, we
need more samples.

However, we cannot sample directly from the posterior p(θ | y), be-
cause it is intractable. The key idea of MCMC is to construct a Markov
chain with stationary distribution p(θ | y) and sample from that.

5.1 Markov chains

Definition 5.1 (Markov chain). A Markov chain is a sequence of
random variables (Xt)t∈N0 with prior P(X1) and transition proba-
bilities P(Xt+1 | Xt) independent of t. The Markov assumption is
thus the following,

Xt+1⊥X1:t−1 | Xt.

Intuitively, this states that future behavior is independent of past
states given the present state. In other words, all past information is
encapsulated by the current state.

Definition 5.2 (Stationary distribution). A distribution π is station-
ary with respect to the transition function P iff P(Xn) = P(Xn+1).
In other words, the probability distribution over states remains the
same between timesteps. The following must hold for all x,

π(x) = ∑
x′

P(x | x′)π(x′).

probabilistic artificial intelligence 17

Definition 5.3 (Ergodicity). A Markov chain is ergodic iff there exists
a t ∈N0 such that for any x, x′, the following holds,

P(t)(x′ | x) > 0,

where P(t)(x′ | x) is the probability to reach x′ from x in exactly t
steps. Intuitively, this means that any state is reachable from another
within the same amount of steps.

Remark. An easy way of ensuring that a Markov chain is ergodic is to
add “self-loops“ to every vertex.

Theorem 5.4 (Fundamental theorem of ergodic Markov chains). An
ergodic Markov chain has a unique and positive stationary distribu-
tion π(X) > 0 such that for all x, the following holds,

lim
n→∞

P(Xn = x) = π(x),

independent of the initial distribution P(X1). I.e., ergodic Markov
chains always converge to a stationary distribution.

Thus, making use of the fundamental theorem of ergodic Markov
chains, we can construct an ergodic Markov chain such that its stationary
distribution coincides with the posterior distribution, π(x) = p(θ | y). If
we then sample “sufficiently long“ from this Markov chain, Xt is drawn
from a distribution that is “very close“ to the stationary distribution π,
which is equal to the posterior distribution.

Definition 5.5 (Detailed balance equation). A Markov chain satisfies
the detailed balance equation for an unnormalized distribution q iff
the following holds for any x, x′,

q(x)P(x′ | x) = q(x′)P(x | x′).

Theorem 5.6. If a finite Markov chain satisfies the detailed balance
equation with respect to q, then 1

Z q is a stationary distribution.

probabilistic artificial intelligence 18

Proof. Let pt = q. Then for any x, the following holds,

pt+1(x) = ∑
x′

P(x | x′)pt(x′) Markov assumption

= ∑
x′

P(x | x′)q(x′)

= ∑
x′

P(x′ | x)q(x) Detailed balance equation

= q(x)∑
x′

P(x′ | x)

= q(x).

Thus, q is the stationary distribution. ■

5.2 Sampling

If we can show that the detailed balance equation holds for the unnormal-
ized posterior distribution, then we know that the posterior distribution
is the stationary distribution of the Markov chain.19 Thus, we do not 19 The only problem is that we do not know the rate

of convergence to the stationary distribution.need to know the true posterior. It suffices to know its unnormalized
version.20 20 Recall that the normalizer was the intractable part

of p(θ | y).
The Metropolis-Hastings algorithm constructs a Markov chain with the

posterior as stationary distribution. It uses an arbitrary proposal transi-
tion distribution R(x′ | x) which, given we are in state x, proposes a new
state x′.21 Following the proposal with probability 21 The rate of convergence of this algorithm strongly

depends on the choice of R.

α(x′ | x) .
= min

{
1,

q(x′)R(x | x′)
q(x)R(x′ | x)

}
,

yields a Markov chain with the desired stationary distribution 1
Z q(x),

because it makes it satisfy the detailed balance equation.

1: function MetropolisHastings(R)
2: initialize x
3: for t = 1, . . . , T do
4: x′ ∼ R(x′ | x)
5: u ∼ Unif([0, 1])
6: if u ≤ α(x′ | x) then
7: x ← x′

8: end if
9: end for

10: end function

Algorithm 1. The Metropolis-Hastings algorithm.
Each iteration, with a random probability, follow
the proposal distribution.

5.3 Proposal distributions

We want to converge to the stationary distribution as fast as possible.
The proposal distribution has a big influence on this.

probabilistic artificial intelligence 19

Gibbs sampling. A popular example algorithm for specifying a proposal
distribution R is Gibbs sampling. Gibbs sampling works by iteratively im-
proving the variables. It starts with an initial assignment x to all variables,
fixing the observed variables to their observed value. Then, iteratively
uniformly pick a variable Xi to update given the rest of the set values by
sampling p(Xi | x1:i−1, xi+1:n).22 22 Sampling from this distribution is typically effi-

cient.

1: function GibbsSampling

2: initialize x = [x1, . . . , xn] ∈ Rn

3: for t = 1, . . . , T do
4: uniformly sample i from {1, . . . , n}
5: x−i ← [x1, . . . , xi−1, xi+1, . . . , xn]

6: update xi by sampling from p(xi | x−i)

7: end for
8: end function

Algorithm 2. Gibbs sampling.

Then, Gibbs sampling is a Metropolis-Hastings algorithm with the
following proposal distribution,

R(x′ | x) .
=

p(x′i | x′1:i−1, x′i+1:n) x′ differs from x

0 otherwise

and acceptance distribution α(x′ | x) = 1 for all x, x′.

Gaussian. Generally, we focus on positive distributions written as the
following,

p(x) =
1
Z

exp(− f (x)),

where f is called an energy function (high energy ≡ low probability, low
energy ≡ high probability). Then, the acceptance distribution becomes
the following,

α(x′ | x) = min
{

1,
R(x | x′)
R(x′ | x)

exp(f (x)− f (x′))
}

.

One option for the proposal distribution is

R(x′ | x) = N (x′; x, τI).

Since this R is symmetric,

R(x | x′)
R(x′ | x)

= 1.

Thus, if R proposes to move to a region with lower energy, the acceptance
probability will always be 1. If R proposes to move to a region with higher
energy, the probability moves toward 0 dependent on how much higher
the region is.

However, we want to move as quickly as possible through the function,
going through all high-density areas. But, this R is “uninformed“ and

probabilistic artificial intelligence 20

thus proposes to go in any direction. We would like to propose areas
with lower energy, which are high-density areas for p(x). Then, we will
have less iterations where the proposal simply gets rejected.

Metropolis adjusted Langevin algorithm. An improvement to the Gaus-
sian proposal distribution is the Metropolis adjusted Langevin algorithm
(MALA),

R(x′ | x) = N (x′; x− τ∇ f (x), 2τI).

This proposes moving to high-density areas, thus it much more efficiently
converges to the stationary distribution.

The problem with this is that it requires access to the full energy func-
tion to compute the gradient, which can be expensive for large datasets.
This is solved by stochastically estimating the gradient ∇ f (x).

probabilistic artificial intelligence 21

6 Bayesian neural networks

So far, we have explored techniques for computing uncertainty of linear
models.23 However, in practice, we can often get better performance by 23 The likelihood have parameters linearly depen-

dent on the input feature.considering non-linear dependencies. Thus, this is what we will explore
next.

Neural networks typically look like the following,

fθ(x) = ϕ(Wℓϕ(Wℓ−1 · · · ϕ(W1x))).

Bayesian neural network models specify a prior distribution over the weights,

θ ∼ N (0, σ2
p I),

and use likelihood distributions parametrized by a neural network,

y | x, θ ∼ N (f (x; θ), σ2),

which assumes homoscedastic noise.24 However, we can also parameter- 24 Same noise for all data points.

ize a likelihood that can model heteroscedastic noise by predicting the
variance of the Gaussian,

y | x, θ ∼ N (fµ(x; θ), exp fσ2(x; θ)).

The MAP estimate of a BNN is the following,

θ̂ = argmax
θ

p(θ | X, y)

= argmax
θ

p(θ)p(y | X, θ)

= argmin
θ

− log p(θ)−
n

∑
i=1

log p(yi | xi, θ)

= argmin
θ

−λ∥θ∥2 +
n

∑
i=1
− logN (yi; fµ(xi; θ, fσ2(xi; θ)))

= argmin
θ

−λ∥θ∥2 +
n

∑
i=1
− log

(
1

2π fσ2(xi; θ)
exp

(
− 1

2 fσ2(xi; θ)
(yi − fµ(xi; θ))2

))
= argmin

θ

−λ∥θ∥2 +
n

∑
i=1

log(2π) + log(fσ2(xi; θ)) +
1

2 fσ2(xi; θ)
(yi − fµ(xi; θ))2

= argmin
θ

−λ∥θ∥2 +
n

∑
i=1

log(fσ2(xi; θ)) +
(yi − fµ(xi; θ))2

2 fσ2(xi; θ)
.

Thus, the MAP estimate is a balance between the mean and variance
predictions. If we perfectly predict yi with fµ, we only need to make
fσ2 smaller. Otherwise, we can attenuate for the error (yi − fµ(xi; θ))2

with fσ2 in its denominator, for which we have to pay logarithmically.
Intuitively, the model can attenuate certain losses for certain datapoints
by attributing the error to large variance.

However, the problem with the MAP estimate is that it does not use
the entire distribution over θ. In other words, it does not account for epis-
temic uncertainty, only aleatoric. But, just like before, using the whole

probabilistic artificial intelligence 22

distribution would be intractable. Thus, we need some approximation
techniques to make it tractable. We will explore this in the next subsec-
tions.

6.1 Variational inference

Since BNNs are just a distribution over the weights θ, we can approxi-
mate its distribution with variational inference. Then, we can learn the
distribution over θ by optimizing the ELBO of the approximation distri-
bution qλ. Then, we can do inference as follows,

p(y⋆ | x⋆, X, y) =
∫

p(y⋆ | x⋆, θ)p(θ | X, y)dθ

= Eθ∼p(·|X,y)[p(y
⋆ | x⋆, θ)]

≈ Eθ∼qλ
[p(y⋆, x⋆, θ)] Variational inference

≈ 1
m

m

∑
j=1

p
(

y⋆ | x⋆, θ(j)
)

, θ(j) ∼ qλ. Monte Carlo

If qλ is Gaussian, then the approximate predictive distribution be-
comes a mixture of Gaussians. The mean and variance of this distribution
are the following,

E[y⋆ | x⋆, X, y] ≈ µ̄(x⋆) .
=

1
m

m

∑
j=1

fµ(x⋆; θ(j))

Var[y⋆ | x⋆, X, y] = Eθ[Vary⋆ [y⋆ | x⋆, θ]] + Varθ[Ey⋆ [y⋆ | x⋆, θ]] Law of total variance

≈ 1
m

m

∑
j=1

fσ2

(
x⋆; θ(j)

)
︸ ︷︷ ︸

aleatoric uncertainty

+
1

m− 1

m

∑
j=1

(
fµ

(
x⋆; θ(j)

)
− µ̄(x⋆)

)2

︸ ︷︷ ︸
epistemic uncertainty

6.2 Markov chain Monte Carlo

It is also possible to apply MCMC to BNNs. MCMC methods produce
a sequence of weights θ(1), . . . , θ(T). Using the ergodic theorem we can
then make predictions with the following,

p(y⋆ | x⋆, X, y) ≈ 1
T

T

∑
j=1

p
(

y⋆ | x⋆, θ(j)
)

.

However, models are often very large, so we cannot store T times
the parameters of the network O(Td). Thus, we need to approximate. A
simple solution is to only keep a subset of m weights. But, we can also
approximate the distribution with a Gaussian,

θ ∼ N (µ, Σ),

and keeping running averages, only requiring O
(
d2) space complexity,

where

µ =
1
T

T

∑
j=1

θ(j), Σ =
1

T − 1

T

∑
j=1

(
θ(j) − µ

)(
θ(j) − µ

)⊤
.

probabilistic artificial intelligence 23

SWAG [Maddox et al., 2019] is an example of a model that does this,
but instead of an MCMC method, it uses stochastic gradient descent to
sample models.

6.3 Monte Carlo dropout

Dropout regularization is often used in traditional neural networks to
improve generalization. It works by randomly selecting weights to set to
0. However, using Monte Carlo dropout, we can view this as performing
variational inference. Let p be the probability that we omit parameter,
then the variational posterior is given as the following,

q(θ | λ) =
d

∏
j=1

qj(θj | λj)

qj(θj | λj) = pδ0(θj) + (1− p)δλj(θj),

where d is the number of parameters in the neural network. Intuitively,
this posterior says that the j-th weight has value 0 with probability p and
value λj with probability 1− p.

The difference with dropout regularization is that we also need to use
dropout during inference for this to be variational inference,

p(y⋆ | x⋆, y) ≈ Eθ∼qλ
[p(y⋆ | x⋆, θ)]

≈ 1
m

m

∑
j=1

p
(

y⋆ | x⋆, θ(j)
)

θ(j) iid∼ qλ.

Intuitively, we average the distribution of m neural networks for each of
which we randomly drop out weights.

6.4 Probabilistic ensembles

We have seen that variational inference can be seen as averaging the
predictions of m neural networks. A natural adaptation of this idea is to
learn the weights of m neural networks. The idea is to randomly choose
m training subsets, each with n data points. Then, we compute m MAP
estimates θ(j), yielding the following approximation,

p(y⋆ | x⋆, y) ≈ 1
m

m

∑
j=1

p(y⋆ | x⋆, θ(j)).

6.5 Calibration

A key challenge of BNNs is calibration. We want models to be well-
calibrated, which means that the confidence that they have in their pre-
dictions coincides with the accuracy they have over many samples. For
example, let’s say that we have a classification model that predicts that a

probabilistic artificial intelligence 24

data point belongs to a certain class with 80% probability. If the model is
well-calibrated, then the prediction should be correct 80% of the time. We
can calibrate models by adjusting the probability estimation of models.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

confidence

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

confidence

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

confidence

ac
cu

ra
cy

Figure 6.1. Reliability diagrams. The top diagram
shows a well-calibrated model, the second diagram
is overconfident, and the third diagram is under-
confident.

Reliability diagrams (Figure 6.1) are a way of determining how cali-
brated a model is. This diagram is constructed by making predictions
on a validation dataset. These predictions are then divided into M bins
according to the predicted class probability,

Bj =

{
y
∣∣∣∣ p(y) ∈

[
j− 1

m
,

j
m

)}
.

Within each bin, we then compare the predicted probabilities (confidence)
with how often the input actually belonged to the class (frequency),

conf(Bj) =
1
|Bj| ∑

y∈Bj

pθ(y)

acc(Bj) =
1
|Bj| ∑

y∈Bj

1{y = ŷ},

A model is well-calibrated if conf(Bj) ≈ acc(Bj) for all bins Bj.

probabilistic artificial intelligence 25

7 Active learning

Until now, we have only covered how to learn/represent aleatoric and
epistemic uncertainty in machine learning. Active learning covers how
to use this measure for deciding which data to collect. Intuitively, we
want to collect data points in places where we would gain the most
information, i.e., where the uncertainty is high. This assumes that there
is some cost associated with collecting data points, making it important to
be careful about which data points to pick that maximize the information
obtained.

Let X be a set of possible observations of f , and yx the observation at
x ∈ X ,

yx
.
= f (x) + ϵx, ϵx ∈ N (0, σ2

n I).

Then, we want to observe a subset S ⊆ X of a fixed size that maximizes
the information gain between the model f and yS, which yields the
following maximization objective,

I(S) .
= I(fS; yS) = H[fS]− H(fS | yS),

where H[fS] denotes the uncertainty about fS before obtaining the obser-
vations yS and H[fS | yS] corresponds to the uncertainty about fS after
obtaining observations yS. This problem is NP-hard, thus we need to
formulate a strategy.

7.1 Sampling strategies

Uncertainty sampling. The simplest strategy is to greedily pick points
one by one, which entails that we pick the locations, x1, . . . , xn, individu-
ally by greedily finding the location with maximal mutual information.
That is, if we have already picked locations St = {x1, . . . , xt}, then the
next point, xt+1, maximizes its mutual information,

xt+1
.
= argmax

x∈X
I(fx; yx | ySt).

Assuming that f is modeled by a Gaussian,

xt+1 = argmax
x∈X

1
2

log

(
1 +

σ2
x|St

σ2
n(x)

)

= argmax
x∈X

σ2
x|St

σ2
n(x)

.

Assuming that the label noise is independent of x, i.e., homoscedastic,

xt+1 = argmax
x∈X

σ2
x|St

.

Thus, if f is modeled by a Gaussian and we assume homoscedastic noise,
greedily maximizing mutual information corresponds to picking the
point x with the largest variance.

probabilistic artificial intelligence 26

Due to the information never hurts principle, mutual information is
monotone submodular, which means that adding data points can only
increase the mutual information in expectation. From this, it follows that
the greedy algorithm provides a constant-factor approximation, which
means that uncertainty sampling is near-optimal.

Heteroscedastic noise. If the data is not homoscedastic, uncertainty sam-
pling will fail, because it fails to distinguish between epistemic and
aleatoric uncertainty. Therefore, the most uncertain point is not necessar-
ily the most informative one. Thus, maximizing the mutual information
yields the following,

xt+1 = argmax
x∈X

σ2
x|St

σ2
n(x)

.

Here we make a trade-off between large epistemic uncertainty and large
aleatoric uncertainty. Ideally, we find an x where the epistemic uncer-
tainty is large, and the aleatoric uncertainty low, because we want to make
sure we get a lot of information (high epistemic uncertainty), but also
that we can have high confidence in the point we choose (low aleatoric
uncertainty).

Bayesian active learning by disagreement. Uncertainty sampling in classi-
fication corresponds to selecting samples that maximize entropy of the
predicted label, i.e., points that are close to the decision boundary. How-
ever, the uncertainty in points around the decision boundary are often
due to aleatoric noise. Hence, we will not learn much from observing
points there.

Thus, we need to distinguish between aleatoric and epistemic uncer-
tainty of fθ,

xt+1 = argmax
x∈X

I(yx; θ | x1:t, y1:t)

= argmax
x∈X

H[yx | x1:t, y1:t]− H[yx | θ, x1:t, y1:t]

= argmax
x∈X

H[yx | x1:t, y1:t]︸ ︷︷ ︸
entropy of

pred. posterior

−Eθ|x1:t ,y1:t
[H[yx | θ]]︸ ︷︷ ︸

entropy of likelihood

.

The first term measures the entropy of the average prediction, while
the second term measures the average entropy of predictions. Thus, the
first term looks for points where the average prediction is uncertain. In
contrast, the second term penalizes points where many of the sampled
models θ are uncertain about their prediction. Thus, we want to find
points x where the posterior is uncertain (epistemic uncertainty) because
of all models θ being extremely certain about their differing predictions
(aleatoric uncertainty).

Since p(θ | x1:t, y1:t) is intractable, we need to use variational inference

probabilistic artificial intelligence 27

and Monte Carlo to approximate the second term,

Eθ|x1:t ,y1:t
[H[yx | θ]] ≈ Eqλ

[H[yx | θ]] Variational inference

≈ 1
m

m

∑
i=1

H
[
yx | θ(i)

]
, θ(i) ∼ qλ Monte Carlo.

We can use another approximation method, such as variational inference,
Markov chain Monte Carlo, or SWAG, to approximate the predictive
posterior in the first term.

probabilistic artificial intelligence 28

8 Bayesian optimization
xt

f ⋆

yt = f ⋆(xt) + ϵt

Figure 8.1. Illustration of Bayesian optimization.
We pass an input xt into the unknown function
f ⋆ to obtain a noisy observation yt.

In Bayesian optimization, we do not only want to reduce uncertainty, but
we also want to maximize some objective.25 This means that we have

25 This is in contrast with active learning. An exam-
ple of this is automatically tuning the hyperparam-
eters of a machine learning model. In this scenario,
we would both want to minimize the uncertainty
of the parameter space and maximize the perfor-
mance of the eventual model.

to make a trade-off between exploration (minimizing uncertainty) and
exploitation (maximizing performance).

Definition 8.1 (Regret). The cumulative regret for a time horizon T
associated with choices x1, . . . , xT is defined as

RT
.
=

T

∑
t=1

(
max

x
f (x)− f (xt)

)
︸ ︷︷ ︸

“instantaneous regret“

.

The regret can be interpreted as the additive loss with respect to the
maximally achievable value maxx f (x).

The goal is to find algorithms that achieve a sublinear regret,

lim
T→∞

RT
T

= 0.

This leads to the algorithm converging on the maximum maxx f (x). Note
that using an algorithm that explores forever will result in the regret
growing linearly, because we will never settle on a maximum value. In
contrast, if we use an algorithm that never explores and thus only exploits,
we might never find maxx f (x). Thus, achieving sublinear regret requires
balancing exploration and exploitation.

8.1 Acquisition functions

Upper confidence bound. The principle of optimism in the face of uncer-
tainty naturally suggests picking the point where we can hope for the
optimal outcome. This corresponds to maximizing the upper confidence
bound (UCB),26 26 This assumes that the parameters of the model

(e.g. GP) are known. However, this is not the case
in practice. Thus, in practice, we can alternate be-
tween learning the hyperparameters from the cur-
rently selected data, and selecting the next data-
point. However, this introduces a danger of over-
fitting. This can be solved by either placing a hy-
perprior on the hyperparameters, or occasionally
selecting some points at random.

xt = argmax
x∈X

µt−1(x) + βtσt−1(x),

where βt regulates how confident we are in our current model. A high
βt leads the model to explore, while a low βt leads the model to exploit.
This acquisition function naturally trades exploitation by preferring a
large posterior mean with exploration by preferring a large posterior
variance.

If f can be represented by our model and we choose βt “correctly“,

RT ∈ O⋆

(√
γT
T

)
,

where
γT = max

|S|≤T
I(f ; yS),

probabilistic artificial intelligence 29

quantifies the maximum information gain. Thus, the maximum informa-
tion gain γT determines the regret of the UCB algorithm.

Kernel γT bound

Linear O(d log T)
Gaussian O

(
(log T)d+1)

Matérn (ν > 1/2) O
(

T
d

2ν+d (log T)
2ν

2ν+d
)

Table 1. Information gain bounds of common Gaus-
sian process kernels. These guarantee sublinear re-
gret, which means that they are guaranteed to con-
verge to the maximum value of the function.

Thompson sampling. At every iteration t, Thompson sampling draws a
function realization from the Gaussian process,

f̃t ∼ p(f | x1:t, y1:t),

and selects
xt+1 = argmax

x∈X
f̃t(x).

The randomness in the realization of f̃t is sufficient to trade exploration
and exploitation. Similarly to UCB, it has sublinear regret bounds.

probabilistic artificial intelligence 30

9 Markov decision processes

For now, we will assume that p and r are known,
but, as we will see in section 10, in reinforcement
learning, these are unknown.

Definition 9.1 (Markov decision process). A Markov decision pro-
cess ⟨X ,A, p, r⟩ is specified by the following,

• Set of states X (not necessarily finite);

• Set of actions A (not necessarily finite);

• Initial state distribution p(x0);

• Transition probabilities p(x′ | x, a);

• Reward function r(x, a) (or r(x, a, x′)).

As can be seen by the form of the transition probabilities, we make
the Markov assumption, where the future state only depends on the
current state and action.

In general, we want to maximize the long-term reward, either over a
finite horizon T,

max E

[
T

∑
t=0

r(xt, at)

]
,

or over an infinite horizon where future rewards are discounted by a
decaying factor γ ∈ (0, 1),27 27 We cannot maximize the summed future reward

(without decaying factor), because this could be ∞
for all possible strategies.

max E

[
∞

∑
t=0

γtr(xt, at)

]
.

A policy π : X → A is a function that maps states to their action. A
policy π induces a Markov chain with P(Xt+1 = x′ | Xt = x) = p(x′ |
x, π(x)) as transition probabilities. In general, we want to find the policy
that maximizes the expected value,

J(π)
.
= E

[
∞

∑
t=0

γtr(Xt, π(Xt))

]
.

9.1 Bellman expectation equation

We can solve for the value function of a policy using
a bit of linear algebra. Let X = {1, . . . , n}, then we
can define the following vectors and matrix,

vπ =

Vπ(1)

...
Vπ(n)

rπ =

r(1, π(1))

...
r(n, π(n))

Tπ =

p(1 | 1, π(1)) · · · p(n | 1, π(1))

...
. . .

...
p(1 | n, π(n)) · · · p(n | n, π(n))

 .

Using the Bellman expectation equation, we have
the following equality,

vπ = rπ + γTπvπ

⇐⇒ (I − γTπ)vπ = rπ

⇐⇒ vπ = (I − γTπ)−1rπ .

However, this is computationally expensive. We
could also use fixed-point iteration to obtain an (ap-
proximate) solution. This involves iteratively com-
puting the value function of each node, given the
last value function,

vπ
t = rπ + γTπvπ

t−1.

This is faster, because Tπ is sparse.

The value function of a state x is the expected sum of discounted future
rewards, obtained from subsequent states. This is defined as the follow-
ing,

Vπ(x) .
= E

[
∞

∑
t=0

γtr(Xt, π(Xt))

∣∣∣∣∣ X0 = x

]
,

probabilistic artificial intelligence 31

which contains a recursive relationship,

Vπ(x) .
= Ex

[
∞

∑
t=0

γtr(Xt, π(Xt))

∣∣∣∣∣ X0 = x

]

= Ex

[
r(X0, π(X0)) +

∞

∑
t=1

γtr(Xt, π(Xt))

∣∣∣∣∣ X0 = x

]

= Ex[r(X0, π(X0)) | X0 = x] + Ex

[
∞

∑
t=0

γt+1r(Xt+1, π(Xt+1))

∣∣∣∣∣ X0 = x

]

= r(x, π(x)) + γEx′

[
Ex

[
∞

∑
t=0

γtr(Xt+1, π(Xt+1))

∣∣∣∣∣ X1 = x′
]]

Condition on realization of X1

= r(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x)) ·Ex′

[
∞

∑
t=0

γtr(Xt+1, π(Xt+1))

∣∣∣∣∣ X1 = x′
]

= r(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x)) ·Ex′

[
∞

∑
t=0

γtr(Xt, π(Xt))

∣∣∣∣∣ X0 = x′
]
Stationarity of Markov chains

= r(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x)) ·Vπ(x′).

This equation is known as the Bellman expectation equation. Intuitively,
this means that the value of the current state corresponds to the reward
from the next action, plus the discounted sum of expected future rewards
obtained from the subsequent states (which are their values).

Vπ πV

Vπ induces πV

πV induces Vπ

Figure 9.1. Cyclic dependency between value func-
tion and greedy policy.

Theorem 9.2 (Bellman’s theorem). A policy π⋆ is optimal iff it is
greedy w.r.t. its own value function V⋆.

9.2 Policy iteration

Every value function induces a policy where we greedily choose the
action that maximizes the expected value,

πV(x) = argmax
a∈A

r(x, a) + γ ∑
x′∈X

p(x′ | x, a)V(x′), (1)

while the policy induces a value function as we have seen. This leads us
to policy iteration, where we find an optimal policy by alternating between
computing the value function w.r.t. π (using fixed-point iteration) and
computing the next greedy policy w.r.t. Vπ (using Equation (1)), until
convergence.

Policy iteration is expensive, because every iteration requires comput-
ing a value function, but it is guaranteed to converge monotonically.

9.3 Value iteration

Value iteration can be seen as a dynamic program that computes the
optimal value function, where the state is how many timesteps t we look

probabilistic artificial intelligence 32

function PolicyIteration(⟨X ,A, p, r⟩)
randomly initialize π

while not converged do
V ← ValueFunction(π)

π ← GreedyPolicy(V)

end while
return π

end function

Algorithm 3. Policy iteration algorithm that finds
an exact solution in a polynomial number of itera-
tions.

ahead, and Vt(x) is the value function of that. The recurrence relationship
is then the following,

V0(x) = max
a∈A

r(x, a)

Vt(x) = max
a∈A

r(x, a) + γ ∑
x′∈X

p(x′ | x, a)Vt−1(x′).

Since Vt−1 looks t− 1 steps into the future, Vt looks t steps ahead. We
keep iterating until ϵ-optimal convergence.28 28 ϵ-optimal in the sense that the largest difference

between V⋆(x) and Vt(x) for any x is at most ϵ.

function ValueIteration(⟨X ,A, p, r⟩)
for x ∈ X do ▷ Initialize V0

V0(x)← maxa∈A r(x, a)
end for
t← 0
while ∥vt − vt−1∥∞ > ϵ do

t← t + 1 ▷ Look one more step into the future
for x ∈ X do

Vt(x)← maxa∈A r(x, a) + γ ∑x′∈X p(x′ | x, a)Vt−1(x′)
end for

end while
return GreedyPolicy(Vt)

end function

Algorithm 4. Value iteration algorithm that finds
an ϵ-optimal solution in a polynomial number of
iterations. vt is the vector containing all values of
Vt. ∥x∥∞ is the largest value of x.

Recall Theorem 9.2 that states that if a policy is greedy w.r.t. its own
value function, it is optimal. Thus, after finding an ϵ-optimal value func-
tion, we can simply choose the policy that greedily picks according to
this value function.

Value iteration is not guaranteed to converge monotonically, but it
is guaranteed to converge to an ϵ-optimal policy in polynomial time.
Furthermore, value iteration is inexpensive, compared to policy iteration.

probabilistic artificial intelligence 33

10 Reinforcement learning
agent
in xt

env.

atxt+1 rt

Figure 10.1. In reinforcement learning, an agent in-
teracts with its environment. After playing an ac-
tion at, it observes reward rt and its new state xt+1.

In reinforcement learning (RL), we are concerned with acting in unknown
environments. These environments are still modeled by MDPs, but in
RL, we do not have access to the transition probabilities p and reward
function r. Thus, RL is at the intersection of probabilistic planning (MDPs)
and learning, i.e., everything we have learned thus far comes together
here.

Remark. We will start by assuming that the state-action space is finite.
Then, we will move on to potentially infinite state spaces. After that, we
will learn about infinite action spaces.

Since the environment is unknown, we need to explore the state-action
space to find where the reward lies. However, we also want to act op-
timally by exploiting what we have learned thus far. This is called the
exploration/exploitation dilemma and is what algorithms need to solve.

Another way that reinforcement learning differs from supervised learn-
ing is that data depends on past actions. Trajectory data looks like the
following,

τ = (⟨x0, a0, r0, x1⟩, ⟨x1, a1, r1, x2⟩, . . .).

We differentiate between RL algorithms in two major ways. The first
is whether the algorithm has control over its data: an algorithm is called
on-policy if it controls its own actions from which it learns, and off-policy
if it can learn from any data. Furthermore, we differentiate between
model-based and model-free algorithms. Model-based algorithms learn the
underlying MDP and solve it using value or policy iteration. Model-free
algorithms only learn the value function, since, due to Bellman’s theorem,
that is all that is needed to act optimally.

10.1 Model-based

In model-based RL, we learn the MDP, i.e., we estimate the transition
probabilities p(x′ | x, a) and reward function r(x, a) from the data,

p̂(x′ | x, a) =
count(x′ | x, a)

count(x, a)

r̂(x, a) =
1

count(x, a)

∞

∑
t=0

xt=x
at=a

rt

Then, we optimize the policy by value or policy iteration, based on the
estimated MDP.

A sequence xt satisfies the Robbins Monro condi-
tions if

∞

∑
t=0

xt = ∞,
∞

∑
t=0

x2
t < ∞.

E.g., xt =
1
t .

ϵ-greedy. At iteration t, pick random action with probability ϵt, or best
action (according to internal MDP) with probability 1− ϵt. Guaranteed to
converge to optimal policy if the ϵt sequence satisfies the Robbins Monro
conditions. The advantage of this method is that it is extremely simple

probabilistic artificial intelligence 34

Algorithm Classification Space compl.

ϵ-greedy On/off-policy Model-based O
(
|A| · |X |2

)
Rmax On/off-policy Model-based O

(
|A| · |X |2

)
TD-learning On-policy Model-free O(|X |)
Q-learning Off-policy Model-free O(|A| · |X |)
Deep Q Network Off-policy Model-free
REINFORCE On-policy Model-free

Table 2. RL algorithms covered in this text with
their types.

and has a clear interpretation w.r.t. the exploration-exploitation dilemma.
The disadvantage is that it does not quickly eliminate clearly suboptimal
actions. This is because it explores the state space in an uninformed
manner. In other words, it explores while ignoring all past experience.

Rmax algorithm. Rmax solves the problem of ϵ-greedy by using the Opti-
mism in the face of uncertainty principle. It assumes that any unexplored
states are “fairy tale“ states with high reward. More formally, if r(x, a) is
unknown, we set r̂(x, a) = Rmax. Similarly, if p(x′ | x, a) is unknown, we
set p̂(x⋆ | x, a) = 1 for some “fairy tale“ state,

p̂(x⋆ | x⋆, a) = 1 ∀a ∈ A
r̂(x⋆, a) = Rmax ∀a ∈ A.

This gives us an algorithm that has a bias toward exploring, but once it
has explored a part of the state-action space, and observed it to be sub-
optimal, it can quickly eliminate it. Furthermore, the algorithm does not
have to explicitly choose between exploration and exploitation, because
it is done by assuming that the unexplored states are optimal.

10.2 Model-free

The problem with model-based RL is that it has high space requirements
for storing the MDP, i.e., O

(
|A| · |X |2

)
. Furthermore, it requires repeat-

edly solving the underlying MDP, which is expensive with policy or
value iteration. In model-free RL, we estimate the value function directly,
because that is all we need to act optimally, according to Bellman’s the-
orem. Thus, we also do not need to do any planning, eliminating much
computational complexity.

Temporal difference-learning. TD-learning directly computes the value
function. Recall the Bellman expectation equation,

Vπ(x) = r(x, π(x)) + γ ∑
x′∈X

p(x′ | x, π(x))Vπ(x′).

Since we do not have access to r and p, we have to make a Monte Carlo
estimate given a single data point ⟨x, a, r, x′⟩,

≈ r + γVπ(x′).

probabilistic artificial intelligence 35

The idea is that we make this approximation repeatedly as the agent
collects new data, which achieves the same effect as averaging over many
data points. However, there is still a problem: Vπ depends on the un-
known Vπ .

The key idea is to use a bootstrapping estimate of the value function.
In other words, instead of the true value function Vπ , we will use a
running estimate V̂π . However, due to relying on a single sample, the
value function will have a high variance, which is why we mix the new
estimate with the previous one using a learning rate αt,

V̂π(x)← (1− αt)V̂π(x) + αt(r + γV̂π(x′)).

If the learning rate αt satisfies the Robbins Monro conditions and all
states are chosen infinitely often, V̂π is guaranteed to converge to the
optimal value function Vπ .

Note that, due to the Monte Carlo approximation w.r.t. transitions
attained by following policy π, TD-learning is a fundamentally on-policy
method. Further note that the space requirement of this algorithm is
O(|X |).

Q-learning. A generalization of TD-learning is Q-learning. Instead of
directly learning the value function, which makes it inherently on-policy,
it learns state-action values Q(x, a). Then, we can compute Vπ(x) =

maxa Q(x, a). Like in TD-learning, we mix in the new estimate with the
previous one according to learning rate αt,

Q̂(x, a)← (1− αt)Q̂(x, a) + αt

(
r + γ max

a′∈A
Q̂(x′, a′)

)
.

The advantage of Q-learning is that it is off-policy, because the value is
conditioned on the action. Thus, we can generate as much data as we
need using a different algorithm, such as ϵ-greedy, and then estimate the
Q-values from there.

Again, Q-learning is optimal if it satisfies the Robbins Monro con-
ditions and all state-action pairs are chosen infinitely often. The space
complexity of Q-learning is O(|A| · |X |).

10.3 Model-free deep RL In deep RL, the input could be anything that ma-
chine learning can process, e.g., video game frames
with CNN or language with RNN.The problem with all previously discussed methods is that they are only

feasible in a small finite domain. In continuous domains, we would
need an infinite amount of memory to store all values. Thus, we need to
approximate this regression problem with function approximators, a.k.a.
machine learning.

Let Vπ(x; θ) be the function approximator that approximates the value
function. Just like in TD-learning, we make the following Monte Carlo

probabilistic artificial intelligence 36

estimation for a given data point ⟨x, a, r, x′⟩,

Vπ(x) ≈ r + γVπ(x′).

Then, we can define the loss function of our value function as the squared
error from the true value function,

ℓ(θ; x, r, x′) .
=

1
2
(Vπ(x; θ)−Vπ(x)),

which we estimate by using the Monte Carlo estimation,

≈ 1
2

(
Vπ(x; θ)−

(
r + γVπ

(
x′; θold

)))2
.

The gradient of this loss is equal to the following,

∇Vπ(x;θ)ℓ(θ; x, r, x′) = Vπ(x; θ)−
(

r + γVπ
(

x′; θold
))

.

Using stochastic gradient descent, we then get the following update rule,

Vπ(x; θ)← Vπ(x; θ)− αt

(
Vπ(x; θ)−

(
r + γVπ

(
x′; θold

)))
= (1− αt)Vπ(x; θ) + αt

(
r + γVπ

(
x′; θold

))
,

which is the same as the TD-learning update rule. Thus, the TD-learning
update rule can be viewed as gradient descent on the squared loss!

Deep Q-network. The same result holds for the Q-learning update rule,
where we do gradient descent on

ℓ(θ; x, a, x′, r) =
1
2

(
Q(x, a; θ)−

(
r + γ max

a′
Q
(

x′, a; θold
)))2

.

This equation is called the Bellman error.

function DeepQNetwork(τ)
initialize θ

while not converged do
pop ⟨x, a, r, x′⟩ from τ

θ← θ− αtδ∇θQ(x, a; θ)

where δ
.
=
(

Q(x, a; θ)−
(

r + γ maxa′ Q
(

x′, a; θold
)))

end while
end function

Algorithm 5. Q-learning with function approxima-
tion.

However, this algorithm is quite slow to converge. To accelerate, we
clone the network and maintain a constant “target“ value across episodes,
which we update once in a while.

Furthermore, deep Q networks suffer from “maximization bias“, which
means that it tends to overestimate the actual Q value. This is caused by
the max-operator used in the update rule, which also maximizes noise
in the data. This is solved by the double deep Q network, where we use
two target networks. We then take the minimum at each iteration of the
two predictions by the two target networks.

probabilistic artificial intelligence 37

Policy search methods. The problem with deep Q networks is that if the
action-space is large or infinite, the maxa′ Q(x′, a; θ) is no longer feasible.
The solution to this is learning a parametrized policy π(x; θ), where the
output is the action. In this case, we want to maximize the expected
trajectory reward,

J(θ) = Ex0:T ,a0:T∼πθ

[
T

∑
t=0

γtr(xt, at)

]
= Eτ∼πθ [r(τ)].

Theorem 10.1. The following holds,

∇θ J(θ) = ∇θEτ∼πθ
[r(τ)] = Eτ∼πθ

[r(τ)∇θ log πθ(τ)].

Proof.

∇θ J(θ) = ∇θ

∫
πθ(τ)r(τ)dτ

=
∫

∇θπθ(τ)r(τ)dτ

=
∫

πθ(τ)r(τ)∇θ log πθ(τ)dτ Chain rule

= Eτ∼πθ
[r(τ)∇θ log πθ(τ)].

■

Using Theorem 10.1, we do not need to use the reparametrization trick
to be able to compute gradients. We only need to compute ∇θ log πθ(τ).
We can compute this gradient as follows,

πθ(τ) = p(x0)
T

∏
t=0

πθ(at | xt)p(xt+1 | xt, at)

∇θ log πθ(τ) = ∇θ log p(x0) +
T

∑
t=0

∇θ log πθ(at | xt) +
T

∑
t=0

∇θ log p(xt+1 | xt, at)

=
T

∑
t=0

∇θ log πθ(at | xt).

So, to be able to compute gradients w.r.t. θ, we do not even need to know
the underlying MDP! Putting this together, we get the following gradient,

∇θ J(θ) = Eτ∼πθ

[
r(τ)

T

∑
t=0

∇θ log πθ(at | xt)

]
.

Even though these gradients are unbiased, they typically have large
variance. We can reduce the variance by introducing baselines,

Eτ∼πθ
[r(τ)∇θ log πθ(τ)] = Eτ∼πθ

[(r(τ)− b(τ))∇θ log πθ(τ)],

probabilistic artificial intelligence 38

1: function REINFORCE
2: initialize θ

3: repeat
4: generate an episode τ using πθ

5: for t = 1, . . . , T do
6: Gt ← rt

7: θ← θ+ ηγtGt∇θ log πθ(at | xt)

8: end for
9: until done

10: end function

Algorithm 6. The REINFORCE algorithm, where
the baseline at timestep t is set to be ∑t−1

t′=0 γt′ rt′ .

r(τ)− bt =
T

∑
t′=t

γt′−trt
.
= Gt.

Intuitively, Gt is the reward to go following action
at.

which have the same gradient. Thus, we are able to shift the reward up
or down without influencing the gradient.

REINFORCE (Algorithm 6) sets its baseline adaptively to be the fol-
lowing,

bt(τ) =
t−1

∑
t′=0

γt′rt′ .

Then, the gradient becomes the following,

∇θ J(θ) = Et∼πθ

[
T

∑
t=0

(
T

∑
t′=0

γt′rt′ −
t−1

∑
t′=0

γt′rt′

)
∇θ log πθ(at | xt)

]

= Et∼πθ

[
T

∑
t=0

γt

(
T

∑
t′=t

γt′−trt′

)
∇θ log πθ(at | xt)

]

= Et∼πθ

[
T

∑
t=0

γtGt∇θ log πθ(at | xt)

]
,

where Gt is the reward to go following action at. REINFORCE is an on-
policy algorithm, because it requires generating an episode for the data.
This is necessary to be able to update its parameters correctly.

θQ

θ′Q

θπ

θ′π

value function
approximation

policy
approximation

Figure 10.2. Illustration of an iteration of actor-critic
methods.

Actor-critic methods. We can reinterpret the REINFORCE gradient as
follows,

∇θ J(θ) = Eτ∼πθ

[
T

∑
t=0

γtGt∇θ log πθ(at | xt)

]

=
∞

∑
t=0

Eτt:∞

[
γtGt∇θ log πθ(at | xt)

]
Linearity of expectation

=
∞

∑
t=0

Ext ,at

[
γtEτt:∞

[
∞

∑
t′=t

γt′−trt

∣∣∣∣∣ xt, at

]
∇θ log πθ(at | xt)

]
Gt depends on everything after t, while the other
terms depend only on t.

= Eτ∼πθ

[
∞

∑
t=0

γtQπθ(xt, at)∇θ log πθ(at | xt)

]
The Q value is the value that we get after doing at
at xt.

probabilistic artificial intelligence 39

Now, we can obtain the following,

=
∫

ρθ(x)Ea∼πθ(x)[Q(x, a)∇θ log πθ(a | x)]dx This is an abuse of notation, because ρθ is an
unnormalized probability distribution.

= E(x,a)∼πθ
[Q(x, a)∇θ log πθ(a | x)],

where ρθ(x) .
= ∑∞

t=0 γt p(xt = x) is the unnormalized, discounted state
occupancy measure.

This result naturally suggests plugging in approximations for Qθ(x, a)
for the action-value function. The idea of actor-critic networks is to pa-
rameterize an actor network that computes the policy and a critic network
that computes the Q-value. They can then be used in each others’ update
equations,

θπ ← θπ + ηtQθ(x, a)∇θ log πθ(a | x)

θQ ← θQ − ηt
(
Qθ(x, a)− r− γQθ(x′, πθ(x′))

)
∇θQθ(x, a).

Furthermore, we can introduce baselines by adding a value network,

θπ ← θπ + ηt(Qθ(x, a)−Vθ(x))∇θ log πθ(a | x)

= θπ + ηt A(x, a)∇θ log πθ(a | x),

where A(x, a) .
= Q(x, a)−V(x) is the advantage function, which is pos-

itive if the chosen action is better than expected and negative if worse.
Thus, intuitively, we increase the probability of the chosen action if better
than expected, otherwise we decrease it. This model is called advantage
actor critic (A2C) [Mnih et al., 2016].

All models discussed so far have been on-policy, which often causes
sample inefficiency. Now, we want to move to off-policy methods. Recall
that our initial motivation was that finding the maximum Q value was
intractable if the action space was infinite. But, we could also replace the
exact maximum by a parametrized policy,

J(θ) = ∑
(x,a,r,x′)∈D

(
Qθ(x, a; θQ)−

(
r + γQ

(
x′, π(x′; θπ); θold

Q

)))2
,

where we jointly optimize over θQ and θπ . We want to follow the greedy
policy w.r.t. the Q function, i.e., we want πθ ≈ πQ = argmaxa∈A Q(x, a; θQ).
The key idea is that if we use a “rich enough“ parametrization of policies,
selecting the greedy policy w.r.t. Q is equivalent to the following,

θ⋆π = argmax
θπ

Ex∼µ[Q(x, π(x; θπ); θQ)],

where µ(x) > 0 is an exploration distribution over states with full support.
If we then use differentiable approximations of Q and a differentiable
deterministic policy π, we can use backpropagation to obtain gradients,

∇θπ Q(x, π(x; θπ); θQ) = ∇π(x;θπ)Q(x, θπ)∇θπ π(x; θπ).

probabilistic artificial intelligence 40

However, policy gradient methods rely on randomized policies for ex-
ploration, but we have deterministic policies. To encourage exploration,
we can inject additional Gaussian action noise to encourage exploration,
akin to ϵ-greedy exploration. This is called the deep deterministic policy
gradients (DDPG) algorithm [Lillicrap et al., 2015].

Twin delayed deep deterministic (TD3) further improves this by introduc-
ing a second critic network to address maximization bias [Fujimoto et al.,
2018]. Soft-actor critic (SAC) further improves this by adding entropy
regularization,

Jλ(θ) = J(θ) + λH(πθ),

which encouraging exploration by giving preference to high-entropy ac-
tions [Haarnoja et al., 2018].

10.4 Model-based deep RL

So far, we have only discussed deep model-free methods. However, if
we have an accurate model of the environment, we can use it for plan-
ning. The main benefit of this is that it dramatically reduces the sample
complexity, compared to model-free techniques. In other words, we need
much less data to find a good policy.

Planning in a known model. We assume a continuous state and action
space with non-linear transitions, without constraints. Thus, this is quite a
bit more complex than solving MDPs. We have a deterministic transition
function f and a reward function r. The objective then becomes the
following,

J∞(a0:∞) =
∞

∑
t=0

γtr(xt, at). such that xt+1 = f (xt, at) for every xt.

However, we cannot plan over an infinite horizon. The key idea is to
plan over a finite horizon H, carry out the first action, then replan with
a horizon H. Thus, we first optimize over the following

JH(at:t+H−1) =
t+H−1

∑
t′=t

γt′−tr(xt, at), such that xt+1 = f (xt, at) for every xt.

carry out action at and then replan. We can optimize this function using
gradient methods (backpropagation through time) if the actions, rewards,
and dynamics are differentiable. However, there are often many local
minima, and vanishing/exploding gradients are a problem, because we
do backpropagation through time.29 Thus, we often use heuristic global 29 This is the same problem that recurrent neural

networks have.optimization methods. The random shooting method generates m sets of
random samples at:t+H−1, and then picks the sequence that optimizes
the objective.

However, if we have sparse rewards, this will inherently not work,
because we might not look far enough into the future. But, if we have

probabilistic artificial intelligence 41

obstacle

H = 3

x⋆

Figure 10.3. Illustration of the effect of a finite hori-
zon. Only after two steps, the agent could “see“ the
obstacle within its horizon.

access to a value function estimate, we can use that to see beyond the
finite horizon, giving us the following object function,

JH(at:t+H−1) = ∑
t′=t:t+H−1

γt′−trt + γHV(xt+H),

where, intuitively, V(xt+H) summarizes the remaining infinite timesteps.
For H = 1, this is equal to the greedy policy w.r.t. V, but if we use larger
H, this converges faster.

If the transition function is stochastic, rather than deterministic, we
have to optimize over the expected performance,

JH(at:t+H−1) = Ext+1:t+H

[
t+H−1

∑
t′=t

γt′−trt + γHV(xt+H)

∣∣∣∣∣ at:t+H−1

]
.

However, the problem is that this expectation requires solving a high-
dimensional integral. A common solution is to use Monte Carlo trajectory
sampling. For this we use the reparametrization trick to obtain unbiased
Monte Carlo estimates,

ĴH(at:t+H−1) =
1
m

m

∑
i=1

t+H−1

∑
t′=t

γt′−trt(xt

(
at:t′−1, ϵ

(i)
t:t′−1

)
, at) + γHV(xt+H). The state is a function of the previous actions

at:t′−1 and noise ϵ
(i)
t:t′−1 that is needed for the

Gaussian reparameterization trick.

Instead of optimizing over the actions, we could also optimize over
parametrized policies πθ. This replaces expensive online planning by
offline training of a policy that is fast to evaluate online. The objective
then becomes the following,

J(θ) = Ex0∼µ

[
H−1

∑
t=0

γtrt + γHQ(xH , πθ(xH))

]
.

For H = 0, this is equivalent to the DDPG objective.

Learning the model. Until now, we have assumed known f and r. In RL,
these are unknown, so we have to learn them. The key insight is that
due to the Markovian structure of the MDP, the observed transitions
and rewards are conditionally independent. We can estimate them off-
policy with standard supervised learning techniques from a dataset of

probabilistic artificial intelligence 42

trajectories. We train a model with inputs (xt, at) and the model outputs
(rt, xt+1). For continuous state spaces, this is essentially just a regression
problem.

We could use an MAP estimate, but errors in the model estimate com-
pound, which the planning algorithms exploit, which results in poor per-
formance. This can easily be remedied by capturing uncertainty (Gaus-
sian processes, Bayesian neural networks) in the estimated model and
taking it into account in planning.

Exploration and exploitation. An algorithm that we can use to balance
exploration and exploitation is Thompson sampling, which we have al-
ready seen before. We sample a model, plan a new policy according to
it, roll out policy to collect more data, and finally update the posterior.

probabilistic artificial intelligence 43

References

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function
approximation error in actor-critic methods. In International conference
on machine learning, pages 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In International conference on machine learning,
pages 1861–1870. PMLR, 2018.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. Con-
tinuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and
Andrew Gordon Wilson. A simple baseline for bayesian uncertainty
in deep learning. Advances in neural information processing systems, 32,
2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In Interna-
tional conference on machine learning, pages 1928–1937. PMLR, 2016.

	Probability review
	Bayesian linear regression
	Gaussian processes
	Variational inference
	Markov chain Monte Carlo
	Bayesian neural networks
	Active learning
	Bayesian optimization
	Markov decision processes
	Reinforcement learning

