
Probability review

Product rule: P(X1:n)=P(X1)∏n
i=2P(Xi |X1:i−1).

Sum rule: P(X,Y)=∑yP(X,Y=y).

Bayes rule: P(X |Y)=P(Y|X)P(X)/P(Y).
Independence: PXY=PXPY.
Conditional independence: PXY|Z=PX|ZPY|Z.

Linearity of expectation: Ex,y[aX+bY]=aEx[X]+bEy[Y].
Expectation: Ep[f (X)]=∑n

i=0p(x) f (x) (don’t forget p(x)).
Variance: Var[X]=E[(X−E[X])2]=E[X2]−E[X]2.
Linearity of variance:
Var[aX+bY+c]=a2Var[X]+b2Var[Y]+2abCov(X,Y).
Covariance: Cov(X,Y)=E[(X−E[X])(Y−E[Y])].
Cum. dist. function: P(x≤ t)=F(t), where F is CDF.

Matrix inversion:
[

a b
c d

]−1
= 1

ad−bc

[
d −b
−c a

]
.

Multivariate Gaussian:

N (x;µ,Σ)=
1√

(2π)d|Σ|
exp

(
−1

2
(x−µ)⊤Σ−1(x−µ)

)
.

A random vector is Gaussian if (1) the RVs are Gaussian, and (2)
any linear combination of the RVs is Gaussian.
Properties:

XA∼N (µA,ΣAA)

XA |XB∼N (µA|B,ΣA|B)

µA|B=µA+ΣABΣ−1
BB(xB−µB)

ΣA|B=ΣAA−ΣABΣ−1
BBΣBA

MX∼ N
(

Mµ,MΣM⊤
)

X+X′∼ N (µ+µ′,Σ+Σ′)

If asked about conditional distribution of linear functions of
Gaussians, notice that the functions can be jointly computed by a
matrix operation, which results in a Gaussian, or use LoV.
Kalman filters: Motion model updates the state Xt+1 = FXt+ϵt.
Sensor model computes observation Yt=HXt+ηt. ϵt∼N (0,Σx),
ηt∼N (0,Σy). ϵt ↑⇒Kt+1↑, ηt ↑⇒Kt+1↓, Σt ↑⇒Kt+1↑. Update:

Xt+1 |y1:t+1∼N (µt+1,Σt+1)

µt+1=Fµt+Kt+1(yt+1−HFµt)

Σt+1=(I−Kt+1H)(FΣtF⊤+Σx)

Kt+1=(FΣtF⊤+Σx)H⊤(H(FΣtF⊤+Σx)H⊤+Σy)
−1

Entropy: H[p]=Ep[−logp(x)].

d-Gaussian: H[N (µ,Σ)]= d
2(1+log(2π))+ 1

2 log|Σ|.
1-Gaussian: H[N (µ,σ2)]= 1

2 log(2πσ2)+ 1
2 .

H[p,q]=H[p]+H[q | p]. H[X |Y]=Ep

[
log p(x,y)

p(x)

]
.

KL-divergence: KL(q∥ p)=Eq

[
log q(x)

p(x)

]
=Eq

[
−log p(x)

q(x)

]
. Non-

negative (0 if p=q, ∞ if p(x)=0 for x with q(x)>0). Additional
expected surprise when observing q samples while assuming p.
Mutual information: I(X;Y) = H[X]− H[X | Y]. Symmetric:
I(X;Y)= I(Y;X). Information never hurts: I(X;Y)≥0.
Jensen’s inequality: If f convex: f (E[X])≤E[f (X)].
MLE: θ̂=amaxθp(y |X,θ)=amaxθ∑n

i=1logp(yi |xi,θ).

MAP: θ̂=amaxθp(θ|X,y)=amaxθlogp(θ)+∑n
i=1logp(yi |xi,θ).

Bayesian learning: Prior: p(θ). Likelihood: p(y | X, θ) =

∏n
i=1 p(yi | xi,θ). Posterior: p(θ | X,y) = 1

Z p(θ)∏n
i=1 p(yi | xi,θ).

Z=
∫

p(θ)∏n
i=1 p(yi | xi,θ)dθ. Prediction: p(y⋆ | x⋆,X,y)=

∫
p(y⋆ |

x⋆,θ)p(θ|X,y)dθ. In general, intractable: GP, VI, and MCMC solve.
Aleatoric uncertainty: Uncertainty due to irreducible noise in
data. Epistemic uncertainty: Uncertainty due to lack of data.
LoTV: Var[y⋆ |x⋆]=Eθ[Vary⋆ [y⋆ |x⋆,θ]]+Varθ[Ey⋆ [y⋆ |x⋆,θ]].

Bayesian Linear Regression f ⋆ = w⊤x⋆, y⋆ = f ⋆ + ϵ,
ϵ ∼ N (0, σ2

n). Prior: w ∼ N (0, σ2
p I). Posterior:

w |X,y∼N (µ̄,Σ̄), µ̄=(X⊤X+σ2
nσ−2

p I)−1X⊤y=σ−2
n ΣX⊤y,

Σ̄=(σ−2
n X⊤X+σ−2

p I)−1.

Inference: y⋆=x⋆⊤w+ϵ⇒ f ⋆ |x⋆,X,y∼N (x⋆⊤µ̄,x⋆⊤Σ̄x⋆+σ2
n).

Logistic regression: Bernoulli likelihood (πy(1−π)1−y).
Recursive update: p(t+1)(θ)= p(θ|y1:t+1)=

1
Z p(t)(θ)p(yt+1 |θ).

Online data recursion: X⊤X=∑n
i=1xix⊤i , X⊤y=∑n

i=1yixi.

Gaussian Processes Problem: BLR can only make linear pre-
dictions. Solution: GP describes distributions over (non-linear)
functions. In function space, f =Xw, which can be sampled by
f ∼ N (0,X⊤X)⇒ data points enter as inner products⇒ use
kernel function f∼N (0,k(X,X)). GP(µ,k) is formally defined as
an infinite collection of RVs, of which any finite number are jointly
Gaussian. Kernel: Formally, k(x,x′)=ϕ(x)⊤ϕ(x′) for some fea-
ture function ϕ⇒ kernel function is more efficient. Intuitively,
k(x,x′) describes how f (x) and f (x′) are related. k(X,X) is sym-
metric and positive semidefinite (z⊤Mz≥ 0 for all z ̸= 0). Must
satisfy k(x,x′)≤

√
k(x,x)k(x′,x′). Stationary: k(x,x′) = k(x−x′).

Isotropic: k(x,x′)=k(∥x−x′∥2) (same as stat. in 1D). Linear: Line.
Gaussian (RBF): Smooth, larger ℓ: smoother. Laplace (exponential):
Non-smooth, larger ℓ: smoother. Matèrn: ν=1/2: Laplace, ν→∞:
Gaussian. Addition, multiplication, scaling, polynomial function
of kernel functions are also kernel functions.
Inference: y⋆ |x⋆,X,y∼N (µ⋆,k⋆+σ2

n) with data XA:
µ⋆= µ(x⋆)+k⊤x⋆,A(KAA+σ2

n I)−1(y−µA)

k⋆= k(x⋆,x⋆)−k⊤x⋆,A(KAA+σ2
n I)−1kx⋆,A.

GP posterior: GP(µ′,k′) such that:
µ′(x)= µ(x)+k⊤x,A(KAA+σ2

n I)−1(y−µA)

k′(x,x′)= k(x,x′)−k⊤x,A(KAA+σ2
n I)−1kx′,A.

Forward sampling: Iter sample 1-d Gaussian with prod. rule
p(f1,..., fn). Model selection: Hyperparameters matter a lot⇒ Can
be learned by maximizing marginal likelihood,

θ̂=amin
θ

y⊤K−1
y,θy+logdet(Ky,θ),

which balances the goodness of the fit (term 1) and model
complexity (term 2).
Problem: To learn a GP, need to invert matrices, which take
O(n3) (BLR: O(dn2)). Local methods: Stationary kernels de-
pend on distance, so only condition if |k(x,x′)|≥τ. Approximation:
Approximate stationary kernel with Random Fourier Transform.
Inducing point (FITC): Throw away data where there is a lot
(cubic in inducing points, linear in data points).

Variational Inference In some cases, not realistic to assume
Gaussian⇒ Approximate p(θ|y)= 1

Z p(θ,y)≈qλ(θ)⇒Minimize
KL(qλ ∥ p)⇒ q⋆=amaxλEθ∼qλ

[logp(y |θ)]−KL(qλ ∥ pprior). I.e.,
minimizing KL(qλ ∥ p) ≡ maximizing expected likelihood, while
remaining close to prior. ELBO: Lower bounds logp(y), so it is a
good method of model selection.
Forward KL KL(p∥qλ): covers full prob. density, but intractable.
Backward KL KL(qλ ∥ p): greedily covers mode.
Laplace approximation: qλ(θ)=N (θ̂,Λ), where θ̂=amaxθp(θ |
y) and Λ=−Hθlogp(θ |y). Matches shape of the true posterior
around its mode⇒ Extremely overconfident predictions, because
it is greedy.
Problem: Want to compute gradient w.r.t. λ of an expectation
w.r.t. λ. Reparameterization trick: Suppose ϵ∼ϕ, θ=g(ϵ,λ) (diff.
and inv.), then Eθ∼qλ

[f (θ)]=Eϵ∼ϕ[f (g(ϵ,λ))]. (Can be used for
MC obj, unbiased.) Gaussian: θ=g(ϵ,λ)=Σ1/2ϵ+µ∼N (µ,Σ).
Inference: p(y⋆ | x⋆,y)≈

∫
p(y⋆ | f ⋆)qλ(f ⋆ | x⋆)d f ⋆ (intractable,

but single dimension).

Markov Chain Monte Carlo Markov chain: Seq. of RVs s.t.
Xt+1⊥X1:t−1 | Xt. Stationary dist.: π(x) = ∑x′ p(x | x′)π(x′).
(Solve by π=P⊤π, 1·π=1.) Ergodicity: ∃t[∀x,x′[p(t)(x′ |x)>0]],
where p(t) is prob. to reach x′ from x in exactly t steps. (Ter-
minal states⇒ not ergodic.) (Ensure ergodicity by self-loops.)
Fundamental theorem of ergodic MCs: Ergodic MC always
converges to a unique pos. stat. dist. Detailed balance equa-
tion: For an unnormalized dist. q an MC satisfies DBE iff
q(x)p(x′ |x)=q(x′)p(x |x′)⇒ stat. dist. = 1

Z q. Sampling: Sample
MC’s stat. dist. by first doing a burn-in t0 to reach stat. dist.
Idea: Approximate intractable p by drawing m
samples from MC with stat. dist. p(θ|y) ⇒
p(y⋆ |x⋆,y)=Ep(·|y)[p(y⋆ |x⋆,θ)]= 1

m ∑m
i=1p(y⋆ |x⋆,θi).

1

Hoeffding’s inequality: Compute bound on error.
p(|Ep(·|y)[p(y⋆ |x⋆,θ)]− 1

m ∑m
i=1p(y⋆ |x⋆,θi)|>ϵ)≤2exp(−2mϵ2/C2),

where C is the upper bound of values (1 for prob. dist.). To get
a prob. ≤δ of error >ϵ, we need m≥ log2−logδ/2ϵ2 samples.
Metropolis-Hastings: Arbitrary proposal dist. r(x′ | x). Fol-

low proposal with prob. α(x′ | x) = min
{

1, q(x′)r(x|x′)
q(x)r(x′|x)

}
⇒

satisfies DBE to get stat. dist. 1
Z q(x). Arbitrary proposal in-

fluences how fast we converge to stat. dist. Gaussian: Prob.
dist. has form p(x) = 1

Z exp(− f (x))⇒ α(x′ | x) =

min
{

q, r(x|x′)
r(x′|x)exp(f (x)− f (x′))

}
. If r(x′ | x) = N (x′; x,τI)⇒

r(x|x′)
r(x′|x) = 1 (symmetry). If r proposes low energy (high prob) re-
gion, acceptance is 1. Problem: Uninformed⇒ Use gradient
information (MALA requires full access to f).

Bayesian Deep Learning Non-linear dependencies.

Prior: θ ∼ N (0,σ2
p, I). Likelihood: y | x,θ ∼ N (µθ(x),σ2

θ(x)).
Homoscedastic: Same noise for all data points, σ2

θ(x)=c.
Heteroscedastic: Varying noise.

MAP: aminθ
1

2σ2
p
∥θ∥2−∑n

i=1 logσ2
θ(xi)+

(yi−µθ(xi))
2

2σ2
θ(xi)

. Attenuate

loss for certain data points by attributing error to large variance.
Fails to model epistemic uncertainty⇒ VI (Gaussian in expecta-
tion) and Monte Carlo or MCMC:
E[y⋆ |x⋆,y]≈ 1

m ∑m
j=1µθj(x

⋆).

Var[y⋆ |x⋆,y]≈ 1
m ∑m

j=1σ2
θj
(x⋆)+ 1

m−1 ∑m
j=1(µθj(x

⋆)−µ̄(x⋆))2

MCMC: Produce seq. θ1,...,θT, then p(y⋆ | x⋆,y)≈ 1
T ∑T

j=1 p(y⋆ |
x⋆, θj). Problem: Cannot store T times params of network.
Solution: Approx. with Gaussian and running mean/var.
MC dropout: Dropout during inference⇔ VI with Bernoulli.
Prob. ensembles: Train networks on rand. subsets, average.
Calibration: Well-calibrated⇔ confidence (assigned
prob.) ≈ frequency. Reliability diagram: Bin accord-
ing to class pred. probs. (assume class 1). Above line: un-
derconfident, below line: overconfident. (No samples⇒
empty bin in diagram). freq(Bm)=

1
|Bm|∑i∈Bm1{Yi=1},

conf(Bm)=
1
|Bm|∑i∈Bm p(Yi=1 |xi). ECE: avg. deviation from

perfect calibration: ℓECE=∑M
m=1

|Bm|
n |freq(Bm)−conf(Bm)|.

Active Learning Decide which data to collect: NP-hard.
Uncertainty sampling: Greedily pick points with maximal
mutual information⇒ xt+1 = amaxx I(fx;yx | ySt). If Gaussian:
xt+1 = amaxx σ2

x|St/σ2
n(x). γT = maxx1:T I(f (x1:T); y1:T). Mono-

tone submodular. Constant factor approx: I(f (x1:T); y1:T) ≥
(1−1/e)γT (near-optimal, 1−1/e≈0.63).

BALD: xt+1 = amaxx I(yx;θ | x1:t,y1:t) = amaxx H[yx |x1:t,y1:t]−
Eθ|x1:t,y1:t

[H[yx |θ]]. Want points where the post. is uncertain be-
cause all θ are certain about their differing pred. Approximate
term 2 using VI and MC.

Bayesian Optimization Not only reduce uncertainty, but also
maximize objective. xt+1=amaxxa(x).
Regret: RT =∑T

t=1(maxx f (x)− f (xt)). Want algorithm with
sublinear regret: limT→∞RT/T=0. f ⋆=maxx f (x).
GP-UCB: Optimism in the face of uncertainty: pick point where
we can hope for best outcome: aUCB =µt(x)+βtσt(x). µ,σ from
GP. RT ∈ O⋆(

√
γT/T). GP bounds: Linear: γT ∈ O(d log T),

Gaussian: O((logT)d+1), Matèrn: O(Td/2ν+d(logT)2ν/2ν+d).
PI: aPI(x)=Φ((µt(x)− f ⋆)/σt(x)) is prob. to improve f ⋆. Greedy.
EI: aEI(x) = (µt(x)− f ∗)Φ((µt(x)− f ⋆)/σt(x))+σt(x)ϕ((µt(x)− f ⋆)/σt)
is expectation of improvement.
Thompson sampling: Draw sample from GP and select max.

Markov Decision Processes Env. that makes Markov
ass. (states X , actions A, transitions p(x′ | x, a), rewards
r(x, a)). Policy: π maps states to actions (induces MC with
p(x′ | x) = ∑aπ(a | x)p(x′ | x,a)), want to find π that max. long-
term rewards. Horizon T reward: Eπ[∑T

t=0r(xt,at)]. Horizon ∞
reward: Eπ[∑∞

t=0γtr(xt,at)]. Geo series: ∑∞
t=0γt=1/1−γ.

Vπ(x)=Ex[∑∞
t=0γtr(Xt,π(Xt)) |X0=x]

=r(x,π(x))+γ∑x′ p(x′ |x,π(x))Vπ(x′) (Bellman eq).
Q(x,a)=r(x,a)+γ∑x′ p(x′ |x,a)Vπ(x′). V(x)=maxaQ(x,a).
Bellman theorem: π is optimal⇔ greedy w.r.t. Vπ.
Policy iteration: π ⇒ Vπ, V ⇒ πV (alternate).
πV(x)=amaxar(x,a)+γ∑x′ p(x′ |x,a)V(x′) (greedy). Converges
monotonically, guaranteed to converge in O(|X |2|A|/(1−γ)) itera-
tions, expensive (computed efficiently by solving single LSoE).
Value iteration: Dynamic programming:
Vt(x)=maxar(x,a)+γ∑x′ p(x′ |x,a)Vt−1(x′). Iterates until
∥vt − vt−1∥∞ ≤ ϵ: ϵ-optimal convergence, in polynomial in
iterations, per iteration: O(|X |2|A|), inexpensive. Then, pick
greedy policy.

Reinforcement Learning Learn within unknown MDP. On-
policy: Learn from own data, Off-policy: Learn from other policy
data, Model-based: Learn MDP and solve, Model-free: Learn
value function directly. Data points: ⟨x,a,r,x′⟩.
Robbins-Monro: ∑∞

t=0xt=∞, ∑∞
t=0x2

t <∞. E.g. 1/t.
ϵ-greedy (based): Pick random action with prob. ϵt, or best action
according to MDP with prob. 1− ϵt. Guaranteed to converge
to optimal policy if ϵt satisfies RM. Problem: does not quickly
eliminate suboptimal actions.
Rmax (based): Solves problem. Add fairy tale p(x⋆ | x⋆, a) =
1,r(x⋆,a)=Rmax, assume unexplored go there.

TD-learning (on, free): Vπ(x)←(1−αt)Vπ(x)+αt(r+γVπ(x′)).
Guaranteed to converge if αt satisfies RM and all states are visited
infinitely often. Space: O(|X |).
Q-learning (off, free): Q(x,a)←(1−αt)Q(x,a)+αt(r+γmaxa′Q(x′,a′)).
Guaranteed to converge if αt satisfies RM and all state-action pairs
are visited infinitely often. Space: O(|X ||A|).
DQN (off, free, cont. states): GD on 1

2(Q(x, a; θ) − (r −
γ maxa′ Q(x′, a′; θold)))2 (Bellman error). Slow to converge:
maintain constant target network. DDQN: Maximization bias
makes DQN overestimate. Solution: 2 Q networks where we
take minimum to be value.
Policy search (on, free, cont. actions): Parametrize π(x; θ).
Maximize expected trajectory reward. ∇θEτ∼πθ

[r(τ)] =

Et∼πθ
[r(τ)∇θ logπθ(τ)] = Et∼πθ

[r(τ)∑T
t=0∇θ logπθ(at | xt)]

⇒ Do not need to know MDP to compute gradient. Baselines:
Large variance⇒ introduce baseline: Eτ∼πθ

[r(τ)∇θ logπθ] =
Eτ∼πθ

[(r(τ)−b(τ))∇θlogπθ(τ)].
REINFORCE (on, free): θ← θ+ηγtGt∇θlogπθ(at | xt), where
Gt=r(τ)−bt=∑T

t′=tγ
t′−trt.

Actor-critic (on, free): REINFORCE gradient =
E(x,a)∼πθ

[Q(x, a)∇θ log πθ(a | x)]. So: parametrize actor πθ

and critic Qθ. Use in each others’ update equations:
θπ←θπ+ηtQ(x,a |θQ)∇θlogπθ(a |x).
θQ←θQ−ηt(Q(x,a;θQ)−r−γQ(x′,π(x′;θπ);θQ))∇θQ(x,a;θ).
A2C (on, free): Add value network Vθ for the baseline: A(x,a)=
Q(x,a)−V(x,a) (advantage function). This centers the Q-values.
DDPG (off, free): Replace maxa′ Q(x′, a′; θold) in DQN by
π(x′; θπ), where π should follow the greedy policy w.r.t.
Q. Key idea: If we use a rich enough parameterization of
policies, selecting the greedy policy w.r.t. Q is equivalent to
θ⋆π = amaxθπ Ex∼µ[Q(x,π(x;θπ);θQ)]. µ(x)> 0 is an exploration
distribution with full support. This needs det. π, thus we inject
noise for exploration (akin ϵ-greedy).
TD3 (off, free): Add second critic network to address max. bias.
SAC (off, free): Add entropy regularization to loss λH(πθ).
Planning: Det. transition function xt+1 = f (xt, at) and re-
ward function r(xt, at). Cannot plan over infinite horizon⇒
Key idea: plan over finite horizon H, carry out first action,
repeat. Optimize JH(at:t+H−1) = ∑t+H−1

t′=t γt′−tr(xt, at). Lo-
cal minima, vanishing/exploding gradient⇒ heuristics⇒
Random shooting (m samples, pick best). Will not work if
sparse rewards⇒ Get access to value function to look further:
JH(at:t+H−1)=∑t+H−1

t′=t γt′−trt+γHV(xt+H).
Model-based ML: Estimate f and r off-policy with supervised
learning ((xt,at) 7→(rt,xt+1), regression). Benefit: Dramatically de-
creases sample complexity (need less data). Use MAP estimate
⇒ exploited by planning algos⇒ Uncertainty (GP/BNN).

2

