Probability review

Product rule: $P(X_{1:n}) = P(X_1) \prod_{i=2}^n P(X_i | X_{1:i-1}).$ **Sum rule**: $P(X,Y) = \sum_{y} P(X,Y=y)$. **Bayes rule:** $P(X|Y) = P(Y|X)P(X)/P(Y)$. **Independence:** $P_{XY} = P_X P_Y$. Conditional independence: $P_{XY|Z} = P_{X|Z}P_{Y|Z}$. **Linearity of expectation:** $\mathbb{E}_{x,y}[aX+bY]=a\mathbb{E}_x[X]+b\mathbb{E}_y[Y]$. **Expectation:** $\mathbb{E}_p[f(X)] = \sum_{i=0}^n p(x) f(x)$ (don't forget $p(x)$). **Variance**: $Var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2$. **Linearity of variance**: $Var[aX+bY+c] = a^2Var[X]+b^2Var[Y]+2abCov(X,Y).$ **Covariance**: Cov(*X*,*Y*)=**E**[(*X*−**E**[*X*])(*Y*−**E**[*Y*])]. **Cum. dist. function:** $P(x \le t) = F(t)$, where *F* is CDF. **Matrix inversion:** $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$

Multivariate Gaussian:

 $\mathcal{N}(x;\mu,\mathbf{\Sigma})=\frac{1}{\sqrt{(2\pi)^d|\mathbf{\Sigma}|}}$ $\exp\left(-\frac{1}{2}\right)$ $\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)$.

A random vector is Gaussian if (1) the RVs are Gaussian, and (2) any linear combination of the RVs is Gaussian. **Properties**:

> $X_A \sim \mathcal{N}(\mu_A, \Sigma_{AA})$ $X_A\ket{X_B}{\sim}\mathcal{N}(\pmb{\mu}_{A|B}{,}\pmb{\Sigma}_{A|B})$ $\mu_{A|B} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (x_B - \mu_B)$ $\boldsymbol{\Sigma}_{A|B} = \boldsymbol{\Sigma}_{AA} - \boldsymbol{\Sigma}_{AB} \boldsymbol{\Sigma}_{BB}^{-1} \boldsymbol{\Sigma}_{BA}$ $\mathcal{M}X\!\sim\mathcal{N}\Big(\textit{M}\mu\textit{,M}\Sigma\textit{M}^{\top}\Big)$ *X* + *X*['] ∼ \mathcal{N} (*μ*+*μ'*,Σ+Σ')

If asked about **conditional distribution of linear functions of Gaussians**, notice that the functions can be jointly computed by a matrix operation, which results in a Gaussian, or use LoV.

Kalman filters: Motion model updates the state $X_{t+1} = FX_t + \epsilon_t$. Sensor model computes observation $Y_t = HX_t + \eta_t$. $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \Sigma_x)$, *n*_{*t*} ∼ $\mathcal{N}(\mathbf{0}, \Sigma_{\nu})$. $\epsilon_t \uparrow \Rightarrow K_{t+1} \uparrow$, $\eta_t \uparrow \Rightarrow K_{t+1} \downarrow$, $\Sigma_t \uparrow \Rightarrow K_{t+1} \uparrow$. Update: $X_{t+1} | y_{1:t+1} ∼ \mathcal{N}(\mu_{t+1}, \Sigma_{t+1})$ $\mu_{t+1} = F\mu_t + K_{t+1}(\mu_{t+1} - HF\mu_t)$ $\Sigma_{t+1} = (I - K_{t+1}H)(F\Sigma_t F^{\top} + \Sigma_x)$ $K_{t+1} = (F\Sigma_t F^\top + \Sigma_x)H^\top (H(F\Sigma_t F^\top + \Sigma_x)H^\top + \Sigma_y)^{-1}$ **Entropy:** $H[p] = \mathbb{E}_p[-\log p(x)].$

 d **-Gaussian**: $H[N(\mu, \Sigma)] = \frac{d}{2}(1 + \log(2\pi)) + \frac{1}{2}\log|\Sigma|$. 1**-Gaussian**: $H[N(\mu,\sigma^2)] = \frac{1}{2}log(2\pi\sigma^2) + \frac{1}{2}$.

 $H[p,q] = H[p] + H[q | p].$ $H[X | Y] = \mathbb{E}_p \left[\log \frac{p(x,y)}{p(x)} \right]$.

KL-divergence: $KL(q||p) = \mathbb{E}_q \left[\log \frac{q(x)}{p(x)} \right] = \mathbb{E}_q \left[-\log \frac{p(x)}{q(x)} \right]$. Nonnegative (0 if $p=q$, ∞ if $p(x)=0$ for *x* with $q(x)>0$). Additional expected surprise when observing *q* samples while assuming *p*. **Mutual information:** $I(X;Y) = H[X] - H[X | Y]$. Symmetric: *I*(*X*;*Y*)= *I*(*Y*;*X*). Information never hurts: *I*(*X*;*Y*)≥0. **Jensen's inequality:** If *f* convex: $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$.

MLE: $\hat{\boldsymbol{\theta}} = \text{ama} \times_{\boldsymbol{\theta}} p(\mathbf{y} | \mathbf{X}, \boldsymbol{\theta}) = \text{ama} \times_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p(y_i | x_i, \boldsymbol{\theta}).$

MAP: $\hat{\boldsymbol{\theta}} = \text{ama} \mathbf{x}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} | \mathbf{X}, \mathbf{y}) = \text{ama} \mathbf{x}_{\boldsymbol{\theta}} \text{log} p(\boldsymbol{\theta}) + \sum_{i=1}^{n} \text{log} p(y_i | x_i, \boldsymbol{\theta}).$ **Bayesian learning**: Prior: $p(\theta)$. Likelihood: $p(y | X, \theta)$ = $\prod_{i=1}^n p(y_i | x_i, \theta)$. Posterior: $p(\theta | X, y) = \frac{1}{Z} p(\theta) \prod_{i=1}^n p(y_i | x_i, \theta)$. *Z* = $\int p(\theta) \prod_{i=1}^{n} p(y_i | x_i, \theta) d\theta$. Prediction: $p(y^* | x^*, X, y) = \int p(y^*$ | *x* ⋆ ,*θ*)*p*(*θ*|*X*,*y*)*dθ*. In general, intractable: GP, VI, and MCMC solve. **Aleatoric uncertainty**: Uncertainty due to irreducible noise in data. **Epistemic uncertainty**: Uncertainty due to lack of data. **LoTV**: $\text{Var}[y^* | x^*] = \mathbb{E}_{\theta}[\text{Var}_{y^*}[y^* | x^*, \theta]] + \text{Var}_{\theta}[\mathbb{E}_{y^*}[y^* | x^*, \theta]].$

Bayesian Linear Regression $f^* = w^{\top} x^*$, $y^* = f^* + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$. Prior: $w \sim \mathcal{N}(0, \sigma_p^2 I)$. <mark>Posterior:</mark> $w|X$, $y \sim \mathcal{N}(\bar{\mu}, \bar{\Sigma})$, $\bar{\mu} = (X^\top X + \sigma_n^2 \sigma_p^{-2}I)^{-1} X^\top y = \sigma_n^{-2} \Sigma X^\top y$, $\bar{\mathbf{\Sigma}} = (\sigma_n^{-2} \mathbf{X}^\top \mathbf{X} + \sigma_p^{-2} \mathbf{I})^{-1}.$

Inference: $y^* = x^{*T}w + \epsilon \Rightarrow f^* | x^* X y \sim \mathcal{N}(x^{*T} \bar{\mu} x^{*T} \bar{\Sigma} x^* + \sigma_n^2).$

Logistic regression: Bernoulli likelihood $(\pi^y(1-\pi)^{1-y})$. **Recursive update:** $p^{(t+1)}(\theta) = p(\theta | y_{1:t+1}) = \frac{1}{Z}p^{(t)}(\theta)p(y_{t+1} | \theta)$. **Online data recursion:** $X^{\top}X = \sum_{i=1}^{n} x_i x_i^{\top}$, $X^{\top}y = \sum_{i=1}^{n} y_i x_i$.

Gaussian Processes **Problem**: BLR can only make linear predictions. **Solution**: GP describes distributions over (non-linear) functions. In function space, $f = Xw$, which can be sampled by *f* ∼ N (**0**,*X* [⊤]*X*) ⇒ data points enter as inner products ⇒ use kernel function $f \sim \mathcal{N}(0,\hat{k}(X,X))$. $\mathcal{GP}(\mu,k)$ is formally defined as an infinite collection of RVs, of which any finite number are jointly **Gaussian. Kernel:** Formally, $k(x,x') = \boldsymbol{\phi}(x)^\top \boldsymbol{\phi}(x')$ for some feature function $\phi \Rightarrow$ kernel function is more efficient. Intuitively, $k(x,x')$ describes how $f(x)$ and $f(x')$ are related. $k(X,X)$ is symmetric and positive semidefinite ($z^{\top}Mz \geq 0$ for all $z \neq \mathbf{0}$). Must satisfy $k(x,x') \leq \sqrt{k(x,x)k(x',x')}$. Stationary: $k(x,x') = k(x-x')$. **Isotropic**: $k(x,x') = k(||x-x'||_2)$ (same as stat. in 1D). **Linear**: Line. **Gaussian (RBF)**: Smooth, larger ℓ: smoother. **Laplace (exponential)**: Non-smooth, larger ℓ: smoother. **Matèrn**: *ν*=1/2: Laplace, *ν*→∞: Gaussian. Addition, multiplication, scaling, polynomial function of kernel functions are also kernel functions.

Inference: $y^* | x^*$,*X*, $y \sim \mathcal{N}(\mu^*$, k^* + $\sigma_n^2)$ with data *X*_{*A*}: $\mu^{\star} = \mu(x^{\star}) + k_{x^{\star},A}^{\top}(K_{AA} + \sigma_n^2I)^{-1}(y - \mu_A)$ $k^\star = k(\pmb{x}^\star.\pmb{x}^\star) \!-\! \pmb{k}_{\pmb{x}^\star,A}^\top (\pmb{K}_{AA} \!+\! \sigma_n^2 \pmb{I})^{-1} \pmb{k}_{\pmb{x}^\star,A}.$

GP posterior: $\mathcal{GP}(\mu', k')$ such that:

 $\mu'(x) = \mu(x) + k_{x,A}^{\top}(K_{AA} + \sigma_n^2 I)^{-1}(y - \mu_A)$

 $k'(x,x') = k(x,x') - k_{x,A}^{\top}(K_{AA} + \sigma_n^2 I)^{-1}k_{x',A}.$

Forward sampling: Iter sample 1-d Gaussian with prod. rule $p(f_1,...,f_n)$. **Model selection**: Hyperparameters matter a lot \Rightarrow Can be learned by maximizing marginal likelihood,

$$
\hat{\theta} = \operatorname{amin}_{\theta} y^{\top} K_{y,\theta}^{-1} y + \operatorname{logdet}(K_{y,\theta}),
$$

θ which balances the goodness of the fit (term 1) and model complexity (term 2).

Problem: To learn a GP, need to invert matrices, which take $\mathcal{O}(n^3)$ (BLR: $\mathcal{O}(dn^2)$). **Local methods**: Stationary kernels depend on distance, so only condition if $|k(x,x')| \geq \tau$. **Approximation**: Approximate stationary kernel with Random Fourier Transform. **Inducing point (FITC)**: Throw away data where there is a lot (cubic in inducing points, linear in data points).

Variational Inference In some cases, not realistic to assume G aussian \Rightarrow **Approximate** $p(\theta | y) = \frac{1}{Z}p(\theta, y) \approx q_{\lambda}(\theta) \Rightarrow$ Minimize $KL(q_{\lambda} || p) \Rightarrow q^* = \operatorname{amax}_{\lambda} \mathbb{E}_{\theta \sim q_{\lambda}}[\log p(y | \theta)] - KL(q_{\lambda} || p_{\text{prior}}).$ I.e., minimizing $KL(q_\lambda || p) \equiv$ maximizing expected likelihood, while remaining close to prior. **ELBO**: Lower bounds $logp(y)$, so it is a good method of model selection.

Forward KL $KL(p||q_\lambda)$: covers full prob. density, but intractable. **Backward KL** $KL(q_{\lambda} || p)$: greedily covers mode.

Laplace approximation: $q_{\lambda}(\theta) = \mathcal{N}(\hat{\theta}, \Lambda)$, where $\hat{\theta} = \text{amax}_{\theta} p(\theta)$ *y*) and $\Lambda = -H_{\theta} \log p(\theta | y)$. Matches shape of the true posterior around its mode \Rightarrow Extremely overconfident predictions, because it is greedy.

Problem: Want to compute gradient w.r.t. *λ* of an expectation w.r.t. *λ*. **Reparameterization trick**: Suppose *ϵ*∼*ϕ*, *θ*=*g*(*ϵ*,*λ*) (diff. and inv.), then **E***θ*∼*q^λ* [*f*(*θ*)]=**E***ϵ*∼*ϕ*[*f*(*g*(*ϵ*,*λ*))]. (Can be used for MC obj, unbiased.) **Gaussian**: $\theta = g(\epsilon, \lambda) = \Sigma^{1/2} \epsilon + \mu \sim \mathcal{N}(\mu, \Sigma)$. **Inference**: $p(y^* | x^*, y) \approx \int p(y^* | f^*) q_\lambda(f^* | x^*) df^*$ (intractable, but single dimension).

Markov Chain Monte Carlo **Markov chain**: Seq. of RVs s.t. $X_{t+1} \perp X_{1:t-1} \mid X_t$. Stationary dist.: $\pi(x) = \sum_{x'} p(x \mid x') \pi(x')$. $\mathbf{S} = \mathbf{P} \left[\mathbf{X} \times \mathbf{X} \mid \mathbf{p} \right]$ **Frequendially:** $\exists t [\forall x, x' [p^{(t)}(x' | x) > 0]]$, where $p^{(t)}$ is prob. to reach x' from x in <mark>exactly</mark> t steps. (Terminal states \Rightarrow not ergodic.) (Ensure ergodicity by self-loops.) **Fundamental theorem of ergodic MCs**: Ergodic MC always converges to a unique pos. stat. dist. **Detailed balance equation**: For an unnormalized dist. *q* an MC satisfies DBE iff $q(x)p(x'|x) = q(x')p(x|x') \Rightarrow$ stat. dist. = $\frac{1}{Z}q$. **Sampling**: Sample $MC's$ stat. dist. by first doing a burn-in t_0 to reach stat. dist. **Idea**: Approximate intractable *p* by drawing *m* samples from MC with stat. dist. $p(\theta | y) \Rightarrow$ $p(y^* | x^*, y) = \mathbb{E}_{p(\cdot | y)}[p(y^* | x^*, \theta)] = \frac{1}{m} \sum_{i=1}^m p(y^* | x^*, \theta_i).$

Hoeffding's inequality: Compute bound on error. where \tilde{C} is the upper bound of values (1 for prob. dist.). To get a prob. ≤*δ* of error >*ϵ*, we need *m*≥log2−log*δ*/2*^ϵ* ² samples. **Metropolis-Hastings**: Arbitrary proposal dist. *r*(*x* ′ | *x*). Follow proposal with prob. $\alpha(x' \mid x) = \min\left\{1, \frac{q(x')r(x|x')}{q(x)r(x'|x)}\right\}$ $\frac{q(x')r(x|x')}{q(x)r(x'|x)} \Rightarrow$ satisfies DBE to get stat. dist. $\frac{1}{Z}q(x)$. Arbitrary proposal in-*Z* fluences how fast we converge to stat. dist. **Gaussian**: Prob. dist. has form $p(x) = \frac{1}{Z} \exp(-f(x)) \Rightarrow \alpha(x' \mid x) =$ $\min\left\{q,\frac{r(x|x')}{r(x'|x)}\right\}$ $\frac{r(x|x')}{r(x'|x)}exp(f(x)-f(x'))$. If $r(x' | x) = \mathcal{N}(x';x,\tau I) \Rightarrow$ $r(x|x')$ $\frac{r(x|x)}{r(x'|x)} = 1$ (symmetry). If *r* proposes low energy (high prob) region, acceptance is 1. **Problem**: Uninformed ⇒ Use gradient information (MALA requires full access to *f*).

Bayesian Deep Learning **Non-linear dependencies.**

Prior: $\theta \sim \mathcal{N}(0, \sigma_p^2, I)$. **Likelihood**: $y \mid x, \theta \sim \mathcal{N}(\mu_{\theta}(x), \sigma_{\theta}^2(x))$. **Homoscedastic**: Same noise for all data points, $\sigma_{\theta}^2(x) = c$. **Heteroscedastic**: Varying noise.

MAP: $\mathrm{amin}_\theta \frac{1}{2\sigma}$ $\frac{1}{2\sigma_{p}^{2}}\|\boldsymbol{\theta}\|^{2}-\sum_{i=1}^{n}\text{log}\sigma_{\boldsymbol{\theta}}^{2}(\boldsymbol{x}_{i})+\frac{(y_{i}-\mu_{\boldsymbol{\theta}}(\boldsymbol{x}_{i}))^{2}}{2\sigma_{\boldsymbol{\theta}}^{2}(\boldsymbol{x}_{i})}$ $\frac{\overline{P^{\mu}_{\theta}(x_i)}}{2\sigma_{\theta}^2(x_i)}$. Attenuate loss for certain data points by attributing error to large variance. Fails to model epistemic uncertainty ⇒ VI (Gaussian in expectation) and Monte Carlo or MCMC:

|

 $\mathbb{E}[y^{\star} | x^{\star}, y] \approx \frac{1}{m} \sum_{j=1}^{m} \mu_{\theta_j}(x^{\star}).$

 $Var[y^* | x^*, y] \approx \frac{1}{m} \sum_{j=1}^{m} \sigma_{\theta_j}^2(x^*) + \frac{1}{m-1} \sum_{j=1}^{m} (\mu_{\theta_j}(x^*) - \bar{\mu}(x^*))^2$

MCMC: Produce seq. θ_1 ,..., θ_T , then $p(y^* | x^*, y) \approx \frac{1}{T} \sum_{j=1}^{T} p(y^*)$ *x* ⋆ , *θj*). **Problem**: Cannot store *T* times params of network. **Solution**: Approx. with Gaussian and running mean/var. **MC dropout**: Dropout during inference ⇔ VI with Bernoulli. **Prob. ensembles**: Train networks on rand. subsets, average. **Calibration**: Well-calibrated ⇔ confidence (assigned prob.) ≈ frequency. **Reliability diagram**: Bin according to class pred. probs. (assume class 1). Above line: underconfident, below line: overconfident. (No samples ⇒ $\text{empty bin in diagram}. \quad \text{freq}(B_m) = \frac{1}{|B_m|}\sum_{i \in B_m} \mathbb{1}\{Y_i = 1\},$ $\text{conf}(B_m) = \frac{1}{|B_m|}\sum_{i \in B_m} p(Y_i = 1 | \mathbf{x}_i)$. **ECE**: avg. deviation from $\rho_{\text{BCE}} = \sum_{m=1}^{M} \frac{|B_m|}{n} |\text{freq}(B_m) - \text{conf}(B_m)|.$

Active Learning Decide which data to collect: $N \mathcal{P}$ -hard.

Uncertainty sampling: Greedily pick points with maximal mutual information $\Rightarrow x_{t+1} = \text{amax}_{x} I(f_x; y_x \mid y_{S_t})$. If Gaussian: $x_{t+1} = \text{amax}_{x} \frac{\sigma_{x|S_t}^2}{\sigma_{x|S_t}^2} / \sigma_n^2(x)$. $\gamma_T = \text{max}_{x_{1:T}} I(f(x_{1:T}); y_{1:T})$. Monotone submodular. Constant factor approx: $I(f(x_{1:T}); y_{1:T}) \geq$ (1−1/*e*)*γ^T* (near-optimal, 1−1/*e*≈0.63).

 $p(|\mathbb{E}_{p(\cdot|\boldsymbol{y})}[p(y^\star\,\vert\,x^\star,\boldsymbol{\theta})]-\frac{1}{m}\sum_{i=1}^m p(y^\star\,\vert\,x^\star,\boldsymbol{\theta}_i)|\!>\!\epsilon)\!\leq\!2{\rm exp}(-2m\epsilon^2/C^2)$, $\mathbb{E}_{\boldsymbol{\theta}|\mathbf{x}_{1:t},\mathbf{y}_{1:t}}[H[y_x\,\vert\boldsymbol{\theta}]]$. Want points where the post. is uncertain be-**BALD**: $x_{t+1} = \max_{x} I(y_x; \theta | x_{1:t}, y_{1:t}) = \max_{x} H[y_x | x_{1:t}, y_{1:t}]$ cause all *θ* are certain about their differing pred. Approximate term 2 using VI and MC.

> Bayesian Optimization **Not only reduce uncertainty, but also maximize objective.** $x_{t+1} = \text{amax}_{x}a(x)$.

Regret: $R_T = \sum_{t=1}^T (max_x f(x) - f(x_t))$. Want algorithm with sublinear regret: $\lim_{T\to\infty} R_T/T = 0$. $f^* = \max_x f(x)$.

GP-UCB: Optimism in the face of uncertainty: pick point where we can hope for best outcome: $a_{\text{UCB}} = \mu_t(x) + \beta_t \sigma_t(x)$. μ, σ from GP. $R_T \in \mathcal{O}^*(\sqrt{\gamma_T/\tau})$. **GP bounds**: Linear: $\gamma_T \in \mathcal{O}(d \log T)$, Gaussian: O((log*T*) *d*+1), Matèrn: O(*T d*/2*ν*+*d* (log*T*) 2*ν*/2*ν*+*d*). **PI**: $a_{PI}(x) = \Phi((\mu_t(x) - f^*)/\sigma_t(x))$ is prob. to improve f^* . Greedy. **EI**: $a_{EI}(x) = (\mu_t(x) - f^*)\Phi((\mu_t(x) - f^*)/\sigma_t(x)) + \sigma_t(x)\phi((\mu_t(x) - f^*)/\sigma_t)$ is expectation of improvement.

Thompson sampling: Draw sample from GP and select max.

Markov Decision Processes **Env. that makes Markov ass.** (states X , actions A , transitions $p(x' | x, a)$, rewards $r(x, a)$). **Policy**: π maps states to actions (induces MC with $p(x' | x) = \sum_a \pi(a | x) p(x' | x, a)$, want to find π that max. longterm rewards. Horizon *T* reward: $\mathbb{E}_{\pi}[\sum_{t=0}^{T} r(x_t, a_t)]$. Horizon ∞ reward: $\mathbb{E}_{\pi}[\sum_{t=0}^{\infty} \gamma^{t} r(x_t, a_t)]$. Geo series: $\sum_{t=0}^{\infty} \gamma^{t} = 1/1 - \gamma$. $V^{\pi}(x) = \mathbb{E}_x[\sum_{t=0}^{\infty} \gamma^t r(X_t, \pi(X_t)) | X_0 = x]$ $=r(x,\pi(x))+\gamma\sum_{x'}p(x'\mid x,\pi(x))V^{\pi}(x')$ (Bellman eq). $Q(x,a) = r(x,a) + \gamma \sum_{x'} p(x' | x,a) V^{\pi}(x').$ $V(x) = \max_{a} Q(x,a).$ **Bellman theorem**: π is optimal \Leftrightarrow greedy w.r.t. V^{π} . **Policy iteration:** $\pi \Rightarrow V^{\pi}, V \Rightarrow \pi_V$ (alternate). $\pi_V(x) = \text{amax}_a r(x, a) + \gamma \sum_{x'} p(x' | x, a) V(x')$ (greedy). Converges monotonically, <mark>guaranteed to converge</mark> in $\mathcal{O}(|\mathcal{X}|^2|\mathcal{A}|/(1−γ))$ iterations, expensive (computed efficiently by solving single LSoE). **Value iteration**: Dynamic programming: $V_t(x) = \max_a r(x,a) + \gamma \sum_{x'} p(x'|x,a) V_{t-1}(x')$. Iterates until

∥*v^t* − *vt*−1∥[∞] ≤ *ϵ*: *ϵ*-optimal convergence, in polynomial in iterations, per iteration: $\mathcal{O}(|\mathcal{X}|^2|\mathcal{A}|)$, inexpensive. Then, pick greedy policy.

Reinforcement Learning **Learn within unknown MDP. Onpolicy**: Learn from own data, **Off-policy**: Learn from other policy data, **Model-based**: Learn MDP and solve, **Model-free**: Learn value function directly. Data points: $\langle x, a, r, x' \rangle$.

Robbins-Monro: $\sum_{t=0}^{\infty} x_t = \infty$, $\sum_{t=0}^{\infty} x_t^2 < \infty$. E.g. $1/t$.

*ϵ***-greedy** (based): Pick random action with prob. *ϵt* , or best action according to MDP with prob. 1 − *ϵ^t* . Guaranteed to converge to optimal policy if ϵ_t satisfies RM. Problem: does not quickly eliminate suboptimal actions.

*R*_{max} (based): Solves problem. Add fairy tale $p(x^* | x^*, a) =$ $1, r(x^*, a) = R_{\text{max}}$, assume unexplored go there.

TD-learning (on, free): $V^{\pi}(x) \leftarrow (1 - \alpha_t) V^{\pi}(x) + \alpha_t (r + \gamma V^{\pi}(x')).$ Guaranteed to converge if *αt* satisfies RM and all states are visited **infinitely often.** Space: $\mathcal{O}(|\mathcal{X}|)$.

Q-learning (off, free): $Q(x,a) \leftarrow (1-\alpha_t)Q(x,a) + \alpha_t(r + \gamma \max_{a'} Q(x',a))$ Guaranteed to converge if *αt* satisfies RM and all state-action pairs are visited infinitely often. Space: $\mathcal{O}(|\mathcal{X}||\mathcal{A}|)$.

DQN (off, free, cont. states): GD on $\frac{1}{2}(Q(x, a; \theta) - (r - a))$ *γ* max_{*a'*} $Q(x', a'; \theta^{old}))$ ² (Bellman error). **Slow to converge:** maintain constant target network. **DDQN**: Maximization bias makes DQN overestimate. Solution: 2 Q networks where we take minimum to be value.

Policy search (on, free, cont. actions): Parametrize $\pi(x; \theta)$. Maximize expected trajectory reward. $\nabla_{\bm{\theta}} \mathbb{E}_{\tau \sim \pi_{\bm{\theta}}} [r(\tau)] \; = \;$ $\mathbb{E}_{t\sim\pi_{\theta}}[r(\tau)\nabla_{\theta}\log\pi_{\theta}(\tau)] = \mathbb{E}_{t\sim\pi_{\theta}}[r(\tau)\sum_{t=0}^{T}\nabla_{\theta}\log\pi_{\theta}(a_t \mid x_t)]$ ⇒ Do not need to know MDP to compute gradient. **Baselines**: Large variance \Rightarrow introduce baseline: $\mathbb{E}_{\tau \sim \pi_{\theta}}[r(\tau)\nabla_{\theta}\log \pi_{\theta}] =$ $\mathbb{E}_{\tau \sim \pi_{\theta}}[(r(\tau)-b(\tau))\nabla_{\theta}\log \pi_{\theta}(\tau)].$

REINFORCE (on, free): $\theta \leftarrow \theta + \eta \gamma^t G_t \nabla_{\theta} \log \pi_{\theta}(a_t | x_t)$, where $G_t = r(\tau) - b_t = \sum_{t'=t}^T \gamma^{t'-t} r_t.$

Actor-critic (on, free): REINFORCE gradient = $\mathbb{E}_{(x,a)\sim \pi_{\theta}}[Q(x,a) \nabla_{\theta} \log \pi_{\theta}(a \mid x)]$. So: parametrize actor π_{θ} and critic Q_{θ} . Use in each others' update equations:

 $\theta_{\pi} \leftarrow \theta_{\pi} + \eta_t Q(x, a | \theta_{\Omega}) \nabla_{\theta} \log \pi_{\theta}(a | x).$

 $\theta_Q \leftarrow \theta_Q - \eta_t(Q(x,a;\theta_Q) - r - \gamma Q(x',\pi(x';\theta_\pi);\theta_Q)) \nabla_\theta Q(x,a;\theta).$ **A₂C** (on, free): Add value network *V*^{θ} for the baseline: $A(x,a)$ = $Q(x,a) - V(x,a)$ (advantage function). This centers the Q-values.

DDPG (off, free): Replace $\max_{a'} Q(x', a'; \theta^{\text{old}})$ in DQN by $\pi(x'; \theta_{\pi})$, where π should follow the greedy policy w.r.t. *Q*. **Key idea**: If we use a rich enough parameterization of policies, selecting the greedy policy w.r.t. *Q* is equivalent to θ^{\star}_{π} = amax_{θπ} $\mathbb{E}_{x \sim \mu}[Q(x, \pi(x; \theta_{\pi}); \theta_{Q})]$. $\mu(x) > 0$ is an exploration distribution with full support. This needs det. π , thus we inject noise for exploration (akin *ϵ*-greedy).

TD3 (off, free): Add second critic network to address max. bias. **SAC** (off, free): Add entropy regularization to loss $\lambda H(\pi_{\theta})$.

Planning: Det. transition function $x_{t+1} = f(x_t, a_t)$ and reward function $r(x_t, a_t)$. Cannot plan over infinite horizon \Rightarrow **Key idea**: plan over finite horizon *H*, carry out first action, repeat. Optimize $J_H(a_{t:t+H-1}) = \sum_{t'=t}^{t+H-1} \gamma^{t'-t} r(x_t, a_t)$. Local minima, vanishing/exploding gradient \Rightarrow heuristics \Rightarrow Random shooting (*m* samples, pick best). Will not work if sparse rewards \Rightarrow Get access to value function to look further: $J_H(a_{t:t+H-1}) = \sum_{t'=t}^{t+H-1} \gamma^{t'-t} r_t + \gamma^H V(x_{t+H}).$

Model-based ML: Estimate *f* and *r* off-policy with supervised learning ((x_t , a_t) \mapsto (r_t , x_{t+1}), regression). **Benefit**: Dramatically decreases sample complexity (need less data). Use MAP estimate \Rightarrow exploited by planning algos \Rightarrow Uncertainty (GP/BNN).