Probability review

Product rule: P(Xlzn) = P(Xl) ?:ZP(Xi | Xl:i—l)-
Sum rule: P(X,Y)=Y, P(X, Y:y)
Bayes rule: P(X|Y)=PYIX)P(X)/p(y

Independence: Pxy =PxPy.

Conditional independence: Pxy|z="Px\zPy|z-

Linearity of expectation: E,,[aX+bY]=aE[X]+bE,[Y].
Expectation: E,[f(X)] =YL op(x)f(x) (don't forget p(x)).
Variance: Var[X]=E[(X - E[X])?] =E[X?|-E[X]>.
Linearity of variance:

Var[aX +bY +c| =a?Var[X] +b*Var[Y]+2abCov (X,Y).
Covariance: Cov(X,Y) :]E[(X E[X])(Y-E[Y])].

Cum. dist. function: P x§ =F(t ) where F is CDFE.
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Multivariate Gaussian:
1 1
NxnX)=——ex (—— x—u) 2 N (x— >
(xp.Z) oz P 5(x—p) I (x—p)

A random vector is Gaussian if (1) the RVs are Gaussian, and (2)
any linear combination of the RVs is Gaussian.

Properties:

.. . a
Matrix inversion: [c

Xp~N(paEan)
XA | Xg~N(papEa)
HalB =pua+ZapZpp(xp—Hp)
Zap=Zaa—ZapEp5EBA
MX~ N (My,MZ.MT)
X+X'~ N(u+p' Z+%)

If asked about conditional distribution of linear functions of
Gaussians, notice that the functions can be jointly computed by a
matrix operation, which results in a Gaussian, or use LoV.

Kalman filters: Motion model updates the state X; 1 = FX;+ €.
Sensor model computes observation Y; =
i~ N(OZy). er1=Kep1 1, 11: 7= K1 |, i 7= K1 1. Update:

Xep1 |yree1 ~N (re1,Ze11)

p1=Fpr+ K1 (Y1 —HFpy)

Ty =(I—Kyp H) (FL,F T +Ey)

Kiy1=(FLF +Z)H (H(FLF' +EZ)H' +£,)7!
pl—logp(x)].
HIN (#,2)] = §(1+log(27)) + 3log| &
1-Gaussian: H[N (,0?)]= 3log(270?) + 3.

Entropy: H[p|=E

d-Gaussian:

HXt+1]t. €t NN(O,ZX),

Hlp,q]=

KL-divergence: KL(q||p)=E, [log (x)

negative (0 if p=g, o0 if p(x)

p(x)
=0 for x with g(x) >

HIp)+Hlg| pl. HIX| Y] =, [log24)].

p(x)

[ |togf i Nor-
0). Additional

expected surprise when observing g samples while assuming p.

Mutual information: I(X;Y) =
I(X;Y)=I(Y;X
Jensen’s inequality: If f convex: f(IE]
MLE: 8=amaxgp(y|X,0)
MAP: =amaxgp(0|X,y)

=amaxg) ;.

H[X] -
). Information never hurts: I(X;Y) >0.
X]) <E[f(X)]-

1logp(yi| xi,0).
=amaxglogp(0)+ Y1
Bayesian learning: Prior: p(0). Likelihood: p(y

H[X | Y]. Symmetric:

1logp(y;|x;,0).
| Xr 9) =

[TL,p(yi | x;,0). Posterior: p(0 | X,y) = %p(6) T, p(vi | x,,0).

Z=[p(O)IT

x*,0)p(6]X,y)d6. In general, intractable:

Aleatoric uncertainty: Uncertainty due

" 1p(yi|x;,0)d6. Prediction: p(y* | x*,X,y)
GP, VI, and MCMC solve.

= [p(y*|

to irreducible noise in

data. Epistemic uncertainty: Uncertainty due to lack of data.

LoTV: Var[y* | x*]

e ~ N(0,0?). Prior w ~ N(0, 0
w|Xy~N@L), i (XTX+0 o, 21)
L=(0,2X " X+0,21)"

=1IEg[Vary«[y* | x*,0]] + Varg[[Ey- [y* | x*,6]].

Bayesian Linear Regression a1l

2 I). Posterior:

x*/]/* — f* _"_ 6,

IXTy=0,22X"y,

Inference: y*:x*Tw+€:>f*|x*,X,y~/\/'(x ax* Txt+o2).

Logistic regression: Bernoulli likelihood (7t (1—77)~Y).

Recursive update: p(“r D(g)=

pOlyrr1)= 72" (0)p(yi+116).

Online data recursion: X ' X = Yl xix; 'd Y=Y yix;.

Problem: BLR can only make linear pre-
dictions. Solution: GP describes distributions over (non-linear)

functions. In function space, f = Xw, which can be sampled by
f ~N(0,X"X) = data points enter as inner products = use

kernel function f ~N(0,k(X,X)). GP(u,k) is formally defined as
an infinite collection of RVs, of which any finite number are jointly
¢(x) " ¢(x') for some fea-

Gaussian. Kernel: Formally, k(x,x') =

ture function ¢ = kernel function is more efficient. Intuitively,

k(xx'

) describes how f(x) and f(x') are related. k(X,X) is sym-

metric and positive semidefinite (z" Mz >0 for all z# 0). Must

satisfy k(x,x'
Isotropic: k(x,x)

)< \/k (xx)k(x' x'). Stationary: k(x, )=

k(||x—x'||2) (same as stat. in 1D). Linear: Line.

k(x—x').

Gaussian (RBF): Smooth, larger ¢: smoother. Laplace (exponential):

Non-smooth, larger ¢: smoother. Matérn: v=

Gaussian. Addition, multiplication, scaling, polynomial function
of kernel functions are also kernel functions.

Inference: y* | x*, X,y ~N (y*,* +07) with data X:
= p) kg a(Kaa+03 1) (y—pa)

k= k(x* %)~k s(Kaa+071) 'k

X, A-

1/2: Laplace, v — co:

GP posterior: GP(y/ k') such that:

1 (%)= p(x)+hy 4 (Kaa+oaD) ™ (y—pa)

K (xx')= k(xx')—k, s(Kaa+07I) ey 4
Forward sampling: Iter sample 1-d Gaussian with prod. rule
p(fi,.-..fn). Model selection: Hyperparameters matter a lot = Can
be learned by maximizing marginal likelihood,
6= angin yTK;éy—Hogdet(Ky,g),

which balances the goodness of the fit (term 1) and model
complexity (term 2).
Problem: To learn a GP, need to invert matrices, which take
O(n3) (BLR: O(dn?)). Local methods: Stationary kernels de-
pend on distance, so only condition if |k(x,x")| > 7. Approximation:
Approximate stationary kernel with Random Fourier Transform.
Inducing point (FITC): Throw away data where there is a lot
(cubic in inducing points, linear in data points).

VLB EIRINE T In some cases, not realistic to assume
Gaussian = Approximate p(0|y) = 7p(0,y) ~q,(0) = Minimize
KL(qx|lp) = q*=amaxyBonq, [logp(y|6)]=KL(qx || Pprior)- Le.
minimizing KL(g, || p) = maximizing expected likelihood, while
remaining close to prior. ELBO: Lower bounds logp(y), so itis a
good method of model selection.

Forward KL KL(p||g,): covers full prob. density, but intractable.
Backward KL KL(q, || p): greedily covers mode.

Laplace approximation: g, (8) =\ '(8,A), where 8 =amaxgp(6 |
y) and A =—Hylogp(0|y). Matches shape of the true posterior
around its mode = Extremely overconfident predictions, because
it is greedy.

Problem: Want to compute gradient w.r.t. A of an expectation
w.rt. A. Reparameterization trick: Suppose e ~ ¢, 0=g(e,A) (diff.
and inv.), then Egg, [f(0)] =Ee~y[f(g(€A))]. (Can be used for
MC obj, unbiased.) Gaussian: 8 =g(e,\) =L 2e+u~N(u,X).
Inference: p(y* | x*,y) = [p(y* | f*)gr(f* | x*)df* (intractable,

but single dimension).

Markov chain: Seq. of RVs s.t.
Xi111X1.4-1 | X Stationary dist.: 7t(x) = Y p(x | x")7(x').
(Solve by w=P" 7, 1-r=1.) Ergodicity: 3t[Vx,x'[p*) (x| x) >0]],
where p(*) is prob. to reach ¥’ from x in exactly ¢ steps. (Ter-
minal states = not ergodic.) (Ensure ergodicity by self-loops.)
Fundamental theorem of ergodic MCs: Ergodic MC always
converges to a unique pos. stat. dist. Detailed balance equa-
tion: For an unnormalized dist. 4 an MC satisfies DBE iff
q(x)p(x'|x)=q(x")p(x|x") = stat. dist. = 4. Sampling: Sample
MC’s stat. dist. by first doing a burn-in ¢( to reach stat. dist.
Idea: Approximate intractable p by drawing m

samples from MC with stat. dist. p(6ly) =
P~ |2 y) =E, (1) [P(y* [2*,0)] = 5 L p(y* | 2*,6:).



Hoeffding's inequality: Compute bound on error.

PUEp( 1y [P [x70)] =
where C is the upper bound of values (1 for prob. dist.). To get
a prob. <6 of error > €, we need m > 10g2—-10gé/2¢2 samples.

Metropolis-Hastings: Arbitrary proposal dist. 7(x’ | x). Fol-

= min{1 I | =

satisfies DBE to get stat. dist. %(x). Arbitrary proposal in-
fluences how fast we converge to stat. dist. Gaussian: Prob.

dist. has form p(x) Lexp(—f(x)) = alx' | x) =
{q, Ei,“xx;exp(f( )—f(x’))} Ifr(x' | x) = N(x;x,7l) =
=1 (symmetry). If r proposes low energy (high prob) re-

low proposal with prob. a(x’ | x)

r(x]x')
r(x]x)
gion, acceptance is 1. Problem: Uninformed = Use gradient
information (MALA requires full access to f).

SEVCOEL WD MRCEIG T8 Non-linear dependencies.
Prior: 6 ~ N'(0,03,1). Likelihood: y | x,0 ~ N (ytg(x),03(x)).

Homoscedastic: Same noise for all data points, 03(x)=c.
Heteroscedastic: Varying noise.
+ (vi—po(x:)

MAP: aming 2}75 16]1> — X1 log o (x;) 2020
loss for certain data points by attributing error to large variance.
Fails to model epistemic uncertainty = VI (Gaussian in expecta-
tion) and Monte Carlo or MCMC:

E[y* | y]~ 5 1" - " pe; (x7).
Varly* |yl ~ 5 110 () + 51 L (o, (v) — i (+))?

MCMC: Produce seq. 64,...,07, then p(y* | x*,y) = %Z}le(y* \
x*, 6]-). Problem: Cannot store T times params of network.
Solution: Approx. with Gaussian and running mean/var.
MC dropout: Dropout during inference < VI with Bernoulli.
Prob. ensembles: Train networks on rand. subsets, average.
Calibration: Well-calibrated <> confidence (assigned

prob.) = frequency. Reliability diagram: Bin accord-

ing to class pred. probs. (assume class 1). Above line: un-
derconfident, below line: overconfident. (No samples =
empty bin in diagram). freq(By)= ﬁzieBm]l{Yi =1},
conf(By,) = IBl_mIZiE B, P(Yi=1]|x;). ECE: avg. deviation from
perfect calibration: ¢pcp=YM @ |freq(By;) —conf(By,)|.

Decide which data to collect: NP-hard.

Uncertainty sampling: Greedily pick points with maximal
mutual information = x;11 = amaxy I(fx;yx | ys,). If Gaussian:
Xpp1 = amaxy s /o2 (x). Y7 = maxy, . [(f(¥1.1);y1.7). Mono-
tone submodular. Constant factor approx: I(f(x1.7);y1.7) >
(1—1/¢)yT (near-optimal, 1—1/e~0.63).

. Attenuate

LY p(y* | x4,0;)| > €) <2exp(-2me’/c2),

BALD: x; 1 = amaxy [ (yx;0 | X1.¢,Y1:4) = amaxy H [y | X111 —
Egly,, ., [H[yx | 6]]. Want points where the post. is uncertain be-
cause all 0 are certain about their differing pred. Approximate
term 2 using VI and MC.

EEVCSELNOLIulr£ LTl Not only reduce uncertainty, but also

maximize objective. x;; | =amaxya(x).

Regret: Ry =YL ; (max, f(x)— f(x;)). Want algorithm with
sublinear regret: limr_,ooRr/T=0. f*=max,f(x).

GP-UCB: Optimism in the face of uncertainty: pick point where
we can hope for best outcome: aycp = pt(x)+ Bror(x). u,o from
GP. Rt € O*(v/11/T). GP bounds: Linear: y7 € O(dlogT),
Gaussian: O((logT)**1), Matern: O(T2+4(logT)>/>+4).

PI: apy(x) =P (((*)—f*)/oi(x)) is prob. to improve f*. Greedy.
EE: a1 (x) — (11 (x) — F)D(1(0- £/ 20) + 03 (x)p(G5) " /)
is expectation of improvement.

Thompson sampling: Draw sample from GP and select max.

WEGGIVEEEET MW GINEE] Env. that makes Markov

ass. (states X, actions A4, transitions p(x’ | x, a), rewards
r(x,a)). Policy: 7T maps states to actions (induces MC with
p(x' | x) =Y, 7(a]| x)p(x" | x,a)), want to find 7r that max. long-
term rewards. Horizon T reward: IE[Y"[_o7(x¢,a;)]. Horizon co
reward: B[} 52 (77 (xtat)]. Geo series: Y5 7' =1/1—1.

V7 (x) = Ex [T 07 r(Xe,(X1)) | Xo =]

=r(x,7(x))+yCep(x | x,7(x))V7(x') (Bellman eq).

Q(xa) =r(xa)+yLyp(x' [xa) V7 (x). V(x) =max,Q(x,4).
Bellman theorem: 77 is optimal < greedy wrt. V7.

Policy iteration: 7 = V7,V = 7y (alternate).

7y (x) =amax,r(x,a) + v p(x’' | x,a)V(x') (greedy). Converges
monotonically, guaranteed to converge in O(I¥|Al/(1-y)) itera-
tions, expensive (computed efficiently by solving single LSoE).
Value iteration: Dynamic programming:

Vi(x) =max,r(x,a) + 7w p(x' | x,a) Vi_1(x). Iterates until

llor — vt—1]leo < €: e-optimal convergence, in polynomial in
iterations, per iteration: O(|X'|?|.Al), inexpensive. Then, pick
greedy policy.
Learn within unknown MDP. On-
policy: Learn from own data, Off-policy: Learn from other policy
data, Model-based: Learn MDP and solve, Model-free: Learn
value function directly. Data points: (x,a,7,x’).
Robbins-Monro: Y° jx; =00, Y 3> 1x? < 0. E.g. 1/t.
e-greedy (based): Pick random action with prob. €;, or best action
according to MDP with prob. 1 — €;. Guaranteed to converge
to optimal policy if €; satisfies RM. Problem: does not quickly
eliminate suboptimal actions.
Rmax (based): Solves problem. Add fairy tale p(x* | x*,a) =
1,r(x*,a4) = Rmax, assume unexplored go there.

TD-learning (on, free): V7 (x)< (1—ap) V™ (x)+ar(r+yV7™(x")).
Guaranteed to converge if a; satisfies RM and all states are visited
infinitely often. Space: O(|X|).

Q-learning (off, free): Q(x,a) < (1—a;)Q(x,a)+at(r+ymax, Q(¥/,
Guaranteed to converge if a; satisfies RM and all state-action pairs
are visited infinitely often. Space: O(|X||A]).

DON (off, free, cont. states): GD on %(Q(x, a;0) — (r —
ymax, Q(x',a’;8°9)))? (Bellman error). Slow to converge:
maintain constant target network. DDQN: Maximization bias
makes DQN overestimate. Solution: 2 Q networks where we

take minimum to be value.

Policy search (on, free, cont. actions): Parametrize 7t(x; ).
Maximize expected trajectory reward. VgE ., [r(T)]
Etry [r(71) Vglog 776(7)] = Bty [r(7) Lo Ve log me(ar | x1)]
= Do not need to know MDP to compute gradient. Baselines:
Large variance = introduce baseline: E~,[r(T)Vglog ] =
By [(r(7) =b(7)) Vlogrre(7)].

REINFORCE (on, free): 0 < 0+ 17 G;Vglogmg(as | x¢), where
Gi=r(T)—b; :ZtT/:ﬂtLtf’t-

Actor-critic (on, free): REINFORCE gradient =

E (1 0)~m, [Q(x,a) Vg log rre(a | x)]. So: parametrize actor 7g
and critic Qp. Use in each others” update equations:

070, +1:Q(x,a]|00)Velogmg(a|x).

0g 00—t (Q(x,a:00) —r—7Q(x',7(x';07),00)) VoQ(x,4:0).
A2C (on, free): Add value network Vj for the baseline: A(x,a) =
Q(x,a)—V(x,a) (advantage function). This centers the Q-values.
DDPG (off, free): Replace max, Q(x/, a’; 6°'9) in DQN by
7(x’; 0), where 7t should follow the greedy policy w.r.t.

Q. Key idea: If we use a rich enough parameterization of
policies, selecting the greedy policy w.rt. Q is equivalent to

07 =amaxg, Ey,[Q(x,71(x;07);00)]. p1(x) >0 is an exploration
distribution with full support. This needs det. 77, thus we inject
noise for exploration (akin e-greedy).

TD3 (off, free): Add second critic network to address max. bias.
SAC (off, free): Add entropy regularization to loss AH (7).
Planning: Det. transition function x;;1 = f(x¢, ;) and re-
ward function r(x¢,a;). Cannot plan over infinite horizon =
Key idea: plan over finite horizon H, carry out first action,

repeat. Optimize Jy(ap1q-1) = Zﬁ,ﬂf Lot =ty(x;, ar). Lo-
cal minima, vanishing/exploding gradlent = heuristics =
Random shooting (m samples, pick best). Will not work if

sparse rewards = Get access to value function to look further:

Jr(aen—1) =Xy Oty 1V (xim).

Model-based ML: Estlmate f and r off-policy with supervised
learning ((xtat) — (7¢,x¢41), regression). Benefit: Dramatically de-
creases sample complexity (need less data). Use MAP estimate
= exploited by planning algos = Uncertainty (GP/BNN).



