
Optimization for Data Science
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes

optimization for data science ii

Contents

1 Risk minimization 1

1.1 Algorithms in data science 1

1.2 Empirical and expected risk 1

1.3 The map of learning 3

2 Theory of convex functions 4

2.1 Mathematical background 4

2.2 Convex sets 5

2.3 Convex functions 5

2.4 Minimizing convex functions 9

2.5 Convex programming 10

3 Gradient descent 14

3.1 Vanilla analysis 14

3.2 Lipschitz convex functions 15

3.3 Smooth functions 16

3.4 Smooth and strongly convex functions 18

4 Projected gradient descent 21

4.1 Smooth functions 22

5 Coordinate descent 25

5.1 Randomized coordinate descent 27

5.2 Importance sampling 28

5.3 Steepest coordinate descent 28

5.4 Greedy coordinate descent 30

6 Nonconvex functions 32

6.1 Trajectory analysis 34

7 The Frank-Wolfe algorithm 39

7.1 Linear minimization oracles 39

7.2 Duality gap 40

7.3 Convergence analysis 40

8 Newton’s method 45

9 Quasi-Newton methods 48

10 Subgradient methods 51

10.1 Subgradient method 52

10.2 Strong convexity 54

11 Mirror descent 55

11.1 Norm and Bregman divergence 55

11.2 Mirror descent algorithm 56

12 Smoothing and proximal algorithms 60

12.1 Convex conjugate theory 60

12.2 Nesterov smoothing 60

12.3 Moreau-Yosida smoothing 61

optimization for data science iii

12.4 Proximal point algorithm 61

12.5 Proximal gradient method 63

13 Stochastic optimization 65

13.1 Convergence analysis 65

13.2 Adaptive methods 68

13.3 Variance reduction 69

14 Min-max optimization 71

14.1 Notion of solution 71

14.2 Convex-concave min-max optimization 72

14.3 Algorithms 72

15 Variational inequality problems 76

optimization for data science iv

List of symbols

.
= Equality by definition

R Set of real numbers

f : A → B Function f that maps elements of set A to elements of
set B

v ∈ Rn n-dimensional vector

M ∈ Rm×n m × n matrix

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2 f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

optimization for data science 1

1 Risk minimization

1.1 Algorithms in data science

In classical algorithm theory, an optimization problem solves a well-
defined problem. For example, Kruskal’s algorithm computes the mini-
mum spanning tree of a graph. In data science, it is not as well-defined.
The starting point is a learning problem, and the optimization typically
happens on training data. However, even a perfect result may fail to solve
the learning problem, which is a failure of the model in which the opti-
mization algorithm was applied, rather than the optimization algorithm
itself.

1.2 Empirical and expected risk

Typically, we have a data source X , equipped with an unknown probabil-
ity distribution P. However, we do have access to independent samples

X1, . . . , Xn
iid∼ P, which we call the dataset. The goal is to “explain” X

through these samples. More specifically, we have a class of hypotheses
H, which are possible explanations of X . The goal is then to select the
hypothesis H ∈ H that best “explains” X , which we measure by a loss
function ℓ : H×X → R.

The hypothesis that explains best is the expected risk minimizer,

H⋆ ∈ argmin
H∈H

ℓ(H)
.
= EX [ℓ(H, X)].

However, since we do not have access to the distribution over X , we
cannot compute ℓ(H) or H⋆.1 Hence, we need to compromise. 1 In some cases, we might be able to argue mathe-

matically about expected risk.

Definition 1.1 (Probably approximately correct (PAC) hypothesis).
Let ϵ, δ > 0 A hypothesis H̃ ∈ H is PAC if, with probability at least
1 − δ,

ℓ(H̃) ≤ inf
H∈H

ℓ(H) + ϵ.

However, we can still not compute this, thus we must use our training
data to compute the empirical risk,

ℓn(H) =
1
n

n

∑
i=1

ℓ(H, Xi). This is a random variable, because it depends on
the training data, which are all random variables,
distributed according an unknown P.

Lemma 1.2 (Weak law of large numbers). Let H ∈ H be a fixed
hypothesis. For any δ, ϵ > 0, there exists n0 ∈ N such that for
n ≥ n0,

|ℓn(H)− ℓ(H)| ≤ ϵ,

with probability at least 1 − δ.

optimization for data science 2

In words, this states that for any probability 1 − δ and approximation
error ϵ, there is a threshold n0 such that the empirical risk approximates
the expected risk by that approximation error with that probability. Fur-
thermore, it only holds for a fixed hypothesis.

Given n ∈ N and training data X1, . . . , Xn ∈ X , we want to produce
a data-dependent hypothesis H̃n that is optimal for the data-dependent
risk,

ℓn(H̃n) ≤ inf
H∈H

ℓn(H) + ϵ. H̃n is a random variable that depends on the
training data.

In an ideal world, the data-dependent hypothesis H̃n is also (almost) the
best explanation for the data source X with probability at least 1 − δ,

ℓ(H̃n) ≤ inf
H∈H

ℓ(H) + ϵ.

Note that the weak law of large numbers can only
be applied to a fixed hypothesis, but not to the
data-dependent hypothesis H̃n. So, we cannot
conclude ℓ(H̃n) ≤ ℓn(H̃n) + ϵ. Thus, we are not
always in an ideal world scenario.

A sufficient condition for an ideal world scenario is that the weak law
of large numbers uniformly holds for all hypotheses with high probabil-
ity. This leads us to the following theorem.

Theorem 1.3. Assume that for any δ, ϵ > 0, there exists n0 ∈ N such
that for n ≥ n0,

sup
H∈H

|ℓn(H)− ℓ(H)| ≤ ϵ,

with probability at least 1 − δ. (This means that the weak law of
large numbers holds uniformly for all hypotheses H ∈ H.) Then,
for n ≥ n0, an approximate empirical risk minimizer H̃n is PAC for
expected risk minimization, meaning that it satisfies

ℓ(H̃n) ≤ inf
H∈H

ℓ(H) + 3ϵ,

with probability at least 1 − δ.

Proof. Let H̃n be the minimizer of ℓn. This is a random variable, but the
weak law of large numbers holds for all H ∈ H. Thus,

ℓ(H̃n) ≤ ℓn(H̃n) + ϵ Follows from supH∈H |ℓn(H)− ℓ(H)| ≤ ϵ.

≤ inf
H∈H

ℓn(H) + 2ϵ H̃n is an almost best explanation of the training
data: ℓn(H̃n) ≤ infH∈H ℓn(H) + ϵ.

≤ inf
H∈H

ℓ(H) + 3ϵ, Follows from supH∈H |ℓn(H)− ℓ(H)| ≤ ϵ.

with probability at least 1 − δ. ■

It turns out that the assumption made by Theorem 1.3 holds in many
relevant cases, but it is not always true.

In this course, we will not learn how to pick the theory—H and ℓ—but
rather how to solve the optimization problems that arise in empirical risk
minimization after the theory has been chosen.

optimization for data science 3

1.3 The map of learning

overfitting underfitting

bad modellearning

gen
er

ali
za

tio
n

gen
er

ali
za

tio
n

em
piri

ca
l ris

k

m
in

im
iza

tio
n

regularization

early stopping

ℓn

ℓ
va

lid
at

io
n

algorithm

Figure 1.1. The map of learning. Hn depends on
the training data and is generally found by an op-
timization algorithm. The training data is used to
find and compute the empirical risk ℓn(Hn). We
estimate the expected risk ℓ(Hn) by held-out vali-
dation data.

The map of learning can be seen in Figure 1.1. It plots the empirical risk
ℓn(Hn) against the expected risk ℓ(Hn), which is estimated by a valida-
tion set. Hn is found by mapping the training data to the hypothesis,
which is done by an optimization algorithm. With high probability, we
are in the area denoted by “empirical risk minimization”, because

ℓn(H̃n) ≤ inf
H∈H

ℓn(H) + ϵ

≤ ℓn(H̃) + ϵ This holds for any H̃ ∈ H.

≤ ℓ(H̃) + 2ϵ Weak law of large numbers (w.h.p.).

≤ ℓ(H̃n) + 3ϵ.

A model is overfit when we have low empirical risk, while having
high expected risk. This means that the explanation quality on the data
source is much worse than on the training data. The main reason for this
is that the theory is so complex that it can explain almost anything.

A model is underfit when we have high empirical risk, while having
high expected risk. This means that we neither explain the training data
nor the data source. The main reason for this is that the theory is too
simple to capture the nature of the data.

The model is learning when we have low empirical risk and low ex-
pected risk. This means that the training was successful. Generalization
occurs when the expected risk is close to the empirical risk. Note that
this does not mean that the explanation is good, since any “blind ex-
planation” will generalize well due to the weak law of large numbers.
Generalization means that the empirical performance is similar the ex-
pected performance. Ideally, we want generalization and learning.

Regularization can improve performance by introducing a function r
that punishes complex hypotheses,

ℓ′(H, X) = ℓ(H, X) + λ · r(H).

As λ grows, more bias is introduced and the empirical risk increases. At
the same time, the sensitivity to the training data decreases, which may
lead to a decreased expected risk.

optimization for data science 4

2 Theory of convex functions

2.1 Mathematical background

Theorem 2.1 (Cauchy-Schwarz inequality). Let u, v ∈ Rd, then

|u⊤v| ≤ ∥u∥∥v∥.

Theorem 2.2 (Special case of Hölder’s inequality). Let u, v ∈ Rd,
then

|u⊤v| ≤ ∥u∥∞∥v∥1.

Theorem 2.3 (Cosine theorem). Let u, v ∈ Rd, then

∥u − v∥2 = ∥u∥2 + ∥v∥2 − 2u⊤v.

Definition 2.4 (Spectral norm). Let A ∈ Rm×d , then

∥A∥2
.
= max

v∈Rd ,v ̸=0

∥Av∥
∥v∥ = max

∥v∥=1
∥Av∥.

Intuitively, this means that ∥A∥2 is the largest factor by which a vector
can be stretched in length under the mapping v 7→ Av. It is equal to the
principal eigenvalue.

Definition 2.5 (Positive semi-definiteness). A matrix A ∈ Rm×d is
positive semi-definite over X if

x⊤Ax ≥ 0, ∀x ∈ X .

Theorem 2.6 (Mean value theorem). Let a < b be real numbers, and
let h : [a, b] → R be a continuous function that is differentiable on
(a, b). Then, there exists c ∈ (a, b) such that

h′(c) =
h(b)− h(a)

b − a
.

ca b

Figure 2.1. Illustration of the mean value theorem.

Geometrically, this means that between a and b, there is a tangent to
the graph of h that has the same slope—see Figure 2.1.

Theorem 2.7 (Fundamental theorem of calculus). Let a < b be real
numbers, and let h : dom(h) → R be a differentiable function on
an open domain dom(h) ⊃ [a, b], and such that h′ is continuous on
[a, b]. Then,

h(b)− h(a) =
∫ b

a
h′(t)dt.

optimization for data science 5

2.2 Convex sets

Definition 2.8 (Convex set). A set C ⊆ Rd is convex if the line seg-
ment between any two points of C lies in C. I.e., if

λx + (1 − λ)y ∈ C, ∀x, y ∈ C, λ ∈ [0, 1].

Figure 2.2. Example of a convex set in R2.

Figure 2.3. Example of a set that is not convex in
R2.

Lemma 2.9. Let C1, . . . , Cn be convex sets, where n can be infinitely
large, then

C =
n⋂

i=1

Ci,

is a convex set.

2.3 Convex functions

x yλx + (1 − λ)y

f (x)

f (y)

f (λx + (1 − λ)y)

λ f (x) + (1 − λ) f (y)

Figure 2.4. Illustration of the classic definition of
convexity.

Definition 2.10 (Convexity). A function f : dom(f) → R is convex
if (i) dom(f) is convex and (ii) we have

f (λx+(1−λ)y) ≤ λ f (x)+ (1−λ) f (y), ∀x, y ∈ dom(f), λ ∈ [0, 1].

Geometrically, this condition means that the line segment connecting
the two points (x, f (x)) and (y, f (y)) ∈ Rd+1 lies pointwise above the
graph of f —see Figure 2.4.

Lemma 2.11 (Jensen’s inequality). Let f be convex, x1, . . . , xm ∈
dom(f), λ1, . . . , λm > 0 such that ∑m

i=1 λi = 1, then

f

(
m

∑
i=1

λixi

)
≤

m

∑
i=1

λi f (xi).

Proof. We will prove Jensen’s inequality by induction. The base case
(m = 2) is true by definition of convexity. Let Jensen’s inequality hold for
m = k. Consider m = k + 1, then

f

(
k+1

∑
i=1

λixi

)
= f

(
k

∑
i=1

λixi + λk+1xk+1

)

= f

(
(1 − λk+1)

k

∑
i=1

λi
1 − λk+1

xi + λk+1xk+1

)

≤ (1 − λk+1) f

(
k

∑
i=1

λi
1 − λk+1

xi

)
+ λk+1 f (xk+1) By definition of convexity.

≤ (1 − λk+1)
k

∑
i=1

λi
1 − λk+1

f (xi) + λk+1 f (xk+1) Induction assumption, ∑k
i=1

λi
1−λk+1

= 1.

=
k+1

∑
i=1

λi f (xi).

optimization for data science 6

Since it holds for the base case and the induction step, Jensen’s inequality
must hold for all m. ■

Lemma 2.12. Let f be convex and suppose that dom(f) ⊆ Rd is
open, then f is continuous.

Definition 2.13 (Differentiable functions). Let f : dom(f) → Rm

where dom(f) ⊆ Rd is open. f is called differentiable at x ∈ dom(f)
if there exists A ∈ Rm×d and an error function r : Rd → Rm defined
around 0 ∈ Rd such that for all y in some neighborhood of x,

f (y) = f (x) + A(y − x) + r(y − x),

where limv→0 ∥r(v)∥/∥v∥ = 0 (error function r is sublinear around 0).
A is unique and called the Jacobian matrix of f at x.

x y

f (x) +∇ f (x)⊤(y − x)

r(y − x)

Figure 2.5. Graph of the affine function f (x) +
∇ f (x)⊤(y − x) is a tangent hyperplane to the
graph of f at (x, f (x)).

x y

f (x) +∇ f (x)⊤(y − x)

f (x)

f (y)

Figure 2.6. Illustration of the first-order characteri-
zation of convexity (Lemma 2.14).

Lemma 2.14 (First-order convexity). Suppose that dom(f) is open
and that f is differentiable. In particular, the gradient

∇f (x) .
=

[
∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xd

]
exists at every point x ∈ dom(f).

Then, f is convex if and only if (i) dom(f) is convex and (ii) we
have

f (y) ≥ f (x) +∇f (x)⊤(y − x), ∀x, y ∈ dom(f).

Geometrically, this means that the graph is above all tangent hyperplanes—
see Figure 2.6.

Proof. We will first prove that convexity implies that the first-order def-
inition holds. Then, we will prove that the first-order definition implies
convexity, making the definitions equivalent for differentiable functions
f .

⇒: Suppose f is convex. Then, for all t ∈ (0, 1),

f ((1 − t)x + ty) ≤ (1 − t) f (x) + t f (y) Definition of convexity.

⇐⇒ f (x + t(y − x)) ≤ f (x) + t(f (y)− f (x))

⇐⇒ f (y) ≥ f (x) +
f (x + t(y − x))− f (x)

t

= f (x) +
∇f (x)⊤t(y − x) + r(t(y − x))

t
r(·) is an error function such that

limv→0
∥r(v)∥
∥v∥ = 0.

= f (x) +∇f (x)⊤(y − x) +
r(t(y − x))

t︸ ︷︷ ︸
→0 for t→0

.

optimization for data science 7

⇐: Define z .
= λx + (1 − λ)y ∈ dom(f) for λ ∈ [0, 1] by convexity of

dom(f). Then, we have the following inequalities,

f (x) ≥ f (z) +∇f (z)⊤(x − z)

f (y) ≥ f (z) +∇f (z)⊤(y − z).

This implies the following,

λ f (x) + (1 − λ) f (y) ≥ λ
(

f (z) +∇f (z)⊤(x − z)
)
+ (1 − λ)

(
f (z) +∇f (z)⊤(y − z)

)
= f (z) + λ∇f (z)⊤(x − z) + (1 − λ)∇f (z)⊤(y − z)

= f (z) +∇f (z)⊤(λ(x − z) + (1 − λ)(y − z))

= f (z) +∇f (z)⊤(λx + (1 − λ)y − (λz + (1 − λ)z))

= f (λx + (1 − λ)y).

■

Lemma 2.15 (First-order convexity alternative). Suppose that dom(f)
is open and that f is differentiable. Then, f is convex if and only if
(i) dom(f) is convex and (ii)

(∇f (y)−∇f (x))⊤(y − x) ≥ 0, ∀x, y ∈ dom(f).

Proof. We will first prove that it holds from left to right, and then from
right to left.

⇒: If f is convex, the first-order characterization of convexity (Lemma 2.14)
yields the following ∀x, y ∈ dom(f),

f (x) ≥ f (y) +∇f (y)⊤(x − y)

f (y) ≥ f (x) +∇f (x)⊤(y − x),

for all x, y ∈ dom(f). Adding up these two inequalities yields

f (x) + f (y) ≥ f (y) +∇f (y)⊤(x − y) + f (x) +∇f (x)⊤(y − x)

⇐⇒ 0 ≥ ∇f (y)⊤(x − y) +∇f (x)⊤(y − x)

= (∇f (y)−∇f (x))⊤(x − y)

⇐⇒ 0 ≤ (∇f (y)−∇f (x))⊤(y − x).

⇐: Define z .
= (1 − t)x + ty ∈ dom(f) for x, y ∈ dom(f), t ∈ (0, 1) by

convexity of dom(f). Observe that z = x+ t(y− x). Then, we have the
following inequality, according to the monotonicity of the gradient,

(∇f (z)−∇f (x))⊤(z − x) ≥ 0

(∇f (x + t(y − x))−∇f (x))⊤(x + t(y − x)− x) ≥ 0

(∇f (x + t(y − x))−∇f (x))⊤(y − x) ≥ 0. Divide by t

optimization for data science 8

Let h(t) = f (x + t(y − x)), then h′(t) = ∇f (x + t(y − x))⊤(y − x).
Hence, we can rewrite the inequality as the following,

h′(t) ≥ ∇f (x)⊤(y − x).

By the mean value theorem, there exists c ∈ (0, 1) such that h′(c) =
h(1)− h(0). I.e.,

h′(c) = f (y)− f (x).

Thus, we can rewrite the inequality to the following,

f (y) = f (x) + h′(c)

≥ f (x) +∇f (x)⊤(y − x),

which is the first-order characterization of convexity (Lemma 2.14).

■

Geometrically, this means that the gradient is monotonic.

Lemma 2.16 (Second-order convexity). Suppose that dom(f) is open
and that f is twice differentiable. In particular, the Hessian

∇2 f (x) =

∂2 f (x)

∂x2
1

· · · ∂2 f (x)
∂x1 ∂xd

...
. . .

...
∂2 f (x)
∂xd ∂x1

· · · ∂2 f (x)
∂x2

d

exists at every point x ∈ dom(f) and is symmetric.

Then, f is convex if and only if (i) dom(f) is convex and (ii) the
Hessian ∇2 f (x) is positive semi-definite for all x ∈ dom(f).

Geometrically, this means that f has non-negative curvature every-
where. I.e., the growth rate should be growing.

Lemma 2.17 (Operations that preserve convexity). Let f1, . . . , fm be
convex functions, λ1, . . . , λm ≥ 0, then

f .
=

m
max
i=1

fi,

and

f .
=

m

∑
i=1

λi fi.

are convex on dom(f) .
=
⋂m

i=1 dom(fi).

Let f be a convex function with dom(f) ⊆ Rd, g : Rm → Rd

an affine function, i.e. g(x) = Ax + b for some A ∈ Rd×m, b ∈ Rd.
Then, the function f ◦ g is convex on dom(f ◦ g) .

= {x ∈ Rm | g(x) ∈
dom(f)}.

f1

f2

f3epi(f .
= max3

i=1 fi)

Figure 2.7. The maximum operator over m convex
functions is a convex function. As can be seen, the
epigraph of f is convex.

optimization for data science 9

2.4 Minimizing convex functions

Definition 2.18 (Local minimum). A local minimum of f : dom(f) →
R is a point x such that there exists ϵ > 0 with

f (x) ≤ f (y), ∀y ∈ dom(f) s.t. ∥y − x∥ < ϵ.

Lemma 2.19. Let x⋆ be a local minimum of a convex function f :
dom(f) → R. Then, x⋆ is a global minimum, meaning that f (x⋆) ≤
f (y), ∀y ∈ dom(f).

Proof. Proof by contradiction. Suppose there exists y ∈ dom(f) such that
f (y) < f (x⋆). Define y′ .

= λx⋆ + (1 − λ)y for λ ∈ (0, 1). From convexity,
we get that f (y′) < f (x⋆), because f (y) < f (x⋆). If we choose λ so close
to 1 such that ∥y′ − x⋆∥ < ϵ gives the inequality f (x⋆) ≤ f (y′). This
yields a contradiction, thus there cannot exist a y ∈ dom(f) such that
f (y) < f (x⋆), meaning that f (x⋆) ≤ f (y) for all y ∈ dom(f). ■

Lemma 2.20. Suppose that f is convex and differentiable over an
open domain dom(f). Let x ∈ dom(f). If ∇f (x) = 0 (critical point),
then x is a global minimum.

Proof. Suppose that ∇f (x) = 0. According to the first-order characteri-
zation of convexity, we have

f (y) ≥ f (x) +∇f (x)⊤(y − x)︸ ︷︷ ︸
=0

= f (x)

for all y ∈ dom(f), so x is a global minimum. ■

Lemma 2.21 (Constrained first-order optimality condition). Suppose
that f : dom(f) → R is convex and differentiable over an open
domain dom(f) ⊆ Rd and let X ⊆ dom(f) be a convex set. A point
x⋆ ∈ X is a minimizer of f over X if and only if

∇f (x⋆)⊤(x − x⋆) ≥ 0, ∀x ∈ X .

Definition 2.22 (Strict convexity). A function f : dom(f) → R is
strictly convex if (i) dom(f) is convex and (ii) for all x ̸= y ∈ dom(f)
and all λ ∈ (0, 1), we have

f (λx + (1 − λ)y) < λ f (x) + (1 − λ) f (y).

An example of a strictly convex function can be found in Figure 2.4,
while an example of a function that is not strictly convex can be found
in Figure 2.8.

x yλx + (1 − λ)y

Figure 2.8. A non-strictly convex function with one
global minimum.

optimization for data science 10

Lemma 2.23. Let f : dom(f) → R be strictly convex. Then, f has—at
most—one global minimum.

2.5 Convex programming

In standard form, optimization problems look like the following,

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

hj(x) = 0, j = 1, . . . , p.

The problem domain is then

X =

(
m⋂

i=0

dom(fi)

)
∩
 p⋂

j=1

dom(hj)

.

In a convex program, all fi are convex functions, and all hj are affine
functions with domain Rd.

Definition 2.24 (Lagrange dual function). Given an optimization
problem in standard form, its Lagrangian is the function L : X ×
Rm × Rp → R given by

L(x, λ, ν) = f0(x) +
m

∑
i=1

λi fi(x) +
p

∑
j=1

νjhj(x).

The λi, νj are called Lagrange multipliers. The Lagrange dual func-
tion is the function g : Rm × Rp → R ∪ {−∞} defined by

g(λ, ν) = inf
x∈X

L(x, λ, ν).

Only the (λ, ν) pairs with g(λ, ν) > −∞ are interesting.

Lemma 2.25 (Weak Lagrange duality). Let x be a feasible solution—
fi(x) ≤ 0, ∀i ∈ [m] and hj(x) = 0, ∀j ∈ [p]. Let g be the Lagrange
dual function and λ ∈ Rm, ν ∈ Rp such that λ ≥ 0. Then,

g(λ, ν) ≤ f0(x).

Proof.

g(λ, ν) ≤ L(x, λ, ν) = f0(x) +
m

∑
i=1

λi fi(x)︸ ︷︷ ︸
≤0

+
p

∑
j=1

νjhj(x)︸ ︷︷ ︸
=0

≤ f0(x).

■

optimization for data science 11

However, we want to know what the best lower bound is that we can
get in this way. For this, we must choose λ ≥ 0, ν such that g(λ, ν) is
maximized. This can be phrased as another optimization problem, called
the Lagrange dual,

maximize g(λ, ν)

subject to λ ≥ 0.

Corollary. The Lagrange dual is a convex program, even if the pri-
mal is not.

Corollary. By weak duality, the supremum value of the Lagrange
dual is a lower bound of the infimum value of the primal problem,

sup g(λ, ν) ≤ inf f0(x).

Theorem 2.26. Suppose that a convex program has a feasible solu-
tion x̄ that in addition satisfies fi(x̄) < 0, ∀i ∈ [m] (Slater point).
Then, the infimum value of the primal equals the supremum value
of its Lagrange dual. Moreover, if the value is finite, it is attained by
a feasible solution of the dual,

max g(λ, ν) = inf f0(x).

A case of particular interest is that strong duality holds and the joint
value is attained in both the primal and dual problem.2 If all fi and hj are 2 This would mean that min f0(x) = max g(λ, ν).

differentiable, then the Karush-Kuhn-Tucker (KKT) conditions provide
necessary and, under convexity, also sufficient conditions for this case to
occur.

If the primal and dual have zero duality gap, then
min f0(x) = max g(λ, ν).

Definition 2.27 (Zero duality gap). Let x̃ be feasible for the primal
and (λ̃, ν̃) feasible for the Lagrange dual. The primal and dual solu-
tions x̃ and (λ̃, ν̃) are said to have zero duality gap if f0(x̃) = g(λ̃, ν̃).

Theorem 2.28 (KKT necessary conditions). Let x̃ and (λ̃, ν̃) be feasi-
ble solutions with zero duality gap. If all fi and hj are differentiable,
then

λ̃i fi(x̃) = 0, i = 1, . . . , m Complementary slackness

∇f0(x̃) +
m

∑
i=1

λ̃i∇fi(x̃) +
p

∑
j=1

ν̃j∇hj(x̃) = 0. Vanishing Lagrangian gradient

optimization for data science 12

Proof. The consequence of zero duality gap is the master equation,

f0(x̃) = g(λ̃, ν̃) Zero duality gap.

= inf
x∈X

(
f0(x) +

m

∑
i=1

λ̃i fi(x) +
p

∑
j=1

ν̃jhj(x)

)
Definition of g.

≤ f0(x̃) +
m

∑
i=1

λ̃i fi(x̃) +
p

∑
j=1

ν̃jhj(x̃) Infimum is a lower bound.

≤ f0(x̃), All constraints are less than or equal to zero,
because x̃ is feasible.

which means that all inequalities turn into equalities. Thus,

λ̃i fi(x̃) = 0, i = 1, . . . , m,

which is called complementary slackness, because if λ̃i ̸= 0, then fi(x̃) =
0, and vice versa. Furthermore, if all fi and hj are differentiable, then

∇f0(x̃) +
m

∑
i=1

λ̃i∇fi(x̃) +
p

∑
j=1

ν̃j∇hj(x̃) = 0,

which is called the vanishing Lagrangian gradient condition. This holds
due to x̃ being the minimizer of L(x, λ̃, ν̃). ■

Theorem 2.29 (KKT sufficient conditions). Let x̃ and (λ̃, ν̃) be feasi-
ble solutions. Further, suppose all fi, hj are differentiable, all fi are
convex, and all hj are affine. Moreover, let complementary slackness
and vanishing Lagrangian gradient hold,

λ̃i fi(x̃) = 0, ∀i ∈ [m]

∇xL(x̃, λ̃, ν̃).

Then, x̃ and (λ̃, ν̃) have zero duality gap.

Proof. This can easily be proven by lemmas that have already been intro-
duced,

f0(x̃) = f0(x̃) +
m

∑
i=1

λ̃i fi(x̃) +
p

∑
j=1

ν̃jhj(x̃) x̃ is feasible, so hj(x̃) = 0, ∀j ∈ [p] and we have
complementary slackness.

= L(x̃, λ̃, ν̃)

= inf
x∈X

L(x, λ̃, ν̃) L is convex in x, because convexity is preserved
under summation and scaling (Lemma 2.17).
Furthermore, ∇x L(x̃, λ̃, ν̃) = 0, so x̃ is a global
minimizer (Lemma 2.20).

= g(λ̃, ν̃).

Hence, zero duality gap holds. ■

The KKT conditions are very useful for solving convex programs. If
we can find x̃, (λ̃, ν̃) that satisfies the conditions, we know that x̃ is a
minimizer of the optimization problem. This may be easier than solving

optimization for data science 13

the problem itself. However, these conditions are not always solvable.
If the primal has a Slater point—a feasible solution x̄ such that fi(x̄) <
0, ∀i ∈ [m]—then there exists a minimizer.

The interior-point method is a general algorithm for solving convex
programs, which has a high iteration cost. During this course, we will
consider simple algorithms with a low cost per iteration—but possibly a
high number of iterations.

optimization for data science 14

3 Gradient descent

x⋆

x0

Figure 3.1. Gradient descent updates.

Gradient descent is an optimization algorithm that aims to find a global
minimizer. We assume that f : Rd → R is convex, differentiable, and has
a global minimizer x⋆. Then, the goal of gradient descent is, for ϵ > 0, to
find an x ∈ Rd such that

f (x)− f (x⋆) ≤ ϵ.

It works by first choosing an x0 ∈ Rd and then iteratively updating by

xt+1 = xt − γ∇f (xt), Take a small step into the direction of the negative
gradient to move toward the minimum.

for timesteps t = 0, 1, . . . and stepsize γ > 0.

For special cases, we are then interested in whether it converges and
the rate of convergence of this algorithm. I.e., does and how quickly does
the sequence (f (xt)− f (x⋆))t∈N converge to 0.

3.1 Vanilla analysis

In order to see how far we can get with only convexity, we will not
make any additional assumptions in this section. We want to be able to
bound f (xt)− f (x⋆). For this, we can use the first-order characterization
of convexity,

f (x⋆) ≥ f (xt) +∇f (xt)
⊤(x⋆ − xt)

⇐⇒ f (xt)− f (x⋆) ≤ ∇f (xt)
⊤(xt − x⋆).

Rearranging the gradient descent update rule, we get

∇f (xt) =
xt − xt+1

γ
,

which gives the following bound

f (xt)− f (x⋆) ≤ ∇f (xt)
⊤(xt − x⋆)

=
1
γ
(xt − xt+1)

⊤(xt − x⋆)

=
1

2γ

(
∥xt − xt+1∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
Cosine theorem.

=
γ

2
∥∇f (xt)∥2 +

1
2γ

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
. Update rule: xt − xt+1 = γ∇ f (xt).

Summing this up over the first T iterations, we get an upper bound on
the summed error,

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤
T−1

∑
t=0

γ

2
∥∇f (xt)∥2 +

1
2γ

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
=

γ

2

T−1

∑
t=0

∥∇f (xt)∥2 +
1

2γ

(
∥x0 − x⋆∥2 − ∥xT − x⋆∥2

)
Telescoping sum.

≤ γ

2

T−1

∑
t=0

∥∇f (xt)∥2 +
1

2γ
∥x0 − x⋆∥2. ∥xT − x⋆∥2 ≥ 0.

optimization for data science 15

We can also use this to get a bound on the average error,

1
T

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤ 1
T

(
γ

2

T−1

∑
t=0

∥∇f (xt)∥2 +
1

2γ
∥x0 − x⋆∥2

)
.

The questions that arise are how to control ∥∇f (xt)∥2 and choose γ to
make this bound useful.

3.2 Lipschitz convex functions A function f : dom(f) → R is B-Lipschitz continu-
ous if there exists a B > 0, such that

| f (x)− f (y)| ≤ B∥x − y∥, ∀x, y ∈ dom(f).

This holds if and only if the gradient is bounded,

∥∇ f (x)∥ ≤ B, ∀x ∈ dom(f).

Theorem 3.1. Let f : Rd → R be convex and differentiable with a
global minimum x⋆. Furthermore, suppose that ∥x0 − x⋆∥ ≤ R and
∥∇f (x)∥ ≤ B for all x. Choosing the stepsize,

γ
.
=

R
B
√

T
,

gradient descent yields

1
T

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤ RB√
T

.

Proof. We will derive the optimal stepsize γ. First, we plug our bounds
into the vanilla analysis to obtain a function only dependent on γ,

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤ γ

2

T−1

∑
t=0

∥∇f (xt)∥2 +
1

2γ
∥x0 − x⋆∥2

≤ γ

2
B2T +

R2

2γ
.
= q(γ).

Now, we want to choose γ such that the bound q(γ) is minimized. We
can compute the minimum by computing the derivative,

q′(γ) =
1
2

B2T − R2

2γ2 ,

and solving for q′(γ) = 0, which yields

γ =
R

B
√

T
.

Then, we can compute the bound by

q
(

R
B
√

T

)
= RB

√
T.

Dividing by T yields the result. ■

We want to find out how many iterations we would need to ensure that
the average error is bounded by ϵ. We can use Theorem 3.1 to compute
a lower bound on the number of iterations,

RB√
T

≤ ϵ =⇒ T ≥ R2B2

ϵ2 .

optimization for data science 16

So, the amount of iterations until convergence is of the order O(1/ϵ2).
This means that we need at most 10000 · R2B2 iterations to achieve an
error of 0.01.

3.3 Smooth functions “Not too curved.”

x
g(x)

Figure 3.2. Plot of f (x) = x with the tangent
paraboloids at x = −8, 5, showing smoothness
with parameter L = 1. Furthermore, it shows that
g(x) = 1

2 x2 − f (x) is convex.

Definition 3.2 (Smoothness). Let f : dom(f) → R be differentiable,
X ⊆ dom(f) convex, and L > 0. Then, f is smooth with parameter
L over X if

f (y) ≤ f (x) +∇f (x)⊤(y − x) +
L
2
∥x − y∥2, ∀x, y ∈ X .

Geometrically, this definition of smoothness means that the graph f is
below a not too steep tangent paraboloid at (x, f (x))—see Figure 3.2.

Lemma 3.3. Let f : dom(f) → R be differentiable, X ⊆ dom(f)
convex, and L > 0. Then, the following are equivalent definitions of
smoothness of f with parameter L over X ,

1. g(x) = L
2 x⊤x − f (x) is convex over X ;

2. If f is convex, ∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥, ∀x, y ∈ X ;

3. If f is twice differentiable, ∥∇2 f (x)∥2 ≤ L, ∀x ∈ X .

Proof. These can all easily be proven by first proving that the definition
of smoothness is equivalent to (1) and then proving that the rest are
equivalent to (1) by using the various equivalent definitions of convexity.

■

The second definition ensures that the gradient is Lipschitz continu-
ous, which gives us a bound on how much the gradient changes within
an area of any point. Hence, if L is smaller, the gradient remains more
informative and we can use a bigger stepsize. The third definition tells
us that the eigenvalues of the Hessian are upper bounded by L.

Lemma 3.4 (Operations that preserve smoothness). Smoothness is
preserved under sum, positive scaling, and affine transformations.

1. Let f1, . . . , fm be smooth with L1, . . . , Lm and λ1, . . . , λm > 0.
Then, the function f .

= ∑m
i=1 λi fi is smooth with parameter ∑m

i=1 λiLi;

2. Let f be smooth with parameter L and let g(x) = Ax + b. Then,
the function f ◦ g is smooth with parameter L∥A∥2

2.

optimization for data science 17

Lemma 3.5 (Sufficient decrease). Let f : Rd → R be differentiable
and smooth with parameter L. With stepsize

γ
.
=

1
L

,

gradient descent satisfies

f (xt+1) ≤ f (xt)−
1

2L
∥∇f (xt)∥2.

Proof.

f (xt+1) ≤ f (xt) +∇f (xt)
⊤(xt+1 − xt) +

L
2
∥xt − xt+1∥2 Smoothness.

= f (xt) +∇f (xt)
⊤
(
−∇f (xt)

L

)
+

L
2

∥∥∥∥∇f (xt)

L

∥∥∥∥2

Update rule: xt+1 − xt = − 1
L∇ f (xt).

= f (xt)−
1
L
∥∇f (xt)∥2 +

1
2L

∥∇f (xt)∥2

= f (xt)−
1

2L
∥∇f (xt)∥2.

■

Theorem 3.6. Let f : Rd → R be convex and differentiable with a
global minimum x⋆. Furthermore, suppose that f is smooth with
parameter L. Choosing stepsize

γ
.
=

1
L

,

gradient descent yields

f (xT)− f (x⋆) ≤ L
2T

∥x0 − x⋆∥2, T > 0.

Proof. Due to sufficient decrease, we can bound the sum of squared
gradients (which will be useful when bounding the vanilla analysis),

1
2L

T−1

∑
t=0

∥∇f (xt)∥2 ≤
T−1

∑
t=0

f (xt)− f (xt+1) Sufficient decrease.

= f (x0)− f (xT). Telescoping sum.

optimization for data science 18

Using the vanilla analysis, we can derive a bound on the average error,

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤ 1
2L

T−1

∑
t=0

∥∇f (xt)∥2 +
L
2
∥x0 − x⋆∥2

γ
.
= 1

L .

≤ f (x0)− f (xT) +
L
2
∥x0 − x⋆∥2

⇐⇒
T

∑
t=1

(f (xt)− f (x⋆)) ≤ L
2
∥x0 − x⋆∥2

⇐⇒ 1
T

T

∑
t=1

(f (xt)− f (x⋆)) ≤ L
2T

∥x0 − x⋆∥2.

From sufficient decrease, we know that the last iterate must be the best.
Hence,

f (xT)− f (x⋆) ≤ L
2T

∥x0 − x⋆∥2.

■

Using this result, we can compute a bound on T to achieve an error
smaller than ϵ,

f (xT)− f (x⋆) ≤ L
2T

∥x0 − x⋆∥2 ≤ R2L
2T

≤ ϵ.

The error then becomes,

T ≥ R2L
2ϵ

,

which is on the order of O(1/ϵ). This means that we need at most 50 · R2L
iterations for an error of 0.01 (as opposed to 10000 · R2B2 in the Lipschitz
case).

3.4 Smooth and strongly convex functions “Not too flat.”

x2

g(x)

Figure 3.3. Plot of f (x) = x2 with the tangent
paraboloids at x = −6, 4, showing strong convex-
ity with parameter µ = 1. Furthermore, it shows
g(x) = f (x)− 1

2 x2, which is convex.

Definition 3.7 (Strong convexity). Let f : dom(f) → R be a convex
and differentiable function, X ⊆ dom(f) convex and µ > 0. f is
called strongly convex with parameter µ over X if

f (y) ≥ f (x) +∇f (x)⊤(y − x) +
µ

2
∥x − y∥2, ∀x, y ∈ X .

Geometrically, this means that, for any x, the graph of f is above a not
too flat tangent paraboloid at (x, f (x))—see Figure 3.3.

Lemma 3.8. Let f : dom(f) → R be differentiable, dom(f) an open
convex set, and µ > 0. Then, f is strongly convex with µ > 0 if and
only if g(x) = f (x)− µ

2 x⊤x is convex.

Lemma 3.9. If f is strongly convex, then f is strictly convex and has
a unique global minimum.

optimization for data science 19

By assuming that a function f is smooth and strongly convex, we can
use a stronger lower bound to derive a bound on the error from the
vanilla analysis.

Theorem 3.10. Let f : Rd → R be convex and differentiable with
a global minimum x⋆. Furthermore, suppose that f is smooth with
parameter L and strongly convex with parameter µ > 0. Choosing
γ

.
= 1/L, gradient descent with arbitrary x0 satisfies the following

two properties,

1. Squared distances to x⋆ are geometrically decreasing,

∥xt+1 − x⋆∥2 ≤
(

1 − µ

L

)
∥xt − x⋆∥2;

2. The absolute error after T iterations is exponentially small in T,

f (xT)− f (x⋆) ≤ L
2

(
1 − µ

L

)T
∥x0 − x⋆∥2.

Proof of 1. Using strong convexity, we have a stronger lower bound in the
vanilla analysis,

f (xt)− f (x⋆) ≤ ∇f (xt)
⊤(xt − x⋆)− µ

2
∥xt − x⋆∥2 Strong convexity.

=
γ

2
∥∇f (xt)∥2 +

1
2γ

(
∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

)
− µ

2
∥xt − x⋆∥2.

This can be rewritten to the following bound,

∥xt+1 − x⋆∥2 ≤ 2γ(f (x⋆)− f (xt)) + γ2∥∇f (xt)∥2︸ ︷︷ ︸
“noise”

+(1 − µγ)∥xt − x⋆∥2.

Now we need to show that the noise is non-positive,

2γ(f (x⋆)− f (xt)) + γ2∥∇f (xt)∥2 =
2
L
(f (x⋆)− f (xt)) +

1
L2 ∥∇f (xt)∥2

γ
.
= 1

L .

≤ 2
L
(f (xt+1)− f (xt)) +

1
L2 ∥∇f (xt)∥2 f (x⋆) ≤ f (x), ∀x ∈ X .

≤ − 1
L2 ∥∇f (xt)∥2 +

1
L2 ∥∇f (xt)∥2 Sufficient decrease.

= 0.

Hence, the noise is non-positive, and we get the following,

∥xt+1 − x⋆∥2 ≤
(

1 − µ

L

)
∥xt − x⋆∥2.

■

Proof of 2. From (1), we know the following,

∥xT − x⋆∥2 ≤
(

1 − µ

L

)T
∥x0 − x⋆∥2.

optimization for data science 20

Using smoothness, we can derive a bound on the final iterate error,

f (xT)− f (x⋆) ≤ ∇f (x⋆)⊤(xT − x⋆) +
L
2
∥xT − x⋆∥2

=
L
2
∥xT − x⋆∥2 ∇ f (x⋆) = 0, because it is a stationary point.

≤ L
2

(
1 − µ

L

)T
∥x0 − x⋆∥2. Using (1).

■

From this result, we can derive a lower bound on the number of itera-
tions T to get an error of at most ϵ,

T ≥ L
µ

log
(

R2L
2ϵ

)
,

This means that we need L
µ log(50 · R2L) iterations for an error of at most

0.01, as opposed to 50 · R2L in the smooth case. This bound only depends
linearly on L/µ, which might be very high.

optimization for data science 21

4 Projected gradient descent

In constrained optimization, we want to solve the following optimization
problem,

argmin
x∈X

f (x).

In the previous section, we considered X = Rd. However, now we will
assume that X ⊂ Rd is a closed convex set. The idea of projected gradient
descent is to project onto X after every step,

yt+1 = xt − γ∇f (xt)

xt+1 = ΠX (yt+1)
.
= argmin

x∈X
∥x − yt+1∥2.

x

y

ΠX (y)α

α ≥ 90◦

X

Figure 4.1. Proof by picture of the properties of the
projection step made in projected gradient descent.

Lemma 4.1. Let X ⊂ Rd be closed and convex, x ∈ X , y ∈ Rd, then

1. (x − ΠX (y))⊤(y − ΠX (y)) ≤ 0;

2. ∥x − ΠX (y)∥2 + ∥y − ΠX (y)∥2 ≤ ∥x − y∥2.

Proof of 1. Let dy(x) .
= ∥x−y∥2, which is a differentiable convex function

with gradient ∇dy(x) = 2(x − y). ΠX (y) is the minimizer of this func-
tion over X . Thus, by the first-order optimality condition (Lemma 2.21),
we have

∇dy(ΠX (y))⊤(x − ΠX (y)) ≥ 0

⇐⇒ 2(ΠX (y)− y)⊤(x − ΠX (y)) ≥ 0

⇐⇒ (x − ΠX (y))⊤(y − ΠX (y)) ≤ 0.

■

Proof of 2. This can easily be shown using the cosine theorem and the
previous result,

2(x − ΠX (y))⊤(y − ΠX (y)) ≤ 0 Multiply both sides of (1) by 2.

⇐⇒ ∥x − ΠX (y)∥2 + ∥y − ΠX (y)∥ − ∥x − y∥2 ≤ 0. Cosine theorem.

The result follows by rearranging. ■

The two properties equivalently say that the vectors y − ΠX (y) and
y − ΠX (y) form an obtuse angle—see Figure 4.1.

Lemma 4.2. Let f : dom(f) → R be a differentiable convex function
and X ⊆ dom(f) a closed convex set. Then, during projected gradi-
ent descent of f over X , if xt+1 = xt, we have an optimal solution.

optimization for data science 22

Proof. We assume xt+1 = xt. Let x ∈ X , then, by Lemma 4.1 (1), we have

(x − xt)
⊤(yt+1 − xt) ≤ 0

⇐⇒ (x − xt)
⊤(−γ∇f (xt)) ≤ 0

⇐⇒ ∇f (xt)
⊤(x − xt) ≥ 0,

which satisfies the first-order optimality condition (Lemma 2.21) at xt.
■

4.1 Smooth functions

Lemma 4.3 (Projected sufficient decrease). Let f : dom(f) → R

be differentiable and smooth with parameter L over a closed and
convex set X ⊆ dom(f). Choosing stepsize

γ
.
=

1
L

,

projected gradient descent satisfies

f (xt+1) ≤ f (xt)−
1

2L
∥∇f (xt)∥2 +

L
2
∥yt+1 − xt+1∥2.

Proof.

f (xt+1) ≤ f (xt) +∇f (xt)
⊤(xt+1 − xt) +

L
2
∥xt − xt+1∥2 Smoothness.

= f (xt)− L(yt+1 − xt)
⊤(xt+1 − xt) +

L
2
∥xt − xt+1∥2 Update rule: yt+1 = xt − 1

L∇ f (xt).

= f (xt)−
L
2

(
∥yt+1 − xt∥2 + ∥xt+1 − xt∥2 − ∥yt+1 − xt+1∥

)
Cosine theorem.

+
L
2
∥xt − xt+1∥2

= f (xt)−
L
2
∥yt+1 − xt∥2 +

L
2
∥yt+1 − xt+1∥2

= f (xt)−
1

2L
∥∇f (xt)∥2 +

L
2
∥yt+1 − xt+1∥2. yt+1 = xt − 1

L∇ f (xt).

■

Thus, we also have a sufficient decrease lemma for this version of
gradient descent, which has an additional term in its bound. However,
as we will see, this does not matter, because we can compensate for it in
the vanilla analysis.

optimization for data science 23

Theorem 4.4. Let f : dom(f) → R be convex and differentiable. Let
X ⊆ dom(f) be a closed convex set, and x⋆ the minimizer of f over
X . Furthermore, suppose that f is smooth over X with parameter L.
Choosing stepsize

γ
.
=

1
L

,

projected gradient descent yields the following bound,

f (xT)− f (x⋆) ≤ L
2T

∥x0 − x⋆∥2.

Proof. From Lemma 4.1 (2), we get the following inequality,

∥xt+1 − x⋆∥2 + ∥yt+1 − xt+1∥2 ≤ ∥yt+1 − x⋆∥2.

Using this inequality, we get the following upper bound,

f (xt)− f (x⋆) ≤ ∇f (xt)
⊤(xt − x⋆) Convexity.

=
1

2γ

(
γ2∥∇f (xt)∥2 + ∥xt − x⋆∥2 − ∥yt+1 − x⋆∥2

)
See vanilla analysis, where xt+1 is substituted by
yt+1, since that is the next unconstrained iterate.

≤ 1
2γ

(
γ2∥∇f (xt)∥2 + ∥xt − x⋆∥2 − ∥xt+1 − x⋆∥2

− ∥yt+1 − xt+1∥2
)

.

We use projected sufficient decrease to bound the sum of gradients,

1
2L

T−1

∑
t=0

∥∇f (xt)∥2 ≤
T−1

∑
t=0

f (xt)− f (xt+1) +
L
2
∥yt+1 − xt+1∥2 Projected sufficient decrease.

= f (x0)− f (xT) +
L
2

T−1

∑
t=0

∥yt+1 − xt+1∥2. Telescoping sum.

Now, we can bound the summed error and we will see that the additional
terms cancel,

T−1

∑
t=0

(f (xt)− f (x⋆)) ≤ 1
2L

T−1

∑
t=0

∥∇f (xt)∥2 +
L
2
∥x0 − x⋆∥2

− L
2

T−1

∑
t=0

∥yt+1 − xt+1∥2

≤ f (x0)− f (xT) +
L
2

T−1

∑
t=0

∥yt+1 − xt+1∥2

+
L
2
∥x0 − x⋆∥2 − L

2

T−1

∑
t=0

∥yt+1 − xt+1∥2

= f (x0)− f (xT) +
L
2
∥x0 − x⋆∥2,

which results in

T

∑
t=1

(f (xt)− f (x⋆)) ≤ L
2
∥x0 − x⋆∥2.

optimization for data science 24

Due to sufficient decrease, we get

f (xT)− f (x⋆) ≤ L
2T

∥x0 − x⋆∥2.

■

This is the same bound as in the unconstrained case, thus the number
of necessary iterations is of the order O(1/ϵ). This does not take into
account the time it takes to compute the projection onto X . However, for
many problems, this can be computed efficiently.

optimization for data science 25

5 Coordinate descent

A problem with gradient descent in large-scale learning is that we need
to compute the full gradient in every iteration. This can be problematic
for functions f : Rd → R with large d. The idea of coordinate descent is
to update only one coordinate of the iterate at a time. For this, we only
need to compute one coordinate of ∇f (xt) at a time, which we assume
to be a factor of d faster to compute.

However, we also expect to pay a price for this in terms of the number
of iterations required. It turns out that, in the worst case, the number of
iterations will increase by a factor of d, so we only stand to gain. Under
additional assumptions about f , coordinate descent can lead to provable
speedups.

Definition 5.1 (Polyak-Łojasiewicz (PL) inequality). Let f : Rd → R

be a differentiable function with a global minimum x⋆. We say that
f satisfies the PL inequality if the following holds for some µ > 0,

1
2
∥∇f (x)∥2 ≥ µ(f (x)− f (x⋆)), ∀x ∈ Rd.

Corollary. Let f : Rd → R satisfy the PL-inequality for any µ > 0,
then every critical point (∇f (x) = 0) is a global minimum of f .

There are non-convex functions that satisfy the PL inequality, as long
as the above corollary is satisfied.

Lemma 5.2. Let f : Rd → R be differentiable and strongly convex
with parameter µ > 0. Then f satisfies the PL inequality for the
same µ.

Proof. We start from the definition of strong convexity,

f (x⋆) ≥ f (x) +∇f (x)⊤(x⋆ − x) +
µ

2
∥x⋆ − x∥2

≥ f (x) + min
y

(
∇f (x)⊤(y − x) +

µ

2
∥y − x∥2

)
= f (x)− 1

2µ
∥∇f (x)∥2,

where the last equality is found by first-order optimality of gx(y)
.
=

∇f (x)⊤(y− x)+ µ
2 ∥y− x∥2, which is convex and hence any critical point

is a global minimizer. ■

To analyze coordinate descent, we need the notion of coordinate-wise
smoothness.

optimization for data science 26

Definition 5.3 (Coordinate-wise smoothness). Let f : Rd → R be
differentiable, and L = [L1, . . . , Ld] ∈ Rd

+. Function f is called
coordinate-wise smooth (with parameter L) if for every coordinate
i = 1, . . . , d, the following holds,

f (x + λei) ≤ f (x) + λ∇i f (x) +
Li
2

λ2, ∀x ∈ Rd, λ ∈ R.

Compare this to the definition of smoothness (Definition 3.2). In our
new coordinate-wise definition, we define y as x + λei, since we only
want to change coordinate i. Hence, y − x becomes λei. From there, it is
easy to that ∇f (x)⊤(y − x) becomes λ∇i f (x), and ∥x − y∥ becomes λ.
Thus, smoothness with parameter L implies coordinate-wise smoothness
with parameter L = [L, . . . , L].

Example 5.4. f (x1, x2) = x2
1 + 10x2

2 is smooth with parameter L =

20, but f is coordinate-wise smooth with parameter L = [2, 20].
Such differences will become important later when showing faster
convergence of coordinate descent.

In general, coordinate (gradient) descent algorithms perform the fol-
lowing actions,

choose i ∈ [d]

xt+1 = xt − γi∇i f (xt)ei.

Lemma 5.5 (Coordinate-wise sufficient decrease). Let f : Rd → R

be differentiable and coordinate-wise smooth with parameter L =

[L1, . . . , Ld]. With active coordinate i in iteration t and stepsize

γi
.
=

1
Li

,

coordinate descent satisfies

f (xt+1) ≤ f (xt)−
1

2Li
|∇i f (xt)|2.

Proof. Let λ = −∇i f (xt)/Li, then xt+1 = xt + λei. Then, we can apply
coordinate-wise smoothness,

f (xt+1) ≤ f (xt) + λ∇i f (xt) +
Li
2

λ2 Coordinate-wise smoothness.

= f (xt)−
1
Li
|∇i f (xt)|2 +

1
2Li

|∇i f (xt)|2

= f (xt)−
1

2Li
|∇i f (xt)|2.

■

optimization for data science 27

5.1 Randomized coordinate descent

In randomized gradient descent, the active coordinate is chosen uniformly
at random,

i ∼ Unif([d])

xt+1 = xt − γi∇i f (xt)ei.

Randomized coordinate descent is at least as fast as gradient descent
on smooth functions if we assume that it is d times cheaper to update
one coordinate than the full iterate [Nesterov, 2012]. If we additionally
assume the PL inequality, we can obtain geometric convergence as in the
strongly convex case of gradient descent.

Theorem 5.6 (Uniform sampling convergence). Let f : Rd → R be
differentiable with global minimum x⋆. Suppose that f is coordinate-
wise smooth with parameter L and satisfies the PL inequality with
parameter µ > 0. Choosing stepsize

γi
.
=

1
L

,

randomized gradient descent with arbitrary x0 yields

E[f (xT)− f (x⋆)] ≤
(

1 − µ

dL

)T
(f (x0)− f (x⋆)).

Proof. Coordinate-wise sufficient decrease yields

f (xt+1) ≤ f (xt)−
1

2L
|∇i f (xt)|2.

By taking the expectation of both sides with respect to i and conditioned
on xt, we obtain

Ei[f (xt+1) | xt] ≤ Ei

[
f (xt)−

1
2L

|∇i f (xt)|2
∣∣∣∣ xt

]
= f (xt)−

1
2L

d

∑
i=1

1
d
|∇i f (xt)|2

= f (xt)−
1

2dL
∥∇f (xt)∥2

≤ f (xt)−
µ

dL
(f (xt)− f (x⋆)). PL inequality.

Subtracting f (x⋆) from both sides and taking the expectation over xt, we
obtain

E[f (xt+1)− f (x⋆)] ≤
(

1 − µ

dL

)
E[f (xt)− f (x⋆)].

The statement follows. ■

optimization for data science 28

5.2 Importance sampling

As seen, uniformly random selection of the active coordinate does not
yield a better bound than gradient descent. However, we have not made
use of the fact that the coordinate-wise smoothness parameters can dif-
fer. Intuitively, we would want to sample coordinates with high smooth-
ness more frequently than coordinates with low smoothness, since they
change more rapidly, leading to faster convergence to the optimum. This
leads us to importance sampling [Nesterov, 2012],

i ∼ Categorical

(
L1

∑d
j=1 Lj

, . . . ,
Ld

∑d
j=1 Lj

)

xt+1 = xt −
1
Li
∇i f (xt)ei.

Theorem 5.7 (Importance sampling convergence). Let f : Rd → R

be differentiable with a global minimum x⋆. Suppose that f is
coordinate-wise smooth with parameter L = [L1, . . . , Ld] and sat-
isfies the PL inequality with parameter µ > 0. Let

L̄ =
1
d

d

∑
i=1

Li

be the average of coordinate-wise smoothness constants. Then, coor-
dinate descent with importance sampling and arbitrary x0 yields

E[f (xT − f (x⋆)] ≤
(

1 − µ

dL̄

)T
(f (x0)− f (x⋆)).

Proof. The proof is nearly identical to the proof of randomized coordi-
nate descent. The difference lies in the expectation over i. Importance
sampling yields

Ei

[
f (xt)−

1
2Li

|∇i f (xt)|2
∣∣∣∣ xt

]
= f (xt)−

d

∑
i=1

Li

∑d
j=1 Lj

1
2Li

|∇i f (xt)|2

= f (xt)−
1

2dL̄

d

∑
i=1

|∇i f (xt)|2. dL̄ = ∑d
i=1 Li .

The rest follows identically. ■

Note that L̄ can be much smaller than L = maxd
i=1 Li, so coordinate

descent with important sampling is potentially faster than randomized
gradient descent. In the worst-case, both algorithms are the same.

5.3 Steepest coordinate descent

In contrast to random coordinate descent, steepest coordinate descent chooses
the active coordinate according to the coordinate with the largest gradi-

optimization for data science 29

ent (Gauss-Southwell rule),

i ∈ argmax
j∈[d]

|∇j f (xt)|

xt+1 = xt − γi∇i f (xt)ei.

The main difference from the previous algorithms is that this algorithm
is deterministic, thus we do not need to take the expectation.

Theorem 5.8 (Steepest coordinate descent convergence). Let f : Rd →
R be differentiable with a global minimum x⋆. Suppose that f is
coordinate-wise smooth with parameter L and satisfies the PL in-
equality with parameter µ > 0. Choosing stepsize

γi
.
=

1
L

,

steepest coordinate descent with arbitrary x0 yields

f (xT)− f (x⋆) ≤
(

1 − µ

dL

)T
(f (x0)− f (x⋆)).

This is not good. It needs the same amount of iterations as random-
ized coordinate descent, but each iteration takes as long as in gradient
descent.3 However, this algorithm allows for a speedup in certain cases. 3 Note that a function may be coordinate-wise

smooth with an L for all coordinates that is smaller
than smoothness, so it is not completely fair to com-
pare this to gradient descent.

Furthermore, it may be possible to efficiently maintain the maximum ab-
solute gradient value throughout the iterations, so that the full evaluation
of the gradient can be avoided.

Nutini et al. [2015] showed that a better convergence result can be ob-
tained for strongly convex functions, when strong convexity is measured
w.r.t. the ℓ1-norm instead of the ℓ2-norm. I.e.,

f (y) ≥ f (x) +∇f (x)⊤(y − x) +
µ1

2
∥y − x∥2

1.

Due to ∥y − x∥1 ≥ ∥y − x∥2, f is then also strongly convex with µ = µ1.
On the other hand, if f is µ-strongly convex w.r.t. the ℓ2-norm, then f is
µ/d-strongly convex w.r.t. the ℓ1-norm, due to ∥y − x∥2 ≥ ∥y−x∥1/

√
d.

Lemma 5.9. Let f : Rd → R be differentiable and strongly convex
with parameter µ1 > 0 w.r.t. the ℓ1-norm. Then, f is µ1-strongly
convex w.r.t. the Euclidean norm, so a global minimum x⋆ exists.
Furthermore, f satisfies the PL inequality w.r.t. the ℓ∞-norm with
the same µ1,

1
2
∥∇f (x)∥2

∞ ≥ µ1(f (x)− f (x⋆)).

optimization for data science 30

Theorem 5.10. Let f : Rd → R be differentiable with a global mini-
mum x⋆. Suppose that f is coordinate-wise smooth with parameter L
and satisfies the PL inequality w.r.t. ℓ∞-norm with parameter µ1 > 0.
Choosing stepsize

γi
.
=

1
L

,

steepest coordinate descent with arbitrary x0 yields

f (xT)− f (x⋆) ≤
(

1 − µ1

L

)T
(f (x0)− f (x⋆)).

Proof.

f (xt+1) ≤ f (xt)−
1

2L
|∇i f (xt)|2 Sufficient decrease.

= f (xt)−
1

2L
∥∇f (xt)∥2

∞ Active coordinate of steepest coordinate descent is
the maximum gradient.

≤ f (xt)−
µ1

L
(f (xt)− f (x⋆)). PL inequality.

Subtracting f (x⋆) from both sides yields

f (xt+1)− f (x⋆) ≤
(

1 − µ1

L

)
(f (xt)− f (x⋆)).

The statement follows. ■

We see that if µ1 = µ/d, we do not gain anything. However, this is
not the case in general. If, for the worst case x, y, which satisfy ∥y −
x∥ = ∥y−x∥1/

√
d, strong convexity holds with µ′ > µ, then we can achieve

µ1 = µ′/d > µ/d, resulting in better convergence.

5.4 Greedy coordinate descent

3.5

3.5

3

3

2.5

2.
5

2

2

2

2

1.5

1.5

1.5
1.5

1.
5

1.5

1

1

1

1

1

0.50.5

0.5

0.
5

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 5.1. Level set plot of f (x) = ∥x∥2 + |x1 − x2|.
The global minimum is [0, 0], but greedy coordinate
descent cannot escape any point [x, x], s.t. |x| ≤ 1/2.

Greedy coordinate descent is a variant that does not even require f to be
differentiable. In each iteration, we make the step that maximizes the
progress in the chosen coordinate. This requires performing a line search
by solving a one-dimensional optimization problem,

choose i ∈ [d]

xt+1 ∈ argmin
λ∈R

f (xt + λei).

However, greedy coordinate descent can get stuck in non-optimal
points—see Figure 5.1. Thus, we need some additional conditions to
make sure this does not occur.

optimization for data science 31

Theorem 5.11. Let f : Rd → R be of the form

f (x) .
= g(x) + h(x), h(x) =

d

∑
i=1

hi(xi), x ∈ Rd,

with g convex and differentiable, and the hi convex.

Let x be a point such that greedy coordinate descent cannot make
progress in any coordinate. Then x is a global minimum of f .

In the context of machine learning, an important class of functions
that satisfies the conditions of Theorem 5.11 is the following form,

f (x) + λ∥x∥1,

where λ∥x∥1 is a separable ℓ1-regularization term used in for example
LASSO [Tibshirani, 1996].

optimization for data science 32

6 Nonconvex functions

x⋆ y⋆ x0

Figure 6.1. Gradient descent may get stuck in a
local minimum y⋆ ̸= x⋆, in nonconvex functions.

y⋆ x⋆x0

∇ f (y⋆) = 0

Figure 6.2. Gradient may get stuck in a flat region
(saddle point) in nonconvex functions.

x⋆ x0

limt→∞ ∥∇ f (xt)∥ → 0

Figure 6.3. Gradient descent may never even reach
a critical point in nonconvex functions.

So far, all convergence results that we have proved have been for variants
of gradient descent on convex functions. The reason for this is that, in
general, we cannot expect gradient descent to come close to the global
minimum x⋆ of nonconvex functions. Figures 6.1 to 6.3 show what can
go wrong in nonconvex functions, under the assumption that we have set
γ such that we do not overshoot. These figures show points that gradient
descent cannot escape—local minima and saddle points. Furthermore, it
might even be that gradient descent never converges to a critical point—
see Figure 6.3.

In practice, gradient descent works well on the nonconvex functions
that we care about. But, theoretical explanations for this are mostly miss-
ing. Despite this, we will show that under favorable conditions, we can
still say something useful about the behavior of gradient descent on non-
convex functions.

We can easily make an analysis of gradient descent on smooth func-
tions. A useful property that we will use is that functions with bounded
Hessians are smooth, as shown in the following lemma.

Lemma 6.1. Let f : dom(f) → R be twice differentiable with X ⊆
dom(f) a convex set and ∥∇2 f (x)∥2 ≤ L for all x ∈ X . Then, f is
smooth with parameter L over X .

Proof. Bounded Hessians imply Lipschitz continuity of the gradient,

∥∇f (x)−∇f (y)∥ ≤ L∥x − y∥, ∀x, y ∈ X .

We will use the fundamental theorem of calculus with

h(t) .
= f (x + t(y − x)), t ∈ [0, 1].

The derivative can be calculated by chain rule,

h′(t) = ∇f (x + t(y − x))⊤(y − x).

optimization for data science 33

Now, we can show smoothness,

f (y)− f (x)−∇f (x)⊤(y − x)

= h(1)− h(0)−∇f (x)⊤(y − x) Definition of h.

=
∫ 1

0
h′(t)dt −∇f (x)⊤(y − x) Fundamental theorem of calculus.

=
∫ 1

0
∇f (x + t(y − x))⊤(y − x)dt −∇f (x)⊤(y − x) Fill in h′(t).

=
∫ 1

0
(∇f (x + t(y − x))−∇f (x))⊤(y − x)dt

≤
∫ 1

0
∥∇f (x + t(y − x))−∇f (x)∥∥y − x∥dt Cauchy-Schwarz inequality.

≤
∫ 1

0
L∥t(y − x)∥∥y − x∥dt Lipschitz continuous gradient.

=
∫ 1

0
Lt∥x − y∥2dt

=
L
2
∥x − y∥2.

Thus, we have smoothness,

f (y) ≤ f (x) +∇f (x)⊤(y − x) +
L
2
∥x − y∥2.

■

Now, we can use this fact and sufficient decrease—which did not
require convexity—to prove that the gradients of smooth functions are
bounded and approach 0, as we increase the number of iterations.

Theorem 6.2. Let f : Rd → R be differentiable with a global mini-
mum x⋆. Furthermore, suppose that f is smooth with parameter L.
Choosing stepsize

γ
.
=

1
L

,

gradient descent yields

1
T

T−1

∑
t=0

∥∇f (xt)∥2 ≤ 2L
T
(f (x0)− f (x⋆)).

Remark. Note that concave functions are not a counter example to this
theorem, despite their gradients growing, because they have no global
minimum x⋆.

Proof. Recall that sufficient decrease does not require convexity,

f (xt+1) ≤ f (xt)−
1

2L
∥∇f (xt)∥2.

Rewriting this, we get

∥∇f (xt)∥2 ≤ 2L(f (xt)− f (xt+1)).

optimization for data science 34

Then, by telescoping sum, we get

T−1

∑
t=0

∥∇f (xt)∥2 ≤ 2L(f (x0)− f (xT)) ≤ 2L(f (x0)− f (x⋆)).

The statement follows by dividing both sides by T. ■

This has the result that

lim
t→∞

∥∇f (xt)∥2 = 0.

It might seem that convergence of the gradients to 0 is the same as
convergence to a critical point. But, this interpretation does not hold in
general—see Figure 6.3. In this case, the gradient converges to 0, but the
iterates only move further away from the critical point. So, this is not a
very strong result.

6.1 Trajectory analysis

Despite the fact that a nonconvex function may contain local minima,
saddle points, and flat parts, gradient descent may avoid them and still
converge to a global minimum. For this, you need a good starting point
and do a trajectory analysis. As an example, we will do a trajectory
analysis for a simplified deep linear neural network.4 It turns out that 4 Note that stacking linear layers has no benefit,

since any stacking of linear layers can be repre-
sented by a single linear layer. However, the reason
for doing this is that it gives us a simple playground
in which we can try to understand why training
deep neural networks with gradient descent works,
despite the fact that the objective function is non-
convex.

this function is smooth along the trajectories that we analyze, and this is
the most important ingredient of the analysis.

Let θ = {W1, . . . , Wℓ} be the weights of the deep linear network. In
general, we want to approximate a matrix Y , given input matrix X. Thus,
we want to minimize

∥WℓWℓ−1 · · ·W1X − Y∥2
F.

Arora et al. [2018] consider this general framework, but we will only
consider the case where all matrices are 1 × 1, i.e., scalars. Assume we
have training input x = 1 and output y = 1, then we have the following
function to optimize,

f (x) .
=

1
2

(
d

∏
k=1

xk − 1

)2

. We rewrite w as x and ℓ as d to be more in line
with the notation used in the rest of these notes.

We can immediately see that setting xk = 1 for all k minimizes the
function at 0. However, we want to know whether gradient descent will
also be able to find this set of weights.

The gradient of this function is computed by

∂ f (x)
∂xi

=

(
d

∏
k=1

xk − 1

)
d

∏
k ̸=i

xk

optimization for data science 35

Whenever at least two dimensions are zero, the gradient vanishes. Thus,
any x with two zero entries are critical points, despite not being global
minima, since then the product of all entries must be 1, which is not
possible if at least two are zero.5 We know that the value of all such 5 This shows that f is nonconvex, since local min-

ima are global minima in convex functions.saddle points is 1/2.

−2 −1 0 1 2
−2

−1

0

1

2

w1

w
2

0 0.2 0.4

Figure 6.4. f (x) = 1
2

(
∏d

k=1 xk − 1
)2

for d = 2,
where the loss is clipped to be at most 1/2.

We now want to show that for any number of layers—dimensionality

of x)—starting from anywhere in X =
{

x
∣∣∣ x > 0, ∏d

k=1 xk ≤ 1
}

con-
verges to x⋆ = 1, despite that f is not smooth over X . For this, we only
need to show that f is smooth along the trajectory of gradient descent for
suitable L, so that we get sufficient decrease. We will now show this by
showing that the Hessians over the trajectory are bounded. The second-
order derivative is given by

∂2 f (x)
∂xi ∂xj

=

(

∏d
k ̸=i xk

)2
, j = i

2 ∏d
k ̸=i xk ∏d

k ̸=j xk − ∏d
k ̸=i,j xk, j ̸= i.

Definition 6.3 (c-balanced.). Let x > 0 and c ≥ 1. x is called c-
balanced if xi ≤ cxj for all 1 ≤ i, j ≤ d.

Lemma 6.4. Let x > 0 be c-balanced with ∏d
k=1 xk ≤ 1, then for any

stepsize γ > 0, x′ .
= x − γ∇f (x) satisfies x′ ≥ x componentwise,

and is also c-balanced.

Proof. Let

∆ .
= −γ

(
d

∏
k=1

xk − 1

)(
d

∏
k=1

xk

)
≥ 0. Positive because ∏d

k=1 xk ≤ 1.

Then,

−γ
∂ f (x)

∂xk
=

∆
xk

.

Thus, the gradient descent update has the following form,

x′k = xk +
∆
xk

≥ xk, k ∈ [d].

Hence, x ≥ x is satisfied component=wise. Furthermore, for all i, j, we
get

x′i = xi +
∆
xi

≤ cxj +
c∆
xj

= cx′j. xj ≤ cxi ⇐⇒ 1
xi

≤ c
xj

.

Hence, x′ is c-balanced. ■

So, we know now that all iterates are c-balanced if x0 is c-balanced.
We can use this to compute a bound on the Hessian by bounding the
products.

optimization for data science 36

Lemma 6.5. Suppose x > 0 is c-balanced and ∏d
k=1 x0,k ≤ 1. Then,

for any I ⊆ [d], we have

∏
k ̸∈I

xk ≤ c|I|
(

d

∏
k=1

xk

)1−|I|/d

≤ c|I|.

Proof. By c-balancedness, we have

cd · xd
i ≥

d

∏
k=1

xk, ∀i ∈ [d]

⇐⇒ xd
i ≥ 1

cd

d

∏
k=1

xk

⇐⇒ xi ≥
1
c

(
d

∏
k=1

)1/d

⇐⇒ 1
xi

≤ c ·
(

d

∏
k=1

xk

)−1/d

.

Hence,

∏
k ̸∈I

xk =
∏d

k=1 xk

∏i∈I xi
≤ c|I|

(
d

∏
k=1

xk

)−|I|/d(d

∏
k=1

xk

)
= c|I|

(
d

∏
k=1

xk

)1−|I|/d

.

Since ∏d
k=1 xk ≤ 1, we can bound the above by c|I|. ■

Lemma 6.6. Let x > 0 be c-balanced with ∏d
k=1 xk ≤ 1, then∥∥∥∇2 f (x)

∥∥∥
2
≤
∥∥∥∇2 f (x)

∥∥∥
F
≤ 3dc2.

Proof. The fact that ∥A∥2 ≤ ∥A∥F is well known. To bound the Frobenius
norm, we use the previous lemma to compute∣∣∣∣∣∂2 f (x)

∂x2
i

∣∣∣∣∣ =
∣∣∣∣∣∣
(

d

∏
k ̸=i

xi

)2
∣∣∣∣∣∣ ≤ c2,

and for i ̸= j, we get∣∣∣∣∣∂2 f (x)
∂xi ∂xj

∣∣∣∣∣ ≤
∣∣∣∣∣2 d

∏
k ̸=i

xk

d

∏
k ̸=j

xk

∣∣∣∣∣+
∣∣∣∣∣ d

∏
k ̸=i,j

xk

∣∣∣∣∣ ≤ 3c2.

Thus,

∥∇2 f (x)∥2
F ≤=

d

∑
i=1

d

∑
j=1

∣∣∣∣∣∂2 f (x)
∂xi ∂xj

∣∣∣∣∣
2

= 9d2c4.

Taking the square root, the statement follows. ■

optimization for data science 37

This lemma implies smoothness of f with parameter L = 3dc2 along
the whole trajectory of gradient descent, under the “smooth stepsize”
γ

.
= 1/L = 1/3dc2. Now, we can use this to prove convergence.

Theorem 6.7. Let c ≥ 1 and δ < 0 such that x0 > 0 is c-balanced
with δ ≤ ∏d

k=1(x0)k < 1. Choosing stepsize

γ
.
=

1
3dc2 ,

gradient descent satisfies

f (xT) ≤
(

1 − δ2

3c4

)T

f (x0).

Proof. For each t ≥ 0, f is smooth over conv({xt, xt+1}) with parameter
L = 3dc2, hence we have sufficient decrease,

f (xt+1) ≤ f (xt)−
1

6dc2 ∥∇f (xt)∥2.

For every c-balanced x with δ ≤ ∏d
k=1 xk ≤ 1, we have

∥∇f (xt)∥2 = 2 f (x)
d

∑
i=1

(
d

∏
k ̸=i

xk

)2

≥ 2 f (x)
d
c2

(
d

∏
k=1

xk

)2−2/d

≥ 2 f (x)
d
c2

(
d

∏
k=1

xk

)2

≥ 2 f (x)
d
c2 δ2.

Hence,

f (xt+1) ≤ f (xt)−
1

6dc2 2 f (xt)
d
c2 δ2 =

(
1 − δ2

3c4

)
f (xt).

■

Thus, we seem to have fast convergence, since the function value goes
down by a constant factor in each step. However, there is a catch. Con-
sider the x0 = [1/2, . . . , 1/2], which is c-balanced with c = 1, and δ = 1/2d.
Hence, the constant factor is

1 − 1
3 · 4d .

This means that we would need T ≈ 4d iterations to reduce the initial
error by a constant factor not depending on d. Hence, for this starting
value, the gradient is exponentially small. In order to get polynomial
convergence, we need to start with a δ that decays at most polynomially

optimization for data science 38

with d. For large d, this has the consequence that we must start very close
to optimality. In particular, we need to start at a distance O(1/

√
d) from

the optimal solution [1, . . . , 1].

optimization for data science 39

7 The Frank-Wolfe algorithm

X

∇ f (xt)⊤z
xt

st

g(xt)

Figure 7.1. Illustration of a Frank-Wolfe step. As
can be seen, st is the minimizer of ∇ f (xt)⊤z and is
on the edge of X . Furthermore, it shows the duality
gap g(xt).

Projected gradient descent is the only algorithm we have seen that dealt
with constrained optimization problems. However, that algorithm came
with the clear disadvantage that projections can be very expensive, even
when X is convex. The Frank-Wolfe algorithm solves constrained opti-
mization problems without projection steps. Instead, it makes use of a
linear minimization oracle (LMO). For the feasible region X ⊂ Rd and an
arbitrary vector g ∈ Rd,

LMOX (g) .
= argmin

z∈X
g⊤z.

Notice that this is the minimization of a linear function.

The Frank-Wolfe algorithm iteratively updates by calling the oracle in
the direction of the gradient,

st = LMOX (∇f (xt))

xt+1 = (1 − γt)xt + γtst.

The algorithm reduces non-linear constrained optimization to linear
optimization over the same set X . It is able to solve general non-linear
constrained optimization problems by only solving a simpler linear con-
strained optimization over the same set X in each iteration, by calling
the oracle. We solve this linear optimization problem in the direction of
the gradient—the best linear approximation of f at xt.

A nice property of the oracle is that if X = conv(A), then LMOX (x) ∈
A. So, if we have a set X that is the convex hull of a small number
of points—such as the ℓ1-ball, which has 2d vertices—we have an easy
optimization problem with runtime O(|A|).

The advantages of this method are

• Iterates are always feasible if X is convex;

• No projections, which are often harder to compute than linear opti-
mization problems;

• Iterates always have a simple sparse representations: xT is a convex
combination of {x0, s0, . . . , sT−1}

7.1 Linear minimization oracles

LASSO. The LASSO problem in its standard form is given by

minimize ∥Ax − b∥2

subject to ∥x∥1 ≤ 1.

The constraint set X = {x ∈ Rd | ∥x∥1 ≤ 1} is the unit ℓ1-ball. This is the
convex hull of the unit basis vectors—X = conv({±e1, . . . ,±ed}). The

optimization for data science 40

LMO for this set is easy to compute,

LMOX (g) = argmin
z∈X

z⊤g

= argmin
z∈{±e1,...,±ed}

z⊤g

= −sign(gi)ei, i ∈ argmax
i∈[d]

|gi|.

So, we only have to identify g’s largest coordinate, which is much more
efficient than projection onto the ℓ1-ball—and this has O(d log d) run-
time.

7.2 Duality gap

We define the duality gap of x ∈ X as

g(x) .
= ∇f (x)⊤(x − s), s = LMOX (∇f (x)).

This can be interpreted as the optimality gap ∇f (x)⊤x −∇f (x)⊤s of the
linear subproblem—see Figure 7.1.

Lemma 7.1. Let f : dom(f) → R be convex, differentiable, and have
minimizer x⋆. Let x ∈ dom(f), then

g(x) ≥ f (x)− f (x⋆),

meaning that the duality gap is an upper bound for the optimality
gap.

Proof.

g(x) = ∇f (x)⊤(x − s)

≥ ∇f (x)⊤(x − x⋆) s minimizes LMO: ∇ f (x)⊤s ≤ ∇ f (x)⊤x⋆.

≥ f (x)− f (x⋆). First-order characterization of convexity.

■

Thus, we always have a computable upper bound g(xt) on the un-
known error f (xt) − f (x⋆), which is not the case in general for uncon-
strained optimization. Furthermore, at an optimal point x⋆, g(x⋆) = 0,
which follows from the constrained optimality condition (Lemma 2.21),
−g(x⋆) = ∇f (x⋆)⊤(s − x⋆) ≥ 0, and g(x⋆) ≥ f (x⋆)− f (x⋆) = 0.

7.3 Convergence analysis

optimization for data science 41

Lemma 7.2 (Frank-Wolfe descent lemma). Let f : dom(f) → R be
differentiable and L-smooth. For a step xt+1 = (1 − γt)xt − γtst =

xt + γt(s − xt) with stepsize γt ∈ [0, 1], it holds that

f (xt+1) ≤ f (xt)− γtg(xt) + γ2
t

L
2
∥s − xt∥2,

where s = LMOX (∇f (xt)).

Proof.

f (xt+1) ≤ f (xt) +∇f (xt)
⊤(xt+1 − xt) +

L
2
∥xt+1 − xt∥2 Smoothness.

= f (xt) + γt∇f (xt)
⊤(s − xt) + γ2

t
L
2
∥s − xt∥2 xt+1 = γts + (1 − γt)xt.

= f (xt)− γtg(xt) + γ2
t

L
2
∥s − xt∥2. Definition of duality gap.

■

Now, we can prove the main convergence theorem of the Frank-Wolfe
algorithm.

Theorem 7.3 (Frank-Wolfe convergence). Consider the constrained
minimization problem where f : dom(f) → R is convex and L-
smooth, and X ⊆ dom(f) is convex, closed and bounded. (This
means that the minimizer x⋆ of f over X exists and that all mini-
mization oracles have minimizers.) With any x0 ∈ X and stepsizes

γt
.
=

2
t + 2

,

the Frank-Wolfe algorithm yields

f (xT)− f (x⋆) ≤ 2L
T + 1

diam(X)2,

where diam(X)
.
= maxx,y∈X ∥x − y∥ is the diameter of X .

Proof. Let h(x) .
= f (x)− f (x⋆) and C .

= L
2 diam(X)2.

f (xt+1)− f (x⋆) ≤ f (xt)− γtg(xt) + γ2
t

L
2
∥s − xt∥2 − f (x⋆) Lemma 7.2 and subtract f (x⋆) from both sides.

h(xt+1) ≤ h(xt)− γth(xt) + γ2
t

L
2
∥s − xt∥2 Duality gap: g(x) ≥ h(x).

= (1 − γt)h(xt) + γ2
t

L
2
∥s − xt∥2

≤ (1 − γt)h(xt) + γ2
t C.

Using our new definitions, we want to prove

h(xT) ≤
4C

T + 1
, T ≥ 1.

optimization for data science 42

We can prove this by induction. The base case is T = 1,

h(x1) ≤ (1 − γ0)h(x0) + γ2
0C

= C γ0 = 1.

≤ 2C.

Suppose it holds for T = k,

h(xk) ≤
4C

k + 1
,

then we need to show that it also holds for T = k + 1,

h(xk+1) ≤ (1 − γk)h(xk) + γ2
kC

≤
(

1 − 2
k + 2

)
4C

k + 1
+

(
2

k + 2

)2
C Induction step and γk = 2/k+2.

=
k

k + 2
4C

k + 1
+

4C
(k + 2)2

=
4C

k + 2

(
k

k + 1
+

1
k + 2

)
≤ 4C

k + 2
.

Thus, it holds for all T ≥ 1. ■

Affine invariance. Consider the problem of minimizing f (x1, x2)
.
= x2

1 +

x2
2 over the unit square X = {[x1, x2] | x1, x2 ∈ [0, 1]}. This function is

smooth with L = 2 and diam(X)2 = 2. This has the following error
bound,

f (xT)− f (x⋆) ≤ 8
T + 1

.

Next consider f ′(x1, x2)
.
= x2

1 +(10x2)
2 over the rectangle X ′ = {[x1, x2] |

x1 ∈ [0, 1], x2 ∈ [0, 1/2]}. This function is smooth with L′ = 200 and
diam(X ′)2 = 1 + 1/100. Thus, f ′ has the error bound

f ′(xT)− f ′(x⋆) ≤ 404
T + 1

.

Hence, according to our analysis, it seems that the error of the Frank-
Wolfe algorithm on f ′ over X ′ is roughly 50 times larger than on f
over X . However, when we look more closely at the function, the two
problems (f ,X) and (f ′,X ′) are equivalent under a rescaling of x2.

Formally, two problems (f ,X) and (f ′,X ′) are affinely equivalent if
f ′(x) = f (Ax + b) and X ′ = {A−1(x − b) | x ∈ X} for some invertible
matrix A and some vector b. The consequence is that f (x) = f ′(x′) if
x′ = A−1(x − b).6 6 In our example problem, this means that we have

A =

[
1 0
0 10

]
, b = 0.By the chain rule, we get

∇f ′(x′) = A⊤∇f (Ax′ + b) = A⊤ f (x).

optimization for data science 43

Consider the iterate xk and its corresponding iterate x′k = A−1(xk − b),
in their respective problems. We can compute the their oracle calls by

LMOX (∇f (xk)) = argmin
z∈X

∇f (xk)
⊤z

.
= s

LMOX ′(∇f ′(x′k)) = argmin
z′∈X ′

∇f ′(x′k)
⊤z′

= argmin
A−1(z−b)∈X ′

∇f (xk)
⊤AA−1(z − b)

= argmin
A−1(z−b)∈X ′

∇f (xk)
⊤z −∇f (xk)

⊤b

= A−1

((
argmin

z∈X
∇f (xk)

⊤z

)
− b

)
= A−1(s − b).

Thus, the step directions s′ and s also correspond to each other under
the affine transformation. As a consequence, the next iterates will also
correspond to each other,

xk+1 = (1 − γ)xk + γs

x′k+1 = (1 − γ)x′k + γs′

= (1 − γ)A−1(xk − b) + γA−1(s − b)

= A−1((1 − γ)xk + γs)− b

= A−1xk+1 − b.

Thus, the Frank-Wolfe algorithm is invariant to affine transformations.
But, in our example, we saw a clear difference in convergence rate be-
tween problems that were affinely equivalent. Hence, we need a better
convergence result that reflects this fact.

In particular, after any number of steps, both problems will incur the
same optimization error. Thus, we need a better analysis that provides a
bound that is invariant under affine transformations. For this, we define
a curvature constant,

C(f ,X)
.
= sup

x,s∈X ,γ∈(0,1]
y=(1−γ)x+γs)

1
γ2

(
f (y)− f (x)−∇f (x)⊤(y − x)

)
.

This quantity serves as a notion of complexity of both the objective func-
tion f and the constraint set X . It is essentially the supremum of the
normalized pointwise vertical distance between the graph of f , f (y) and
its linear approximation at x, f (x) +∇f (x)⊤(y − x).

optimization for data science 44

Theorem 7.4. Consider the constrained minimization problem, where
f : dom(f) → R is convex, and X ⊆ dom(f) is convex, closed and
bounded. Let C(f ,X) be the curvature constant of f over X . With any
x0 ∈ X and with stepsizes

γt =
2

t + 2
,

the Frank-Wolfe algorithm yields

f (xT)− f (x⋆) ≤
4C(f ,X)

T + 1
.

Proof. We can regain the descent lemma by rewriting the curvature con-
stant. We know by the definition of the supremum,

1
γ2

(
f (y)− f (x)−∇f (x)⊤(y − x)

)
≤ C(f ,X). ∀x, s ∈ X , γ ∈ (0, 1], y = (1 − γ)x + γs.

Setting the variables,

x .
= xt, y .

= xt+1 = (1 − γt)xt + γts, y − x = −γt(x − s),

we get

f (xt+1) ≤ f (xt) +∇f (xt)
⊤(−γt(x − s)) + γ2

t C(f ,X)

= f (xt)− γg(xt) + γ2
t C(f ,X).

The rest of the proof follows as in the previous analysis. ■

You might suspect that this bound is worse than the best bound ob-
tainable from the previous analysis. However, one can show

C(f ,X) ≤
L
2

diam(X)2.

Furthermore, we can prove a convergence of the duality gap.

Theorem 7.5. Let f : Rd → R, X convex with C(f ,X) < ∞, x0 ∈ X ,
and T ≥ 2. Then, choosing stepsize

γt =
2

t + 2
,

the Frank-Wolfe algorithm yields a t with 1 ≤ t ≤ T, such that

g(xt) ≤
27/2 · C(f ,X)

T + 1
.

optimization for data science 45

8 Newton’s method
The Babylonian method to compute square roots is
an application of the Newton-Raphson method. It
finds zeros of f (x) = x2 − R, which is equal to
zero at

√
R and −

√
R. It takes O(log R) steps to

get within 1/2 of a square root. Then, to get within
ϵ, it takes log log(1/ϵ) steps. Thus, once we are close,
we get very close very quickly.

The Newton-Raphson method is an iterative method for finding a zero of
a differentiable univariate function f : R → R. Starting from some x0, it
iteratively computes

xt+1 = xt −
f (xt)

f ′(xt)
.

In formulas, xt+1 is the solution to the following linear equation,

f (xt) + f ′(xt)(x − xt) = 0,

which yields the above update formula. The Newton step fails if f ′(xt) =

0 or gets out of control if | f ′(xt)| is very small. Thus, we need to keep
this in mind when making a theoretical analysis.

xt xt+1

f (x
t) +

f ′(x
t)(x−

x
t)

f (x)

Figure 8.1. A step of the Newton-Raphson method.

We can use this method for optimization as well, called Newton’s
method, where we can find critical points f ′(x) = 0 by applying the
method to the derivative of f ,

xt+1 = xt −
f ′(xt)

f ′′(xt)
.

We can further generalize this update step to finding critical points
∇f (x) = 0 in any dimensionality,

xt+1 = xt −∇2 f (xt)
−1∇f (xt).

As before, we need to keep in mind that the Hessian must be invertible
and may get out of control if the Hessian has a small Spectral norm.

A second interpretation of Newton’s method is that it is a special case
of the general update scheme,

xt+1 = xt − H(xt)∇f (xt),

where H(xt) ∈ Rd×d is some matrix—like gradient descent with H(xt) =

γt I. Hence, we can think of Newton’s method as “adaptive” gradient
descent that adapts to the local curvature of the function at xt.7 7 This is very apparent in the case of optimizing a

quadratic function of the form f (x) = 1
2 x⊤Mx −

q⊤x + c, which has the same curvature ∇2 f (x) =
M everywhere. In this case, Newton’s method
yields the optimum in a single step, x1 = x⋆. Proof :

x1 = x0 −∇2 f (x0)
−1∇ f (x0)

= x0 − M−1(Mx0 − q)

= M−1q

= x⋆.

Furthermore, we can interpret Newton’s method as minimizing the
local second-order Taylor approximation around xt,

xt+1 ∈ argmin
x∈Rd

f (xt) +∇f (xt)
⊤(x − xt) +

1
2
(x − xt)

⊤∇2 f (xt)(x − xt).

We will not prove any general convergence guarantees for Newton’s
method. We will prove that, under suitable conditions, and starting close
to a critical point, we will reach distance at most ϵ to this critical point in
O(log log(1/ϵ)) steps. This also holds for non-convex functions. However,
this is quite weak, since we assume that we are already close to the critical
point. The proof will rely on the assumption that the local curvature in
the small space around the critical point is near constant.

optimization for data science 46

Theorem 8.1. Let f : dom(f) → R be twice differentiable with a
critical point x̃. Suppose there is a ball X ⊆ dom(f) with center x̃
such that the inverse Hessians are bounded. I.e., for some µ > 0, we
have ∥∥∥∇2 f (x)−1

∥∥∥
2
≤ 1

µ
, ∀x ∈ X .

Moreover, assume that the Hessian is Lipschitz continuous. I.e., there
exists B > 0, such that∥∥∥∇2 f (x)−∇2 f (y)

∥∥∥
2
≤ B∥x − y∥, ∀x, y ∈ X .

Then, for xt ∈ X and xt+1, resulting from the Newton step, we have

∥xt+1 − x̃∥ ≤ B
2µ

∥xt − x̃∥2.

Proof. Let H(x) = ∇2 f (x), x = xt, x′ = xt+1. Then, subtracting x̃ from
both sides of the Newton step yields

x′ − x̃ = x − x̃ − H(x)−1∇f (x)

= x − x̃ + H(x)−1(∇f (x̃)−∇f (x)). ∇ f (x̃) = 0.

Let h(t) .
= ∇f (x + t(x̃ − x)). Then, using the fundamental theorem of

calculus, we get

= x − x̃ + H(x)−1
∫ 1

0
H(x + t(x̃ − x))(x̃ − x)dt h′(t) = H(x + t(x̃ − x))(x̃ − x).

= H(x)−1H(x)(x − x̃) + H(x)−1
∫ 1

0
H(x + t(x̃ − x))(x̃ − x)dt

= H(x)−1
∫ 1

0
(H(x + t(x̃ − x))− H(x))(x̃ − x)dt

Taking norm of both sides yields

∥x′ − x∥ =

∥∥∥∥H(x)−1
∫ 1

0
(H(x + t(x̃ − x))− H(x))(x̃ − x)dt

∥∥∥∥
≤
∥∥∥H(x)−1

∥∥∥
2
·
∥∥∥∥∫ 1

0
(H(x + t(x̃ − x))− H(x))(x̃ − x)dt

∥∥∥∥
≤ 1

µ
·
∫ 1

0
∥(H(x + t(x̃ − x))− H(x))(x̃ − x)∥dt Bounded inverse Hessians.

≤ 1
µ
·
∫ 1

0
∥H(x + t(x̃ − x))− H(x)∥2 · ∥x̃ − x∥dt

≤ 1
µ
∥x̃ − x∥

∫ 1

0
B∥t(x̃ − x)∥dt Hessian is B-Lipschitz continuous.

≤ B
µ
∥x̃ − x∥2

∫ 1

0
tdt

≤ B
2µ

∥x̃ − x∥2.

This concludes the proof. ■

optimization for data science 47

An easy way to ensure bounded inverse Hessians is by requiring
strong convexity over X .

Lemma 8.2. Let f : dom(f) → R be twice differentiable and strongly
convex with µ over an open convex subset X ⊆ dom(f). Then,
∇2 f (x) is invertible and

∥∇2 f (x)−1∥2 ≤ 1
µ

, ∀x ∈ X .

Corollary. With the assumptions of Theorem 8.1, if x0 ∈ X satisfies

∥x0 − x̃∥ ≤ µ

B
,

then Newton’s method yields

∥xT − x̃∥ ≤ µ

B

(
1
2

)2T−1
.

Hence, we get the O(log log(1/ϵ)) bound, but only if we are µ/B-close
to x̃. Thus, we only converge fast to x̃ if we are already close to it. For
this to hold, it is of course necessary that x̃ is the only close critical point
to x0. However, this necessarily follows from the assumptions, since the
Hessians are almost constant this close to x̃ under the Lipschitz continuity
and inverse Hessian bound. Thus, locally, the function behaves like a
quadratic function, which converges to its unique critical point in one
step.

optimization for data science 48

9 Quasi-Newton methods

The problem with Newton’s method is that it has a high computational
complexity, due to the Hessian and inverse of it, which both have O

(
d3)

runtime complexity. Quasi-Newton methods are optimization methods that
approximate the Hessian by a matrix Ht ≈ ∇2 f (xt), which is a function
of xt, xt−1, and Ht−1. We then iteratively update by

xt+1
.
= xt − H−1

t ∇f (xt),

where Ht ∈ Rd×d must be symmetric and satisfy the secant condition,

∇f (xt)−∇f (xt−1) = Ht(xt − xt−1).

In general, there are many matrices that satisfy these conditions. Thus,
we must choose which H−1

t to pick, based on xt−1, xt, and H−1
t .8 8 We directly work with H−1

t , instead of Ht, since
computing the inverse would again result in a
O
(
d3) runtime complexity.Recall from Newton’s method that we wanted ∇2 f (xt) to fluctuate

very little in regions of fast convergence. Hence, in Quasi-Newton meth-
ods, it makes sense to ensure H−1

t−1 ≈ H−1
t . This intuition yields the

approach by Greenstadt [1970], where we update H−1
t−1 by an error ma-

trix Et,
H−1

t = H−1
t−1 + Et,

and we want this error to be as small as possible, i.e., minimize ∥E∥2
F,

subject to its constraints. Greenstadt [1970] found this method “too spe-
cialized”, which lead him to minimize the following error term instead,

∥AEA⊤∥2
F,

where A ∈ Rd×d is a fixed invertible transformation matrix.

Let’s now use the following notation to develop further algorithms,

H .
= H−1

t−1

H ′ .
= H−1

t

E .
= Et

σ
.
= xt − xt−1

y .
= ∇f (xt)−∇f (xt−1)

r .
= σ − Hy.

We then have the following convex constrained minimization problem in
d2 variables,

minimize
1
2
∥AEA⊤∥2

F

subject to Ey = r

E⊤ − E = 0,

where the first condition is the secant condition,

H ′y = σ ⇔ (H + E)y = σ ⇔ Ey = σ − Hy ⇔ Ey = r,

optimization for data science 49

and the second condition ensures symmetry, since if H−1
t−1 and Et are

symmetric, then H−1
t is as well.

Let
f (E) =

1
2
∥AEA⊤∥2

F.

Because the conditions are all linear, we can summarize them in one
equation as CE = B for some matrices C and B. Furthermore, due to
this convex program only having equality constraints, the Slater point
condition for strong duality becomes void. Thus, we obtain strong duality
“for free”. Thus, the Karush-Kuhn-Tucker conditions hold, which imply
there exists a vector λ ∈ Rm such that

∇f (E⋆)⊤ = λ⊤C. Directly follows from the vanishing gradient
condition in KTT.

Let W = A⊤A and M = W−1, then the gradient of f can be computed
by

∇f (E) = A⊤AEA⊤A = WEW = M−1EM−1.

Now, since the objective is quadratic, we can obtain the minimizer E⋆

by solving the following system of linear equations,

CE = B

E = M⊤λ⊤CM⊤.

Solving this system yields

E⋆ =
1

y⊤My

(
σy⊤M + Myσ⊤ − Hyy⊤M − Myy⊤H

− 1
y⊤My

(
y⊤σ − y⊤Hy

)
Myy⊤M

)
.

This is called the Greenstadt method with parameter M.

Now, we need to decide which M to use. Greenstadt [1970] suggested
M = I and M = H .

= H−1
t−1. Goldfarb [1970] suggested M = H ′ .

= H−1
t .

Because of the secant condition, we get the following,

My = H ′y = σ.

Hence, despite not knowing this value yet, we can still use it, since it will
cancel out all terms, containing M = H ′. This is called the BFGS method,
and the optimal error matrix becomes

E⋆ =
1

y⊤σ

(
−Hyσ⊤ − σy⊤H +

(
1 +

y⊤Hy
y⊤σ

)
σσ⊤

)
.

With this error matrix, we get the following update,

H ′ =

(
I − σy⊤

y⊤σ

)
H

(
I − yσ⊤

y⊤σ

)
+

σσ⊤

y⊤σ
.

optimization for data science 50

The cost per step of this algorithm is O
(
d2), which is a big upgrade over

O
(
d3) that we had for Newton’s method. However, we can make it even

faster by making another approximation, which will yield the L-BFGS
algorithm.

Recall the Quasi-Newton update step,

xt+1
.
= xt − H−1

t ∇f (xt).

Observe that we do not necessarily need the d × d matrix H−1
t —we only

need the d-dimensional vector H−1
t ∇f (xt). Let g′ ∈ Rd. Suppose that we

have an oracle to compute s = Hg for any vector g, then we can compute
s′ = H ′g′ with one oracle call and O(d) additional operations, assuming
that y and σ are known.

We can implement the oracle recursively,

σk
.
= xk − xk−1

yk
.
= ∇f (xk)−∇f (xk+1).

This allows us to compute the BFGS-step H−1
t ∇f (xt) recursively. How-

ever, this would result in O(td) runtime complexity per step, since we
would have to go down all steps, and generally t > d. Thus, we have a
worse algorithm if we want to compute the next vector exactly. But, if
we only go down m steps of recursion for some small m, we get O(md)
complexity, which is linear if m is constant—see Algorithm 1. Intuitively,
this should give a good approximation, since the earlier steps should not
be so relevant anymore, since we are likely in a different landscape at
the current timestep.

function LBFGSStep(k, ℓ, g′)
if ℓ = 0 then

return H−1
0 g′

end if
h = σ

σ⊤
k g′

y⊤
k σk

g = g′ − y σ⊤
k g′

y⊤
k σk

s = LBFGSStep(k − 1, ℓ− 1, g)

w = s − σk
y⊤

k s
y⊤

k σk

z = w + h
return z

end function

Algorithm 1. The L-BFGS algorithm. The outer
products can be computed as inner products, giv-
ing O(d) runtime complexity to all the products.

optimization for data science 51

10 Subgradient methods

Until now, we have mostly assumed all functions to be differentiable and
smooth. However, in general this is not the case. In machine learning,
non-differentiable functions arise everywhere:

• Loss functions, such as the Hinge loss, max{0, 1 − x} (SVM);

• Regularization, such as the ℓ1-norm (LASSO);

• Activation functions, such as ReLU.

This motivates the need for a more general notion of the gradient that
can be applied to more functions.

f (x) + g⊤1 (y − x)
f (x) + g⊤2 (y − x)

x

Figure 10.1. g is a subgradient of f at x if the
whole graph is above x’s supporting hyperplane,
parametrized by g.

Definition 10.1 (Subgradient). g ∈ Rd is a subgradient of f at x if

f (y) ≥ f (x) + g⊤(y − x), ∀y ∈ dom(f).

We call ∂ f (x) ⊆ Rd the subdifferential, which is the set of subgradi-
ents of f at x.

Example 10.2. Consider f (x) = |x|, then ∂ f (0) = [−1, 1].

Lemma 10.3. If f is differentiable at x ∈ dom(f), then ∂ f (x) ⊆
{∇f (x)}.

Lemma 10.3 means that if f is differentiable at x, then this is either the
only subgradient or there is no subgradient at all. There might not be any
subgradient at all in this case because it might be that the hyperplane is
not below the entire function if the function is non-convex.

Lemma 10.4 (Convexity and subgradient). Let f : dom(f) → R,
then

• If f is convex, then ∂ f (x) ̸= ∅ for all x in the relative interior of
dom(f) (so not necessarily on the edges);

• If dom(f) is convex and ∂ f (x) ̸= ∅ for all x ∈ dom(f), then f is
convex.

Lemma 10.5 (Subgradient optimality condition). Let f : dom(f) →
R and x ∈ dom(f). If 0 ∈ ∂ f (x), then x is a global minimum.

Proof. By definition of the subgradient with g = 0 ∈ ∂ f (x) gives

f (y) ≥ f (x) + g⊤(y − x) = f (x), ∀y ∈ dom(f).

Thus, x is a global minimum. ■

optimization for data science 52

Lemma 10.6 (Subgradient calculus). We can use the following oper-
ations to work with subgradients:

• (Conic combination) Let h(x) .
= α f (x) + βg(x) with α, β ≥ 0, then

∂h(x) = α · ∂ f (x) + β · ∂g(x);

• (Affine transformation) Let h(x) .
= f (Ax + b), then

∂h(x) = A⊤∂ f (Ax + b);

• (Pointwise maximum) Let h(x) .
= maxi∈[m] fi(x), then

∂h(x) = conv({∂ fi(x) | fi(x) = h(x)}).

Thus, at each point where we transition from one function to an-
other, we get the convex hull of subgradients of the functions that
transition. At all other points, we take the maximum function’s
subgradient.

10.1 Subgradient method

In the subgradient method, the general update rule becomes

xt+1 = ΠX (xt − γtgt), gt ∈ ∂ f (xt).

If f is convex and differentiable, gradient descent and projected gradient
descent are special cases of this update rule, where X = Rd and X ⊂ Rd,
respectively. However, if f is non-differentiable, we will see that this
is technically not a descent method, because the subgradient is not a
descent direction in general.

Lemma 10.7 (Subgradient method “descent” lemma). If f is convex,
then for any optimal solution x⋆,

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − 2γt(f (xt)− f (x⋆)) + γ2
t ∥gt∥2.

Proof.

∥xt+1 − x⋆∥2 = ∥ΠX (xt − γtgt)− x⋆∥2 Subgradient descent update rule.

≤ ∥xt − γtgt − x⋆∥2 Projection is non-expansive.

= ∥xt − x⋆∥2 − 2γtg⊤t (xt − x⋆) + γ2
t ∥gt∥2 Cosine theorem.

≤ ∥xt − x⋆∥2 − 2γt(f (xt)− f (x⋆)) + γ2
t ∥gt∥2. Subgradient: f (x⋆) ≥ f (xt) + g⊤t (x⋆ − xt).

■

optimization for data science 53

Theorem 10.8 (Convergence of the subgradient method). If f is con-
vex, then the subgradient method satisfies

min
t∈[T]

f (xt)− f (x⋆) ≤ ∥x0 − x⋆∥2 + ∑T−1
t=0 γ2

t ∥gt∥2

2 ∑T−1
t=0 γt

.

Proof. By Lemma 10.7, we have

∥xt+1 − x⋆∥2 ≤ ∥xt − x⋆∥2 − 2γt(f (xt)− f (x⋆)) + γ2
t ∥gt∥2.

Rearranging yields

γt(f (xt)− f (x⋆)) ≤ 1
2

(
∥xt − x⋆∥ − ∥xt+1 − x⋆∥+ γ2

t ∥gt∥2
)

.

Summing over all timesteps and dividing by ∑T−1
t=0 γt yields

min
t∈[T]

f (xt)− f (x⋆) ≤ ∑T−1
t=0 γt(f (xt)− f (x⋆))

∑T−1
t=0 γt

≤ ∥x0 − x⋆∥2 − ∥xT − x⋆∥2 + ∑T−1
t=0 γ2

t ∥gt∥2

2 ∑T−1
t=0 γt

≤ ∥x0 − x⋆∥2 + ∑T−1
t=0 γ2

t ∥gt∥2

2 ∑T−1
t=0 γt

.

■

Assuming bounded subgradient ∥gt∥ ≤ B for all steps t, we get the
following convergence rates under various stepsizes,

• Constant stepsize (γt = γ):

lim
t→∞

f (xbest
t) ≤ f (x⋆) +

B2γ

2
;

• Scaled stepsize (γt = γ/∥gt∥):

lim
t→∞

f (xbest
t) ≤ f (x⋆) +

Bγ

2
;

• Square-summable stepsize (∑∞
t=0 γ2

t < +∞, ∑∞
t=0 γt = +∞):

lim
t→∞

f (xbest
t) = f (x⋆);

• Diminishing stepsize (γt → 0 and ∑∞
t=0 γt = +∞):

lim
t→∞

f (xbest
t) = f (x⋆).

optimization for data science 54

Corollary. Let f be convex and B-Lipschitz continuous. Let X be
convex compact with R2 = maxx,y∈X ∥x − y∥2 < +∞. Setting

γ
.
=

R
B
√

T
,

then the subgradient method satisfies

min
t∈[T]

f (xt)− f (x⋆) ≤ BR√
T

.

To achieve ϵ-optimality, the subgradient method requires O
(

B2R2

ϵ2

)
iterations.

10.2 Strong convexity

Theorem 10.9. Let f be µ-strongly convex and B-Lipschitz continu-
ous on X . Setting

γt
.
=

2
µ(t + 1)

,

then the subgradient method satisfies

min
t∈[T]

f (xt)− f (x⋆) ≤ 2B2

µ(T + 1)
.

Proof. Adapting the proof of Lemma 10.7 to use strong convexity in its
last step, we get

∥xt+1 − x⋆∥2 ≤ (1 − µγt)∥xt − x⋆∥2 − 2γt(f (xt)− f (x⋆)) + γ2
t ∥gt∥2.

Using this, we get the following,

f (xt)− f (x⋆) ≤ 1 − µγt

2γt
∥xt − x⋆∥2 − 1

2γt
∥xt+1 − x⋆∥2 +

γt

2
∥gt∥2

=
µ(t − 1)

4
∥xt − x⋆∥2 − µ(t + 1)

4
∥xt+1 − x⋆∥2

+
1

µ(t + 1)
∥gt∥2

γt
.
= 2/µ(t+1).

Now, it is easy to show the result by a telescoping sum. ■

Hence, in the case of strong convexity, in order to achieve ϵ-optimality,

the subgradient method requires O
(

B2

µϵ

)
iterations.

optimization for data science 55

11 Mirror descent

Like in subgradient descent, we continue to assume that f is non-smooth.
In practice, we often have additional information about set X that we
might be able to exploit. Specifically, we will explore how we can exploit
non-Euclidean geometry of a convex set X .9 9 Until this point, we have only made use of Eu-

clidean geometry by way of using the ∥ · ∥2-norm.

11.1 Norm and Bregman divergence

Definition 11.1 (Norm). A function ∥ · ∥ : X → R+ is a norm if it
satisfies the following properties,

1. (Positive definiteness) ∥x∥ = 0 if and only if x = 0;

2. (Positive homogeneity) ∥αx∥ = |α|∥x∥;

3. (Subadditivity) ∥x + y∥ ≤ ∥x∥+ ∥y∥.

Definition 11.2 (Dual norm). The dual norm ∥ · ∥∗ of a norm ∥ · ∥
satisfies the properties of a norm and

∥y∥∗ .
= max

∥x∥≤1
⟨x, y⟩.

Lemma 11.3. For p ≥ 1 and 1/p + 1/q = 1, we have the following
norms with their dual norms,

∥x∥p
.
=

(
d

∑
i=1

|xi|p
)1/p

, ∥ · ∥p,∗ = ∥ · ∥q.

Lemma 11.4.

1√
d
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤

√
d∥x∥2.

The nice thing about smoothness, Lipschitz continuity, and strong
convexity is that they can be defined for any norm.

Definition 11.5 (Bregman divergence). Let ω : Ω → R be continu-
ously differentiable on Ω and 1-strongly convex w.r.t. some norm
∥ · ∥,

ω(x) ≥ ω(y) +∇ω(y)⊤(x − y) +
1
2
∥x − y∥2, ∀x, y ∈ Ω.

The Bregman divergence Vω is defined as

Vω(x, y) .
= ω(x)− ω(y)−∇ω(y)⊤(x − y), ∀x, y ∈ Ω.

optimization for data science 56

Example 11.6. We have the following examples of Bregman diver-
gences,

1. (Euclidean distance) Ω = Rd, ω(x) = 1
2∥x∥2

2, and ∥ · ∥ = ∥ · ∥2.
Then,

Vω(x, y) =
1
2
∥x − y∥2

2.

2. (Mahalanobis distance) Ω = Rd, ω(x) = 1
2 x⊤Qx with Q ⪰ I, and

∥ · ∥ = ∥ · ∥2. Then,

Vω(x, y) =
1
2
(x − y)⊤Q(x − y).

3. (Kullback-Leibler divergence) Ω = ∆d−1, ω(x) = ∑d
i=1 xi log xi,

and ∥ · ∥ = ∥ · ∥1. Then,

Vω(x, y) = KL(x; y) .
=

d

∑
i=1

xi log
xi
yi

.

Lemma 11.7. Any Bregman divergence satisfies the following prop-
erties:

1. (Non-negativity) Vω(x, y) ≥ 0;

2. (Convexity) Vω(x, y) is convex in x;

3. (Positivity) Vω(x, y) = 0 if and only if x = y;

4. Vω(x, y) ≥ 1
2∥x − y∥2.

x

y

z

Vω(y, z)

Vω(x, y)
Vω(x, z)

Figure 11.1. Illustration of the three-point identity
of a non-Euclidean Bregman divergence.

The following lemma is a key property of the Bregman divergence
and is used extensively in this course.

Lemma 11.8 (Three-point identity). ∀x, y, z ∈ Ω:

Vω(x, z) = Vω(x, y) + Vω(y, z)− ⟨∇ω(z)−∇ω(y), x − y⟩.

In the case of ω(x) .
= 1

2∥x∥2
2, this is the cosine theorem,

∥x − z∥2 = ∥x − y∥2 + ∥y − z∥2 − 2⟨z − y, x − y⟩.

11.2 Mirror descent algorithm

The mirror descent algorithm is a generalization of the subgradient
method. We can rewrite the subgradient update rule in the following

optimization for data science 57

way,

xt+1 = ΠX (xt − γtgt)

= argmin
x∈X

1
2
∥x − (xt − γtgt)∥2

= argmin
x∈X

1
2
∥x − xt − (−γtgt)∥2

= argmin
x∈X

1
2

(
∥x − xt∥2 + ∥γtgt∥2 + 2⟨γtgt, x − xt⟩

)
Cosine theorem.

= argmin
x∈X

1
2
∥x − xt∥2 + ⟨γtgt, x⟩. Remove terms that do not depend on x.

We then replace the norm by the Bregman divergence to obtain the mirror
descent update rule,

xt+1 ∈ argmin
x∈X

Vω(x, xt) + ⟨γtgt, x⟩, gt ∈ ∂ f (xt).

Lemma 11.9. Let f be convex and ω be 1-strongly convex on X w.r.t.
norm ∥ · ∥. Running mirror descent, the following inequality holds,

γt(f (xt)− f (x⋆)) ≤ Vω(x⋆, xt)− Vω(x⋆, xt+1) +
γ2

t
2
∥gt∥2

∗.

Proof. We have the following update rule,

xt+1 = argmin
x∈X

Vω(x, xt) + ⟨γtgt, x⟩.

Thus, by the optimality condition for constrained optimization, we have

⟨∇ω(xt+1) + γtgt −∇ω(xt), x − xt+1⟩ ≥ 0, ∀x ∈ X ,

which can be equivalently written as ∀x ∈ X :

⟨γtgt, xt+1 − x⟩ ≤ ⟨∇ω(xt+1)−∇ω(xt), x − xt+1⟩
= Vω(x, xt)− Vω(x, xt+1)− Vω(xt+1, xt) Three-point identity.

≤ Vω(x, xt)− Vω(x, xt+1)−
1
2
∥xt − xt+1∥2. Fourth property of Bregman divergence.

As a result,

γt(f (xt)− f (x⋆)) ≤ ⟨γtgt, xt − x⋆⟩ By definition of the subgradient.

= ⟨γtgt, xt+1 − x⋆⟩+ ⟨γtgt, xt − xt+1⟩

≤ Vω(x⋆, xt)− Vω(x⋆, xt+1)−
1
2
∥xt − xt+1∥2

+ ⟨γtgt, xt − xt+1⟩

≤ Vω(x⋆, xt)− Vω(x⋆, xt+1)−
1
2
∥xt − xt+1∥2

+
1
2
∥xt − xt+1∥2 +

1
2
∥γtgt∥2

∗ Young’s inequality: ⟨x, y⟩ ≤ 1
2

(
∥x∥2 + ∥y∥2

∗
)
.

≤ Vω(x⋆, xt)− Vω(x⋆, xt+1) +
γ2

t
2
∥gt∥2

∗.

■

optimization for data science 58

Theorem 11.10 (Convergence of mirror descent). Let f be convex
and ω be 1-strongly convex on X w.r.t. norm ∥ · ∥. Then, mirror
descent satisfies

min
t∈[T]

f (xt)− f (x⋆) ≤ Vω(x⋆, x0) +
1
2 ∑T−1

t=0 γ2
t ∥gt∥2∗

∑T−1
t=0 γt

.

Proof. By Lemma 11.9, we have

γt(f (xt)− f (x⋆)) ≤ Vω(x⋆, xt)− Vω(x⋆, xt+1) +
γ2

t
2
∥gt∥2

∗.

Summing over all timesteps yields

T−1

∑
t=0

γt(f (xt)− f (x⋆)) ≤
T−1

∑
t=0

Vω(x⋆, xt)− Vω(x⋆, xt+1) +
1
2

T−1

∑
t=0

γ2
t ∥gt∥2

∗

≤ Vω(x⋆, x0)− Vω(x⋆, xT) +
1
2

T−1

∑
t=0

γ2
t ∥gt∥2

∗

≤ Vω(x⋆, x0) +
1
2

T−1

∑
t=0

γ2
t ∥gt∥2

∗.

Dividing both sides by ∑T−1
t=0 γt yields

min
t∈[T]

f (xt)− f (x⋆) ≤ ∑T−1
t=0 γt(f (xt)− f (x⋆))

∑T−1
t=0 γt

≤ Vω(x⋆, x0) +
1
2 ∑T−1

t=0 γ2
t ∥gt∥2∗

∑T−1
t=0 γt

.

This concludes the proof. ■

Note that this generalizes the convergence result of the subgradient
method.

Suppose f is B-Lipschitz continuous such that | f (x)− f (y)| ≤ B∥x −
y∥, ∀x, y ∈ X . Namely, we then have ∥g∥∗ ≤ B, ∀g ∈ ∂ f (x), x ∈ X .
Furthermore, let R2 .

= supx∈X Vω(x, x0) and set

γt
.
=

√
2R

B
√

T
.

Then, we have the following convergence rate,

min
t∈[T]

f (xt)− f (x⋆) ≤ O
(

BR√
T

)
.

This is equivalent to the convergence rate of the subgradient method, but
then for a more general notion of norm.

In practice, if we optimize over the simplex ∆d−1 with ∥g∥∞ ≤ 1, ∀g ∈
∂ f (x) and x0 = [1/d, . . . , 1/d]. Then, we have the following convergence

optimization for data science 59

rate for the subgradient method, O
(√

d√
T

)
, because B ∈ O

(√
d
)

and
R ∈ O(1). On the other hand, we have the following convergence rate

for mirror descent w.r.t. the ℓ-1 norm, O
(√

log d√
T

)
, since B ∈ O(1) and

R ∈ O
(√

log d
)
. This is a considerable speedup.

optimization for data science 60

12 Smoothing and proximal algorithms

Often, we want to optimize non-smooth functions. However, most of the
time, we assume functions to be smooth. The question is thus whether
we can exploit additional structure of non-smooth functions, instead of
treating them as black boxes. The idea behind smoothing is to optimize
a smooth approximation fµ of the non-smooth function f .

12.1 Convex conjugate theory

Definition 12.1 (Conjugate function). The conjugate function of f is

f ∗(y) .
= sup

x∈dom(f)

{
x⊤y − f (x)

}
.

It is also called the Legendre-Fenchel transformation.

Lemma 12.2 (Convex conjugate properties). The following holds for
conjugate functions,

1. (Duality) If f convex, then f ∗∗ = f ;

2. (Fenchel’s inequality)

f (x) + f ∗(y) ≥ x⊤y ⇐⇒ y ∈ ∂ f (x) ⇐⇒ x ∈ ∂ f ∗(y), ∀x, y;

3. If f and g are convex, then

(f + g)∗(x) = inf
y
{ f ∗(y) + g∗(x − y)};

4. If f is µ-strongly convex, then f ∗ is differentiable and 1/µ-smooth.

12.2 Nesterov smoothing

Nesterov smoothing approximates a non-smooth function f by

fµ(x) = max
y∈dom(f ∗)

{
x⊤y − f ∗(y)− µ · d(y)

}
,

where d(y) is a proximity function. A proximity function is 1-strongly
convex and non-negative. The function fµ is 1/µ-smooth and approxi-
mates a convex f by

f (x)− µD2 ≤ fµ(x) ≤ f (x), D2 .
= max

y∈dom(f ∗)
d(y). High µ results in a bad approximation.

Thus, we have a trade-off between approximation error and optimization
efficiency. Specifically,

f (x)− f (x⋆) ≤ f (x)− fµ(x)︸ ︷︷ ︸
approximation error

+ fµ(x)− min
x

fµ(x)︸ ︷︷ ︸
optimization error

.

optimization for data science 61

The approximation error is on the order O(µ), while the optimization
error is on the order O(1/µt) using gradient descent.

If we apply accelerated gradient descent to solve the smoothed prob-
lem, we get an error of the following order,

f (xt)− f (x⋆) ≤ O
(

µD2 +
R2

µt2

)
.

Note that this is faster than applying subgradient methods.

12.3 Moreau-Yosida smoothing

Moreau-Yosida regularization smooths f by

fµ(x) = min
y∈dom(f ∗)

{
f (y) +

1
2µ

∥x − y∥2
2

}
.

This function is called the Moreau envelope of f (x). For example, the
Huber function is the Moreau envelope of f (x) = |x|,

fµ(x) =

 x2

2µ , |x| ≤ µ

|x| − µ
2 , |x| > µ.

As in Nesterov smoothing, fµ is 1/µ-smooth. However, the advantage is
that it minimizes exactly, i.e., minx f (x) = minx fµ(x).

12.4 Proximal point algorithm

Definition 12.3 (Proximal operator). The proximal operator of a con-
vex function f at x is defined as

proxµ, f (x) .
= argmin

y∈dom(f)

{
f (y) +

1
2µ

∥x − y∥2
2

}
.

For many non-smooth functions, their proximal operator can be com-
puted efficiently in a closed form.

The gradient of fµ is

∇fµ(x) =
1
µ
(x − proxµ, f (x)).

Thus, applying gradient descent to fµ—which is 1/µ-smooth—reduces to

xt+1 = xt − µ∇fµ(xt) = proxµ, f (xt),

which is the proximal point algorithm (PPA). In general, we define a
timestep-dependent stepsize λt,

xt+1 = proxλt , f (xt).

optimization for data science 62

Lemma 12.4 (PPA descent). When applying PPA, we have

f (xt+1) ≤ f (xt).

Theorem 12.5 (Convergence of PPA). If f is convex, then for any
T ≥ 0, we have

f (xT)− f (x⋆) ≤ ∥x0 − x⋆∥2
2

2 ∑T−1
t=0 λt

.

Proof. Let gt(y)
.
= f (y) + 1

2λt
∥xt − y∥2, which is minimized by xt+1. This

function has the following subdifferential,

∂gt(y) = ∂ f (y) +
y − xt

λt
.

By subgradient optimality, we have

0 ∈ ∂gt(xt+1) ⇐⇒ − xt+1 − xt

λt
∈ ∂ f (xt+1).

f is convex, so the subgradient exists everywhere in its domain’s interior.
Hence,

f (x) ≥ f (xt+1)−
1
λt

⟨xt+1 − xt, x − xt+1⟩, ∀x ∈ dom(f).

Rearranging yields

λt(f (xt+1)− f (x)) ≤ ⟨xt+1 − xt, x − xt+1⟩

=
1
2

(
∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt+1 − xt∥2

)
Cosine theorem.

≤ 1
2

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
.

Summing over all timesteps,

T−1

∑
t=0

λt(f (xt+1)− f (x)) ≤ 1
2

T−1

∑
t=0

∥xt − x∥2 − ∥xt+1 − x∥2

=
1
2

(
∥x0 − x∥2 − ∥xT − x∥2

)
≤ ∥x0 − x∥2

2
.

Dividing both sides by ∑T−1
t=0 λt and using Lemma 12.4, we get

f (xT)− f (x) ≤ ∑T−1
t=0 λt(f (xt+1)− f (x))

∑T−1
t=0 λt

≤ ∥x0 − x∥2

2 ∑T−1
t=0 λt

.

We apply this to x = x⋆ to obtain the result. ■

If we set λt = λ to be constant, we get an O(1/t) convergence rate.

optimization for data science 63

12.5 Proximal gradient method

Consider the following convex composite optimization problem,

min
x∈Rd

F(x) .
= f (x) + g(x),

where f and g are convex.10 The proximal gradient method (PGM) has 10 Most supervised learning problems can be cast
into this form,

min
θ

1
n

n

∑
i=1

ℓ(hθ(xi), yi) + g(θ),

where hθ is the predictor and g is a regularization
function.

the following update rule,

xt+1 = proxγtg(xt − γt∇f (xt)).

Note that it alternates between a gradient update on f and a proximal
operator on g.

Theorem 12.6 (Convergence of PGM). Let F(x) = f (x) + g(x). As-
sume f is convex and L-smooth, g is convex and possibly non-
smooth. Proximal gradient method with fixed stepsize γt

.
= 1/L

satisfies

F(xT)− F(x⋆) ≤ L∥x0 − x⋆∥2
2

2T
.

Proof. Let ht(y)
.
= g(y) + 1

2γt
∥y − (xt − γt∇f (xt))∥2, which is mini-

mized by xt+1. This function has the following subdifferential,

∂ht(y) = ∂g(y) +
1
γt

(y − xt + γt∇f (xt)).

By subgradient optimality, we have

0 ∈ ∂ht(xt+1) ⇐⇒ 1
γt

(xt − xt+1 − γt∇f (xt)) ∈ ∂g(xt+1).

g is convex, so the subgradient exists everywhere in its domain’s interior.
Hence,

g(x) ≥ g(xt+1) +

〈
1
γt

(xt − xt+1)−∇f (xt), x − xt+1

〉
, ∀x ∈ dom(g).

Rearranging yields

g(xt+1)− g(x) ≤ 1
γt

⟨xt − xt+1, xt+1 − x⟩ − ⟨∇f (xt), xt+1 − x⟩

=
1

2γt

(
∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt − xt+1∥2

)
Cosine theorem.

− ⟨∇f (xt), xt+1 − x⟩

=
1

2γt

(
∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt − xt+1∥2

)
− ⟨∇f (xt), xt+1 − xt⟩ − ⟨∇f (xt), xt − x⟩

≤ L
2

(
∥xt − x∥2 − ∥xt+1 − x∥2 − ∥xt − xt+1∥2

)
Smoothness, convexity, and definition of γt.

+ f (xt)− f (xt+1) +
L
2
∥xt − xt+1∥2

+ f (x)− f (xt)

=
L
2

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
+ f (x)− f (xt+1).

optimization for data science 64

Moving the calls to f to the left side gives

F(xt+1)− F(x) ≤ L
2

(
∥xt − x∥2 − ∥xt+1 − x∥2

)
.

Summing over all timesteps and using F(xt+1) ≤ F(xt),

F(xT)− F(x) ≤ L∥x0 − x∥2

2T
.

This concludes the proof. ■

This is nearly the same convergence rate as gradient descent, despite
F being possibly non-smooth.

optimization for data science 65

13 Stochastic optimization
In the context of machine learning, we perform
finite-sum optimization, which is a special case of
stochastic optimization,

min
x∈Rd

F(x) .
=

1
n

n

∑
i=1

fi(x),

where each data point defines its own function and
ξ is uniformly distributed over {1, . . . , n}. Further,
modern machine learning has the additional chal-
lenge that the datasets are too large to compute the
gradient of F,

∇F(x) =
1
n

n

∑
i=1

∇ fi(x).

Hence, we must estimate the gradient.

Stochastic optimization involves decision-making in the presence of ran-
domness. The optimization problem is formalized by a random vector
ξ ∼ P,

min
x∈Rd

F(x) .
= Eξ [f (x, ξ)].

For simplicity, we assume that f is continuously differentiable for any ξ.
Furthermore, we assume that the stochastic gradient is unbiased,

Eξt [∇f (xt, ξt) | xt] = ∇F(xt).

In practice, P is unknown and can only be accessed through samples.

In this setting, we use stochastic gradient descent (SGD), which has the
following update rule,

ξt ∼ P

xt+1 = xt − γt∇f (xt, ξt).

13.1 Convergence analysis

In the non-convex case, we can show that SGD finds a stationary point
with E∥∇F(x̂)∥ ≤ ϵ in O(1/ϵ4) gradient evaluations.

Theorem 13.1 (Non-convex, random output). Suppose F is L-smooth
and the stochastic gradient has bounded variance,

E∥∇f (x, ξ)−∇F(x)∥2 ≤ σ2.

Then, SGD with

γ
.
= min

{
1
L

,
γ0

σ
√

T

}
,

achieves

E∥∇F(x̂T)∥2 ≤ σ√
T

(
2(F(x1)− F(x⋆))

γ0
+ Lγ0

)
+

2L(F(x1)− F(x⋆))
T

,

where x̂T ∼ Unif({x1, . . . , xT}).

Proof.

E[F(xt+1)− F(xt)] ≤ E

[
∇F(xt)

⊤(xt+1 − xt) +
L
2
∥xt+1 − xt∥2

]
Smoothness of F.

= E

[
−γt∇F(xt)

⊤∇f (xt, ξt) +
Lγ2

t
2

∥∇f (xt, ξt)∥2
]

SGD update rule.

= −
(

γt −
Lγ2

t
2

)
E∥∇F(xt)∥2 +

Lσ2γ2
t

2
E[X2] = E[X]2 + Var[X] ⇒ E∥∇ f (xt, ξt)∥2 =

∥∇F(xt)∥2 + E∥∇ f (xt, ξt)−∇F(xt)∥2.

≤ −γt

2
E∥∇F(xt)∥2 +

Lσ2γ2
t

2
. γt ≤ 1/L.

optimization for data science 66

We can rewrite this as

E∥∇F(xt)∥2 ≤ 2 · E[F(xt)− F(xt+1)]

γt
+ γtσ

2L.

By definition of x̂T , we have

E∥∇F(x̂T)∥2 =
1
T

T

∑
t=1

E∥∇F(xt)∥2

≤ 1
T

(
T

∑
t=1

2 · E[F(xt)− F(xt+1)]

γt
+ γtσ

2L

)

=
2

γT

(
T

∑
t=1

F(xt)− F(xt+1)

)
+ γσ2L Constant stepsize.

=
2(F(x1)− F(xT+1))

γT
+ γσ2L Telescoping sum.

≤ 2(F(x1)− F(x⋆))
γT

+ γσ2L

≤ 2(F(x1)− F(x⋆))
T

max

{
L,

σ
√

T
γ0

}
+

γ0σL√
T

≤ 2L(F(x1)− F(x⋆))
T

+
σ√
T

(
2(F(x1)− F(x⋆))

γ0
+ Lγ0

)
. max{a, b} ≤ a + b if a, b ≥ 0.

■

In the convex case, we can show that SGD finds an ϵ-optimal solution
with O(1/ϵ2) sample complexity.

Theorem 13.2 (Convex, weighted averaging). Suppose F is convex
and

E∥∇f (x, ξ)∥2 ≤ B2, ∀x ∈ Rd. This is a stronger assumption than bounded
variance.

Then, SGD satisfies

E[F(x̂T)− F(x⋆)] ≤ R2 + B2 ∑T
t=1 γ2

t

2 ∑T
t=1 γt

,

where

x̂T
.
=

∑T
t=1 γtxt

∑T
t=1 γt

, ∥x1 − x⋆∥ ≤ R.

Proof. First, we have

∥xt+1 − x⋆∥2 = ∥xt − γt∇f (xt, ξt)− x⋆∥2 Update rule.

= ∥xt − x⋆∥+ γ2
t ∥∇f (xt, ξt)∥2 − 2∇f (xt, ξt)

⊤(xt − x⋆). Cosine theorem.

optimization for data science 67

Furthermore, by the law of total expectation (E[X] = EY[EX [X | Y]]),

Eξ1:t

[
∇f (xt, ξt)

⊤(xt − x⋆)
]
= Ext

[
Eξ1:t

[
∇f (xt, ξt)

⊤(xt − x⋆)
∣∣∣ xt

]]
= Eξ1:t−1

[
Eξt [∇f (xt, ξt) | xt]

⊤(xt − x⋆)
]

xt can be computed from ξ1:t−1, and we only need
ξt for the inner expectation.

= Eξ1:t−1

[
∇F(xt)

⊤(xt − x⋆)
]

≥ E[F(xt)− F(x⋆)]. Convexity of F.

This gives us the following recursion,

γtE[F(xt)− F(x⋆)] ≤ 1
2

E∥xt − x⋆∥2 − 1
2

E∥xt+1 − x⋆∥2 +
1
2

γ2
t B2,

and the result follows by telescoping sums,

T

∑
t=1

γtE[F(xt)− F(x⋆)] ≤ 1
2

T

∑
t=1

E∥xt − x⋆∥2 − E∥xt+1 − x⋆∥2 +
B2

2

T

∑
t=1

γ2
t

=
1
2

(
E∥x1 − x⋆∥2 − E∥xT+1 − x⋆∥

)
+

B2

2

T

∑
t=1

γ2
t

≤ R2

2
+

B2

2

T

∑
t=1

γ2
t .

Using Jensen’s inequality, we can show the final result,

E

[
F

(
∑T

t=1 γtxt

∑T
t=1 γt

)
− F(x⋆)

]
≤ E

[
∑T

t=1 γtF(xt)

∑T
t=1 γt

− F(x⋆)

]

=
∑T

t=1 γtE[F(xt)− F(x⋆)]

∑T
t=1 γt

≤ R2 + B2 ∑T
t=1 γ2

t

∑T
t=1 γt

.

■

In the strongly convex case, we can show that SGD finds an ϵ-optimal
solution with O(1/ϵ) complexity.

Theorem 13.3 (Strongly convex, diminishing stepsize). Suppose F is
µ-strongly convex and

E∥∇f (x, ξ)∥2 ≤ B2, ∀x ∈ Rd,

then SGD with
γt

.
=

γ

t
,

and γ > 1/2µ satisfies

E∥xT − x⋆∥2 ≤ C(γ)
T

,

where

C(γ) .
= max

{
γ2B2

2µγ − 1
, ∥x1 − x⋆∥2

}
.

optimization for data science 68

Proof. Like in the proof of the previous case, we have

∥xt+1 − x⋆∥2 = ∥xt − x⋆∥2 + γ2
t ∥∇f (xt, ξt)∥2 − 2∇f (xt, ξt)

⊤(xt − x⋆).

Also like in the previous proof and further using strong convexity of F,
we have

E
[
∇f (xt, ξt)

⊤(xt − x⋆)
]
= E

[
∇F(xt)

⊤(xt − x⋆)
]
≥ µE∥xt − x⋆∥2.

This gives the following recursion,

E∥xt+1 − x⋆∥2 ≤
(

1 − 2µγ

t

)
E∥xt − x⋆∥2 +

γ2B2

t2 .

The result follows by induction. ■

Thus, in theory, we see that a diminishing stepsize is necessary for
SGD to converge to an optimal solution. However, in practice, constant
stepsizes are often used with great success.

13.2 Adaptive methods

Often we do not know whether the problem is convex, L-smooth, or µ-
strongly convex. Thus, we want the stepsize to adapt to the landscape of
the function. The generic adaptive scheme looks like the following,

gt = ∇f (xt, ξt)

mt = ϕt(g1, . . . , gt)

Vt = ψt(g1, . . . , gt)

x̂t = xt − αtV−1/2
t mt

xt+1 = argmin
x∈X

{
(x − x̂t)

⊤V 1/2
t (x − x̂t)

}
.

The most popular stochastic gradient descent methods are special
cases of this scheme,

• Stochastic gradient descent:

mt = gt, Vt = I.

• AdaGrad:

mt = gt, Vt =
diag

(
∑t

τ=1 g2
τ

)
t

.

• Adam:

mt = (1 − α)
t

∑
τ=1

αt−τ gτ , Vt = (1 − β)diag

(
t

∑
τ=1

βt−τ g2
τ

)
.

Or, recursively:

mt = αmt−1 + (1 − α)gt, Vt = βVt−1 + (1 − β)diag
(

g2
t

)
.

optimization for data science 69

13.3 Variance reduction

Despite having a cheaper iteration cost than gradient descent,11 SGD 11 O(1) for SGD vs. O(n) for GD.

requires more iterations,12 due to high variance. Stochastic variance- 12 O(κ/ϵ) for SGD vs. O(κ log 1/ϵ) for GD, where
κ = L/µ.reduced (VR) methods try to achieve the best of both worlds by reducing

the variance of SGD.13 We will present VR methods in the context of 13 Classically, one can reduce variance by mini-
batching, which reduces variance by O(1/|Bt |),
where Bt is the batch, but computational complex-
ity increases by O(|Bt|). Variance can also be re-
duced by introducing momentum to the gradient
step. However, this requires access to past stochas-
tic gradients, which can be expensive in memory.
We will consider a more modern approach.

finite-sum optimization, which is a special case of stochastic optimiza-
tion,

min
x∈Rd

F(x) .
=

1
n

n

∑
i=1

fi(x).

In the context of deep learning, we can see n as the number of data points
and fi the function w.r.t. the i-th data point, where we wish to minimize
the objective function w.r.t. every data point with equal weight.

Suppose we want to estimate θ = E[X], where X is a random variable.
Let Y be another random variable. We can estimate θ as E[X − Y] if
and only if E[Y] = 0. Furthermore, Var[X − Y] ≤ Var[X] if Y is highly
positively correlated with X. Specifically, if Cov(X, Y) > 1

2 Var[Y], the
variance will be reduced.14 14 This is because Var[X − Y] = Var[X] + Var[Y]−

2 · Cov(X, Y).
Let α ∈ [0, 1]. Using the following point estimator introduces a trade-

off between variance and biasedness,

θ̂α = α(X − Y) + E[Y].

We then have the following expected value and variance,

E[θ̂α] = αE[X] + (1 − α)E[Y]

Var[θ̂α] = α2(Var[X] + Var[Y]− 2 · Cov(X, Y)).

Note that the estimator is unbiased if α = 1, but the variance decreases
when α decreases. Also note that the variance decreases as α tends to
zero.

While SGD estimates the full gradient by ∇fit(xt), VR methods esti-
mate ∇F(xt) by

gt
.
= α(∇fit(xt)− Y) + E[Y],

such that
lim
t→∞

E∥gt −∇F(xt)∥2 = 0. VR property.

The key idea is that if xt is not too far away from previous iterates x1:t−1,
we can leverage previous gradient information to construct positively
correlated control variates Y. The question is thus how to design Y, given
previous gradient information, such that it has low computational and
space complexity.

Stochastic average gradient. The idea behind stochastic average gradient
(SAG) is to keep track of the latest gradients for all points i ∈ [n]. Then,
we estimate the full gradient by the average of these recent gradients,

gt =
1
n

n

∑
i=1

vt
i ≈

1
n

n

∑
i=1

∇fi(xt) = ∇F(xt).

optimization for data science 70

Algorithm Iterations Iteration cost

Gradient descent O(κ log 1/ϵ) O(n)
Stochastic gradient descent O(κ/ϵ) O(1)
Variance-reduced method O((n + κ) log 1/ϵ) O(1)

Table 1. Complexity of µ-strongly convex and L-
smooth finite-sum optimization, where n is the
number of functions, κ = L/µ.

Thus, we update the past gradients as

vt
i =

∇fit(xt) i = it

vt−1
i i ̸= it.

Equivalently, we have the following update rule for the gradient estimate,

gt = gt−1 −
1
n

vt−1
it

+
1
n
∇fit(xt)

=
1
n

(
∇fit(xt)− vt−1

it

)
+ gt−1.

Specifically, we have α = 1/n and Y = vt−1
it

with E[Y] = gt−1.

The downside of this approach is that it has a biased gradient (α ̸= 1),
a large O(nd) memory cost, and it is hard to analyze. But, we gain a total
complexity of O((n + κmax) log 1/ϵ), where κmax = mini∈[n] Li/µ, where
Li is the smoothness parameter of fi.

SAGA is an unbiased version of SAG, because it sets α = 1,

gt = ∇fit(xt)− vt−1
it

+ gt−1.

But, it still enjoys the same benefits as SAG with a much simpler proof.
However, we still have a higher memory cost—O(nd)—than SGD, which
we would like to get rid of.

Stochastic variance reduced gradient. The key idea behind stochastic vari-
ance reduced gradient (SVRG) is to build covariates based on a fixed
reference point x̃. We then need to balance the frequency of updating
this reference point and variance reduction.15 The intuition behind this 15 More updates cause lower variance, but increased

complexity.method is the closer x̃ is to xt, the smaller the variance is of the gradient
estimator.

The algorithm works by updating x̃ every m-th iteration to be the
average of the last m iterations. It estimates the gradient by

∇fit(xt)−∇fit(x̃) +∇F(x̃).

Specifically, we have α = 1 and Y = ∇fit(x̃) with E[Y] = ∇F(x̃).

While we gain the low memory cost of O(d), we now need to do
O(n + 2m) gradient evaluations per epoch, where the n comes from
computing E[Y] and 2m comes from computing ∇fit(xt) and ∇fit(x̃).
This method has the same iteration complexity as SAG and SAGA—
O((n + κmax) log 1/ϵ).

optimization for data science 71

14 Min-max optimization

In min-max optimization, we have the following problem that we wish
to solve,16 16 What it means to solve such a problem will be

introduced later.min
x∈X

max
y∈Y

ϕ(x, y).

This general problem has many applications, such as solving zero-sum
matrix games,

min
x∈∆(I)

max
y∈∆(J)

x⊤Ay.

This problem is convex-concave. Furthermore, generative adversarial net-
works are also a special case of this scheme,

min
G

max
D

Eξ∼pdata
[D(ξ)]− Eζ∼pζ

[D(G(ζ))].

This problem is nonconvex-nonconcave.

14.1 Notion of solution

Definition 14.1 (Saddle point). (x⋆, y⋆) is a saddle point if

ϕ(x⋆, y) ≤ ϕ(x⋆, y⋆) ≤ ϕ(x, y⋆), ∀x ∈ X , y ∈ Y .

Intuitively, no player has the incentive to make a unilateral change at
the saddle point, because it can only get worse if the other player makes
no change. In game theory, this is called a Nash equilibrium.

Definition 14.2 (Global minimax point). (x⋆, y⋆) is a global minimax
point if

ϕ(x⋆, y) ≤ ϕ(x⋆, y⋆) ≤ max
y′∈Y

ϕ(x, y′), ∀x ∈ X , y ∈ Y .

Intuitively, this means that x⋆ is the minimizer of ϕ̄(x) = maxy∈Y ϕ(x, y).
It is the best response to the best response. In game theory, this is called
the Stackelberg equilibrium, which is a notion of equilibrium in a game
where one player is the leader and another is the follower. The response
of x must be the best response to the best response y could ever make.

The min-max optimization problem induces a primal and a dual prob-
lem,

min
x∈X

max
y∈Y

ϕ(x, y), Primal problem.

max
y∈Y

min
x∈X

ϕ(x, y). Dual problem.

Note that we have the following relationship between the two,

max
y∈Y

min
x∈X

ϕ(x, y) ≤ min
x∈X

max
y∈Y

ϕ(x, y).

optimization for data science 72

Lemma 14.3. (x⋆, y⋆) is a saddle point if and only if

max
y∈Y

min
x∈X

ϕ(x, y) = min
x∈X

max
y∈Y

ϕ(x, y),

and

x⋆ ∈ argmin
x∈X

max
y∈Y

ϕ(x, y), y⋆ ∈ argmax
y∈Y

min
x∈X

ϕ(x, y).

It is possible that a saddle point does not exist for a problem.

14.2 Convex-concave min-max optimization

Definition 14.4 (Convex-concave (C-C) function). A function ϕ : X ×
Y → R is convex-concave if

• ϕ is convex in x ∈ X for every fixed y ∈ Y ;

• ϕ is concave in y ∈ Y for every fixed x ∈ X .

Definition 14.5 (Strongly convex-strongly concave (SC-SC) function).
A function ϕ : X × Y → R is strongly convex-strongly concave if
there exists constants µ1, µ2 > 0 such that

• ϕ is µ1-strongly convex in x ∈ X for every fixed y ∈ Y ;

• ϕ is µ2-strongly convex in y ∈ Y for every fixed x ∈ X .

Theorem 14.6 (Minimax theorem). If X and Y are closed convex sets
and one of them is bounded, and ϕ : X × Y → R is a continuous
convex-concave function, then there exists a saddle point on X ×Y
and

max
y∈Y

min
x∈X

ϕ(x, y) = min
x∈X

max
y∈Y

ϕ(x, y).

Thus, for convex-concave minimax optimization problems, a saddle
point always exists.

We measure optimality via the duality gap,

g(x, y) .
= max

y′∈Y
ϕ(x, y′)− min

x′∈X
ϕ(x′, y) ≥ 0.

If g(x, y) = 0, then (x, y) is a saddle point, and if g(x, y) ≤ ϵ, then (x, y)
is an ϵ-saddle point.

14.3 Algorithms

Gradient descent ascent. Gradient descent ascent (GDA) is the simplest
gradient-based algorithm for solving min-max optimization problems. It

optimization for data science 73

Algorithm C-C, Smooth SC-SC, Smooth

Gradient descent ascent Non-convergent O
(
κ2 log 1/ϵ

)
Extragradient O(L/T) O(κ log 1/ϵ)

Proximal point algorithm O(1/T) O(κ log 1/ϵ)

Table 2. Convergence rates of various algorithms,
where κ = L/µ. C-C stands for convex-concave and
SC-SC stands for strongly convex-strongly concave.

simply does a single gradient step in both gradient directions w.r.t. x and
y,

xt+1 = ΠX (xt − γ∇xϕ(xt, yt))

yt+1 = ΠY (yt + γ∇yϕ(xt, yt)).

However, this is not guaranteed to converge in the C-C setting. Intu-
itively, this is because the two updates can “pull” in opposite directions,
resulting in no update. To guarantee convergence, we need the stronger
SC-SC assumption.

Theorem 14.7 (Convergence of GDA, SC-SC). In the SC-SC setting,
GDA with stepsize γ < µ/2L2 converges linearly,

dt+1 ≤
(

1 + 4γ2L2 − 2γµ
)

dt,

where
dt = ∥xt − x⋆∥2 + ∥yt − y⋆∥2.

When γ
.
= µ/4L2, GDA satisfies

dT ≤
(

1 − µ2

4L2

)T

d0.

Proof. By SC-SC, we have

⟨∇xϕ(x, y)−∇xϕ(x⋆, y⋆), x − x⋆⟩+ ⟨∇yϕ(x⋆, y⋆)−∇yϕ(x, y), y − y⋆⟩
≥ µ∥x − x⋆∥2 + µ∥y − y⋆∥2.

By L-smoothness, we have

∥∇xϕ(x, y)−∇xϕ(x⋆, y⋆)∥2 ≤ 2L2∥x − x⋆∥+ 2L2∥y − y⋆∥2

∥∇yϕ(x, y)−∇yϕ(x⋆, y⋆)∥2 ≤ 2L2∥x − x⋆∥+ 2L2∥y − y⋆∥2.

optimization for data science 74

Using these facts, we can prove the theorem,

∥xt+1 − x⋆∥2 + ∥yt+1 − y⋆∥2

= ∥ΠX (xt − γ∇xϕ(xt, yt))− ΠX (x⋆ − γ∇xϕ(x⋆, y⋆))∥2 x⋆ remains the same after update.

+ ∥ΠY (yt + γ∇yϕ(xt, yt)) + ΠY (y⋆ − γ∇yϕ(x⋆, y⋆))∥2

≤ ∥xt − γ∇xϕ(xt, yt)− x⋆ + γ∇xϕ(x⋆, y⋆)∥2 Non-expansiveness of projection:
∥ΠX (x)− ΠX (y)∥ ≤ ∥x − y∥.

+ ∥yt + γ∇yϕ(xt, yt)− y⋆ − γ∇yϕ(x⋆, y⋆)∥2

= ∥(xt − x⋆)− γ(∇xϕ(xt, yt)−∇xϕ(x⋆, y⋆))∥2

∥(yt − y⋆)− γ(∇yϕ(x⋆, y⋆)−∇yϕ(xt, yt))∥2

= ∥xt − x⋆∥2 + γ2∥∇xϕ(xt, yt)−∇xϕ(x⋆, y⋆)∥2 Cosine theorem.

− 2γ⟨∇xϕ(xt, yt)−∇xϕ(x⋆, y⋆), xt − x⋆⟩
+ ∥yt − y⋆∥2 + γ2∥∇yϕ(xt, yt)−∇yϕ(x⋆, y⋆)∥2

− 2γ⟨∇yϕ(x⋆, y⋆)−∇yϕ(xt, yt), yt − y⋆⟩
≤
(

1 + 4L2γ2 − 2µγ
)(

∥xt − x⋆∥2 + ∥yt − y⋆∥2
)

. SC-SC and smoothness.

Setting γ
.
= µ/4L2,

∥xt+1 − x⋆∥2 + ∥yt+1 − y⋆∥2 ≤
(

1 − µ2

4L2

)(
∥xt − x⋆∥2 + ∥yt − y⋆∥2

)
.

The result follows. ■

This implies a convergence complexity of O
(
κ2 log 1/ϵ

)
, where κ = L/µ

is the condition number.

(xt, yt)

(xt+1/2, yt+1/2)

(xt+1, yt+1)

∇ϕ(xt+1/2 , yt+1/2)

Figure 14.1. Illustration of a single step of the extra-
gradient method.

Extragradient method. The extragradient (EG) method fixes GDA by mak-
ing use of a look ahead step, such that the two gradients do not “pull” in
opposite directions,

xt+1/2 = ΠX (xt − γ∇xϕ(xt, yt))

yt+1/2 = ΠY (yt + γ∇yϕ(xt, yt))

xt+1 = ΠX (xt − γ∇xϕ(xt+1/2, yt+1/2))

yt+1 = ΠY (yt + γ∇yϕ(xt+1/2, yt+1/2)).

Theorem 14.8 (Convergence of EG, C-C). Let ϕ be convex-concave,
L-smooth. Furthermore, X has diameter DX and Y has diameter
DY . Then, EG with stepsize γ ≤ 1/2L satisfies

g(x̄, ȳ) ≤
D2
X + D2

Y
2γT

,

where

x̄ =
1
T

T

∑
t=1

xt+1/2, ȳ =
1
T

T

∑
t=1

yt+1/2.

optimization for data science 75

Theorem 14.9 (Convergence of EG, SC-SC). In the SC-SC setting, EG
with stepsize γ = 1/8L converges linearly,

∥xt+1 − x⋆∥2 + ∥yt+1 −y⋆∥2 ≤
(

1 − µ

4L

)(
∥xt − x⋆∥2 + ∥yt − y⋆∥2

)
.

This implies a convergence rate of O(κ log 1/ϵ), which is much faster
than the convergence rate of GDA.

Optimistic gradient descent ascent. Optimistic GDA (OGDA) is formalized
by

xt+1/2 = ΠX (xt − γ∇xϕ(xt−1/2, yt−1/2))

yt+1/2 = ΠY (yt + γ∇yϕ(xt−1/2, yt−1/2))

xt+1 = ΠX (xt − γ∇xϕ(xt+1/2, yt+1/2))

yt+1 = ΠY (yt + γ∇yϕ(xt+1/2, yt+1/2)).

This algorithm enjoys the same convergence guarantees as the extragra-
dient method.

In the special case of X = Rdx ,Y = Rdy , the following is an equivalent
formulation,

xt+1 = xt − 2γ∇xϕ(xt, yt) + γ∇xϕ(xt−1, yt−1)

yt+1 = yt + 2γ∇yϕ(xt, yt)− γ∇yϕ(xt−1, yt−1).

This can be seen as negative momentum.

Proximal point algorithm. Like in normal optimization, we can also define
the proximal point algorithm (PPA) for min-max optimization,

(xt+1, yt+1) ∈ argmax
x∈X

argmin
y∈Y

{
ϕ(x, y) +

1
2γ

∥x − xt∥2 − 1
2γ

∥y − yt∥2
}

.

Solving the above optimization problem results in the following update,

xt+1 = ΠX (xt − γ∇xϕ(xt+1, yt+1))

yt+1 = ΠY (yt + γ∇yϕ(xt+1, yt+1)).

This algorithm has similar guarantees to the EG and OGDA.

optimization for data science 76

15 Variational inequality problems

Let Z ⊂ Rd be a non-empty set and consider a mapping F : Z → Rd. In
a variational inequality (VI) problem, we wish to find z⋆ ∈ Z , such that
⟨F(z⋆), z − z⋆⟩ ≥ 0 for all z ∈ Z .

Definition 15.1 (Monotone operator). An operator F : Z → Rd is
monotone if

⟨F(x)− F(y), x − y⟩ ≥ 0, ∀x, y ∈ Z .

Definition 15.2 (µ-strongly monotone operator). An operator F :
Z → Rd is µ-strongly monotone if

⟨F(x)− F(y), x − y⟩ ≥ µ∥x − y∥2, ∀x, y ∈ Z .

Definition 15.3 (VI strong solution). A solution z⋆ ∈ Z is a strong
solution if it satisfies

⟨F(z⋆), z − z⋆⟩ ≥ 0, ∀z ∈ Z .

Definition 15.4 (VI weak solution). A solution z⋆ ∈ Z is a weak
solution if it satisfies

⟨F(z), z − z⋆⟩ ≥ 0, ∀z ∈ Z .

If F is monotone, then a strong solution is also a weak solution. If F is
continuous, then a weak solution is also a strong solution. Furthermore,
we use

g(ẑ) .
= max

z∈Z
⟨F(z), ẑ − z⟩

to measure the inaccuracy of a solution ẑ.

Convex minimization problems can be cast as a VI problem by defin-
ing F = ∇f for a convex function f that we wish to minimize. The VI
solutions are the minimizers of the function f . Furthermore, min-max
problems can be cast as a VI problem by defining F = [∇xϕ,−∇yϕ] for a
convex-concave function ϕ. The VI solutions are the global saddle points
of ϕ.

Like in min-max optimization, we can define a more general extragra-
dient algorithm for VIs, where the update rule is

zt+1/2 = ΠZ (zt − γtF(zt))

zt+1 = ΠZ (zt − γtF(zt+1/2)).

optimization for data science 77

Theorem 15.5. Let F be monotone and L-smooth. Set γ
.
= 1/

√
2L,

then EG satisfies

max
z∈Z

⟨F(z), z̄ − z⟩ ≤
√

2LD2
Z

T
,

where

z̄ =
1
T

T

∑
t=1

zt+1/2

and
DZ = max

z,z′∈Z
∥z − z′∥2.

Proof. We have the following update,

zt+1/2 ∈ argmin
z∈Z

∥zt − γF(zt)− z∥2

zt+1 ∈ argmin
z∈Z

∥zt − γF(zt+1/2)− z∥2.

By the optimality condition of zt+1/2, we have

2⟨zt+1/2 − zt + γF(zt), z − zt+1/2⟩ ≥ 0, ∀z ∈ Z .

This is equivalent to

2γ⟨F(zt), zt+1/2 − z⟩ ≤ ⟨zt+1/2 − zt, z − zt+1/2⟩
= ∥zt − z∥2 − ∥zt − zt+1/2∥2 − ∥zt+1/2 − z∥2. Cosine theorem.

Using the optimality condition with the update for zt+1, we get the fol-
lowing in the same way,

2γ⟨F(zt+1/2), zt+1 − z⟩ ≤ ∥zt − z∥2 −∥zt − zt+1∥2 −∥zt+1 − z∥2, ∀z ∈ Z .

Applying z = zt+1 to the first optimality condition, we get

2γ⟨F(zt), zt+1/2 − zt+1⟩ ≤ ∥zt − zt+1∥2 −∥zt − zt+1/2∥2 −∥zt+1/2 − zt+1∥2.

Combining the two above inequalities, we get

2γ⟨F(zt+1/2), zt+1/2 − z⟩
= 2γ⟨F(zt+1/2), zt+1/2 − zt+1⟩+ γ⟨F(zt+1/2), zt+1 − z⟩
= 2γ⟨F(zt+1/2)− F(zt), zt+1/2 − zt+1⟩

+ γ⟨F(zt), zt+1/2 − zt+1⟩+ γ⟨F(zt+1/2), zt+1 − z⟩
≤ 2γ∥F(zt+1/2)− F(zt)∥ · ∥zt+1/2 − zt+1∥ Cauchy-Schwarz and the above inequalities.

+ ∥zt − z∥2 − ∥zt+1 − z∥2 − ∥zt − zt+1/2∥2 − ∥zt+1/2 − zt+1∥2

≤ 2∥zt+1/2 − zt∥ · ∥zt+1/2 − zt+1∥ Smoothness and γ = 1/L.

+ ∥zt − z∥2 − ∥zt+1 − z∥2 − ∥zt − zt+1/2∥2 − ∥zt+1/2 − zt+1∥2

≤ ∥zt − z∥2 − ∥zt+1 − z∥2 ∥x∥ · ∥y∥ ≤ 1
2 ∥x∥2 + 1

2 ∥y∥2.

optimization for data science 78

By monotonicity of F, we have

γ⟨F(z), zt+1/2 − z⟩ ≤ γ⟨F(zt+1/2), zt+1/2 − z⟩.

Hence,

γ⟨F(z), zt+1/2 − z⟩ ≤ 1
2

(
∥zt − z∥2 − ∥zt+1 − z∥2

)
, ∀z ∈ Z .

Summing over all timesteps and using γ = 1/L,〈
F(z),

1
T

(
T

∑
t=1

zt+1/2

)
− z

〉
≤ L∥z1 − z∥2

2T
.

Taking the maximum w.r.t. z on both sides yields the result. ■

We can do the same for other algorithms, such as GDA, PPA, and
OGDA.

Thus, as we have seen, VI provides a unified framework to analyze a
broad class of optimization problems. However, it might not fully exploit
the underlying fine-grained structure of the problem of interest.

optimization for data science 79

References

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A conver-
gence analysis of gradient descent for deep linear neural networks.
arXiv preprint arXiv:1810.02281, 2018.

Donald Goldfarb. A family of variable-metric methods derived by varia-
tional means. Mathematics of computation, 24(109):23–26, 1970.

John Greenstadt. Variations on variable-metric methods. Mathematics of
Computation, 24(109):1–22, 1970.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale
optimization problems. SIAM Journal on Optimization, 22(2):341–362,
2012.

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, and Hoyt
Koepke. Coordinate descent converges faster with the gauss-southwell
rule than random selection. In International Conference on Machine
Learning, pages 1632–1641. PMLR, 2015.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Jour-
nal of the Royal Statistical Society Series B: Statistical Methodology, 58(1):
267–288, 1996.

	Risk minimization
	Theory of convex functions
	Gradient descent
	Projected gradient descent
	Coordinate descent
	Nonconvex functions
	The Frank-Wolfe algorithm
	Newton's method
	Quasi-Newton methods
	Subgradient methods
	Mirror descent
	Smoothing and proximal algorithms
	Stochastic optimization
	Min-max optimization
	Variational inequality problems

