THINK BEFORE STARTING THE WRITING OF A PROOF. THINK OF ALL \circ Mean-value theorem (h cont. on [a,b], diff. on (a,b)): THE NECESSARY COMPONENTS FIRST. THERE IS ENOUGH TIME.

Definitions

- o **Differentiable**: $f: \mathbb{R}^d o \mathbb{R}$ is differentiable if $f(\boldsymbol{y}) = f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + r(\boldsymbol{y} - \boldsymbol{x}),$ where $\lim_{oldsymbol{v} o oldsymbol{0}} rac{|r(oldsymbol{v})|}{\|oldsymbol{v}\|} = 0$
- o Spectral norm: $||A||_2 = \sup_{\|\boldsymbol{x}\|=1} ||A\boldsymbol{x}||$ (largest eigenvalue).
- Positive semi-definite: $\forall x \in \mathbb{R}^d$: $x^\top Ax \ge 0$.
- \circ Directional derivative: If f is diff., $\langle \nabla f(x), v \rangle = \lim_{h \to 0} \frac{f(x+hv) f(x)}{h}$
- ∘ B-Lipschitz: $\forall x, y \in \text{dom}(f)$,
- [1] $||f(\mathbf{x}) f(\mathbf{y})|| \le B||\mathbf{x} \mathbf{y}||$.
- [2] If f differentiable, $\|\nabla f(\boldsymbol{x})\| \leq B$.
- [3] If f convex, $\|g\| \leq B$, $\forall g \in \partial f(x)$ (proof: subgrad def \Rightarrow Cauchy-Schwarz).
- $\circ \ \, \textbf{Convex set} \colon \, \forall \boldsymbol{x},\boldsymbol{y} \in X, \lambda \in [0,1] \colon \, \lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y} \in X.$
- Cone: X is a cone if $\forall x \in X, \lambda > 0$: $\lambda x \in X$.
- Convexity: $\forall x, y \in \text{dom}(f)$ and $\forall \lambda \in [0, 1]$,
- [1] $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$.
- [2] $f(\boldsymbol{y}) \ge f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} \boldsymbol{x} \rangle$
- [3] $\langle \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge 0.$
- [4] $\nabla^2 f(x)$ is positive semi-definite.
- \circ Convexity preservation: Positive scaling, Sum, Max, and f(Ax + b).
- ∘ *L*-smoothness: $\forall x, y \in \text{dom}(f)$,
- [1] $\|\nabla f(x) \nabla f(y)\| \le L\|x y\|$
- [2] $g(x) := \frac{L}{2} ||x||^2 f(x)$ is convex.
- [3] $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||x y||^2$ (canonical).
- [4] $\langle \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \leq L ||\boldsymbol{x} \boldsymbol{y}||^2$.
- [5] $\|\nabla^2 f(x)\|_2 \le L$.
- [6] If f is convex and L-smooth, then f is $^1\!/_L$ -strongly convex: $f(\mathbf{y}) \ge f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle + \frac{1}{2L} ||\mathbf{x} - \mathbf{y}||^2.$
- [7] Coordinate-wise: $f(x + \lambda e_i) \leq f(x) + \lambda \nabla_i f(x) + \frac{L_i}{2} \lambda^2, \forall \lambda \in \mathbb{R}$. Relations: $[5] \Leftrightarrow [1] \Rightarrow [2] \Leftrightarrow [3] \Leftrightarrow [4]$ (If convex, all \Leftrightarrow).
- Smoothness preservation: Pos. scaling scales, Sum sums. f(Ax + b) has $L||A||_2^2$.
- μ -strong convexity: $\forall x, y \in \text{dom}(f)$,
- [1] $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + \frac{\mu}{2} ||x y||^2$ (canonical).
- [2] $g(x) := f(x) \frac{\mu}{2} ||x||^2$ is convex.
- [3] $\langle \nabla f(\boldsymbol{x}) \nabla f(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge \mu \|\boldsymbol{x} \boldsymbol{y}\|^2$ (proof: sum [1] for $(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{y}, \boldsymbol{x})$).
- [4] μ -SC \Rightarrow PL inequality: $\frac{1}{2} ||\nabla f(\boldsymbol{x})||^2 \ge \mu(f(\boldsymbol{x}) f^*)$.
- Subgradient: $g \in \partial f(x) \Leftrightarrow f(y) \ge f(x) + \langle g, y x \rangle, \forall y \in \text{dom}(f)$.
- \circ Conjugate function: $f^{\star}(m{y}) := \sup_{m{x} \in \mathrm{dom}(f)} \langle m{x}, m{y}
 angle f(m{x}).$
- Dual norm: $\|\boldsymbol{y}\|_{\star} := \max_{\|\boldsymbol{x}\| < 1} \langle \boldsymbol{x}, \boldsymbol{y} \rangle$.

Lemmas

- $\circ \frac{\mathrm{d}}{\mathrm{d}x} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}.$
- o Cosine theorem: All equivalent formulations,
- [1] $\|\boldsymbol{x} \boldsymbol{y}\|^2 = \|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 2\langle \boldsymbol{x}, \boldsymbol{y} \rangle$.
- [2] $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = \frac{1}{2} (\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|^2 \|\boldsymbol{x} \boldsymbol{y}\|^2).$
- [3] $\langle x y, x z \rangle = \frac{1}{2} (\|x y\|^2 + \|x z\|^2 \|y z\|^2).$
- Cauchy-Schwarz:
- $[1] |\langle \boldsymbol{x}, \boldsymbol{y} \rangle| \leq ||\boldsymbol{x}|| ||\boldsymbol{y}||.$
- [2] $\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$.
- [3] Titu's lemma $(b_i \ge 0)$: $\frac{\left(\sum_{i=1}^n a_i\right)^2}{\sum_{i=1}^n b_i} \le \sum_{i=1}^n \frac{a_i^2}{b_i}$ (proof: $a_i' = \frac{a_i}{\sqrt{b_i}}, b_i' = \sqrt{b_i}$).
- Hölder's inequality (special case): $|\langle x, y \rangle| \leq ||x||_1 ||y||_{\infty}$.
- Parallelogram law: $2||x||^2 + 2||y||^2 = ||x + y||^2 + ||x y||^2$.
- $\circ \ \ \text{Jensen's inequality} \ (\varphi \ \text{convex}, \ a_i \geq 0) : \ \varphi\Big(\frac{\sum_{i=1}^m a_i x_i}{\sum_{i=1}^m a_i}\Big) \leq \frac{\sum_{i=1}^m a_i \varphi(x_i)}{\sum_{i=1}^m a_i}$
- $\quad \quad \circ \ \, \text{Fenchel's inequality:} \ \, \langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq f(\boldsymbol{x}) + f^{\star}(\boldsymbol{x}) \Rightarrow \langle \boldsymbol{x}, \boldsymbol{y} \rangle \leq \frac{1}{2} \big(\|\boldsymbol{x}\|^2 + \|\boldsymbol{y}\|_{\star}^2 \big).$
- \circ Young's inequality $(a,b\geq 0,\frac{1}{p}+\frac{1}{q}=1)$: $ab\leq \frac{a^p}{p}+\frac{b^q}{q}$ $\Rightarrow ||x|| ||y|| \le \frac{1}{2} (||x||^2 + ||y||^2).$
- $\circ \frac{1}{\sqrt{d}} \|\boldsymbol{x}\|_2 \le \|\boldsymbol{x}\|_{\infty} \le \|\boldsymbol{x}\|_2 \le \|\boldsymbol{x}\|_1 \le \sqrt{d} \|\boldsymbol{x}\|_2.$
- $\circ \|Ax\| \le \|A\|_2 \|x\|.$
- ||A||₂ ≤ ||A||_F.

$$h'(c) = \frac{h(b) - h(a)}{b - a}, \quad \exists c \in (a, b).$$

Fund. theorem of calculus (h diff. on [a,b], h' cont. on [a,b]):

$$h(b) - h(a) = \int_a^b h'(t) dt.$$

- $\circ \left\| \int_0^1 \nabla h(t) dt \right\| \le \int_0^1 \|\nabla h(t)\| dt.$
- $\circ \int_{0}^{1} c dt = c, \quad \int_{0}^{1} t dt = \frac{1}{2}.$
- Subgradient calculus:
- [1] $h(\mathbf{x}) = \alpha f(\mathbf{x}) + \beta g(\mathbf{x}) \Rightarrow \partial h(\mathbf{x}) = \alpha \cdot \partial f(\mathbf{x}) + \beta \cdot \partial g(\mathbf{x}).$
- [2] $h(\mathbf{x}) = f(A\mathbf{x} + \mathbf{b}) \Rightarrow \partial h(\mathbf{x}) = A^{\top} \partial f(A\mathbf{x} + \mathbf{b})$.
- [3] $h(\mathbf{x}) = \max f_i(\mathbf{x}) \Rightarrow \partial h(\mathbf{x}) = \operatorname{conv}(\{\partial f_i(\mathbf{x}) \mid f_i(\mathbf{x}) = h(\mathbf{x})\}).$
- o If f is differentiable at x, then $\partial f(x) \subseteq {\nabla f(x_t)}$.
- o If f is convex, then $\partial f(x) \neq \emptyset$ for all in x in the relative interior.
- o If dom(f) convex and $\partial f(x) \neq \emptyset, \forall x \in dom(f)$, then f is convex.
- If f is strictly concave, the subgradient exists nowhere.
- \circ For $p \geq 1$, $rac{1}{p} + rac{1}{q} = 1$, we have dual norms, $\|\cdot\|_{p,\star} = \|\cdot\|_q$.

Optimality lemmas (assume convexity)

The constrained and non-diff. cases are useful when update rule contains argmin .

- o x^* is a local minimum: $\exists \epsilon > 0$ such that $f(x^*) \leq f(y), \forall y : ||x^* y|| \leq \epsilon$.
- ∇f(x*) = 0.
- Constrained: $\langle \nabla f(\boldsymbol{x}^{\star}), \boldsymbol{x} \boldsymbol{x}^{\star} \rangle \geq 0, \forall \boldsymbol{x} \in X.$
- Non-differentiable: $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

Common tricks

- Rearrange the update rule for an equality. E.g., $\nabla f(x_t) = \frac{x_t x_{t+1}}{\gamma_t}$.
- Define $h(t) \coloneqq f({m x} + t({m y} {m x}))$, where $h'(t) =
 abla f({m x} + t({m y} {m x}))^{ op}({m y} {m x})$ and use with FTOC: $f(y) - f(x) = \int_0^1 \nabla f(x + t(y - x))^\top (y - x) dt$. Or, mean-value theorem: $\exists c \in (0,1) : \nabla f(\boldsymbol{x} + c(\boldsymbol{y} - \boldsymbol{x}))^{\top}(\boldsymbol{y} - \boldsymbol{x}) = f(\boldsymbol{y}) - f(\boldsymbol{x}).$
- Projection is non-expansive: $\|\Pi_X(x) \Pi_X(y)\| \le \|x y\|$.
- $\circ \min_{1 \le t \le T} f(\boldsymbol{x}_t) f^* \le \frac{\sum_{t=1}^T \gamma_t (f(\boldsymbol{x}_t) f^*)}{\sum_{t=1}^T \gamma_t}.$
- \circ Telescoping sum inequality: $\sum_{t=1}^T \| m{x}_t m{x}^\star \|^2 \| m{x}_{t+1} m{x}^\star \|^2 \le \| m{x}_1 m{x}^\star \|^2$.
- A monotone and bounded sequence has a limit.
- If a value α is unknown for an algorithm. Start with a lower bound (or just $\tilde{\alpha}_0=1)$ and run the algorithm, doubling every time $\tilde{\alpha}_{t+1}=2\cdot \tilde{\alpha}_t$ it is incorrect. This does not increase complexity because, in the end, $\tilde{\alpha}_T\leq 2\alpha$ and all the previous values with their iterations are a constant factor, smaller than the final run.
- \circ To find the optimal γ^* that minimizes bound $q(\gamma)$, use 1st-order opt: $q(\gamma^*)\stackrel{!}{=} 0$.
- $\circ \max\{a, b\} \le a + b \text{ if } a, b \ge 0.$
- $\circ \sum_{t=1}^{T} \frac{1}{\sqrt{t}} = \mathcal{O}(\sqrt{T}), \quad \sum_{t=1}^{T} \frac{1}{t} = \mathcal{O}(\log T).$
- $\circ \ \|\boldsymbol{x}\| = \|\boldsymbol{x} \boldsymbol{y} + \boldsymbol{y}\| \le \|\boldsymbol{x} \boldsymbol{y}\| + \|\boldsymbol{y}\|, \ \|\boldsymbol{x} \boldsymbol{y}\| \le \|\boldsymbol{x}\| + \|\boldsymbol{y}\| \\ \Rightarrow \|\boldsymbol{x} \boldsymbol{y}\| \|\boldsymbol{y}\| \le \|\boldsymbol{x}\| \le \|\boldsymbol{x} \boldsymbol{y}\| + \|\boldsymbol{y}\|.$
- $0 \quad 1 x \le \exp(-x), \forall x \ge 0 \Rightarrow (1 x)^y \le \exp(-xy), \forall x \ge 0, y \in \mathbb{R}.$

IMPORTANT TIPS TO KEEP IN MIND

- When showing convexity, make sure to show that the domain is a convex set.
- If f is convex and want to use the subgradient, state that it exists bc of convexity.
- If something is obviously false, still provide a counterexample.
- \circ Keep in mind divisions by 0 when defining functions. For example, when dividing by norm. Then, the gradient is not defined \Rightarrow Use subgradient.
- Structure of a proof:
- [1] State what needs to be shown exactly and mark by (\star) .
- State the assumptions of the question and their implications (think about which implications are relevant to the proof).
- [3] Proof should follow easily: "Hence, (\star) holds and the proof is concluded.".
- o If need to show that something does not exist, use proof by contradiction.
- If γ_t is timestep-dependent, generally need to use induction

Expectation and variance for SGD

- $o \operatorname{Var}[\boldsymbol{X}] := \mathbb{E}[\|\boldsymbol{X} \mathbb{E}[\boldsymbol{X}]\|^2] = \mathbb{E}[\|\boldsymbol{X}\|^2] \|\mathbb{E}[\boldsymbol{X}]\|^2.$ $\Rightarrow \quad \mathbb{E}[\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)\|^2] = \|\nabla F(\boldsymbol{x}_t)\|^2 + \mathbb{E}[\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t) - \nabla F(\boldsymbol{x}_t)\|^2]$ $< \|\nabla F(\boldsymbol{x}_t)\|^2 + \sigma^2.$
- Law of total expectation: $\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}_X[X \mid Y]]$.
- Law of total variance: $Var[Y] = \mathbb{E}_X[Var_Y[Y \mid X]] + Var_Y[\mathbb{E}_X[Y \mid X]].$
- $\circ \operatorname{Var}[X Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] 2 \cdot \operatorname{Cov}(X, Y).$

Risk minimization

- \circ Unknown distribution P. We only have access to samples $X_1,\ldots,X_n\sim P.$ We want to explain data source X through these samples by minimizing risk.
- $\circ \ \, \text{Expected risk} \colon \ell(H) := \mathbb{E}_X[\ell(H,X)].$
- Empirical risk: $\ell_n(H) := \frac{1}{n} \sum_{i=1}^n \ell(H, X_i)$.
- Probably approximately correct (PAC): Let $\epsilon, \delta > 0$, $\tilde{H} \in \mathcal{H}$ is PAC if, with probability at least 1δ , $\ell(\tilde{H}) \leq \inf_{H \in \mathcal{H}} \ell(H) + \epsilon$.
- $\text{o Weak law of large numbers (WLLM): } \text{Let } H \in \mathcal{H} \text{ be } \underline{\text{fixed}}. \text{ For any } \delta, \epsilon > 0, \\ \text{there exists } n_0 \in \mathbb{N} \text{ such that for } n \geq n_0, \ |\ell_n(H) \ell(H)| \leq \epsilon \text{ with probability at least } 1 \delta. \\ \end{aligned}$

$$\ell(\tilde{H}_n) \overset{\text{uniform WLLM}}{\leq} \ell_n(\tilde{H}_n) + \epsilon \overset{\text{emp. risk min.}}{\leq} \inf_{H \in \mathcal{H}} \ell_n(H) + 2\epsilon \overset{\text{uniform WLLM}}{\leq}$$

- \circ Empirical risk minimization ($\ell_n(H_n)$: empirical, training; $\ell(H_n)$: expected, validation): We want generalization and learning,
 - \circ (Low $\ell_n(H_n)$, High $\ell(H_n)$): Overfitting (theory is too complex).
 - \circ (High $\ell_n(H_n)$, High $\ell(H_n)$): Underfitting (theory is too simple).
 - o (Low $\ell_n(H_n)$, Low $\ell(H_n)$): Learning.
 - \circ $(\ell_n(H_n) \approx \ell(H_n))$: Generalization.
 - o Regularization: Punish complex hypotheses.
 - $\begin{array}{ll} \circ \ \text{W.h.p.} \ \text{we do not have high} \ \ell_n(H_n), \ \text{low} \ \ell(H_n), \ \text{because} \ \ell_n(H_n) \ \leq \\ \inf_{H \in \mathcal{H}} \ell_n(H) + \epsilon \leq \ell_n(\check{H}) + \epsilon \leq \ell(\check{H}) + 2\epsilon \leq \ell(\check{H}_n) + 3\epsilon. \end{array}$

Non-linear programming

Optimization problem:

minimize	

$$f_0(\boldsymbol{x})$$

$$f_i(\boldsymbol{x}) \le 0, \quad i \in [m]$$

$$h_j(\boldsymbol{x}) = 0, \quad j \in [p].$$

- Problem domain: $X = \left(\bigcap_{i=0}^m \operatorname{dom}(f_i)\right) \cap \left(\bigcap_{j=1}^p \operatorname{dom}(h_j)\right)$.
- o Convex program: All f_i are convex and all h_i are affine with domain \mathbb{R}^d .
- o Lagrangian: $L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) := f_0(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i f_i(\boldsymbol{x}) + \sum_{j=1}^p \nu_j h_j(\boldsymbol{x}).$
- o Lagrange dual function: $g(\lambda, \nu) := \inf_{x \in X} L(x, \lambda, \nu)$.
- Weak Lagrange duality ($\lambda \ge 0$, x is feasible): $g(\lambda, \nu) \le f_0(x)$.
- o **Lagrange dual problem** (convex program, even if primal is not): maximize $a(\lambda, \nu)$

subject to

` \

- o If a convex program has a feasible solution \bar{x} that is a Slater point $(f_i(\bar{x}) < 0, \forall i \in [m])$, then $\max_{\lambda \geq 0, \nu} g(\lambda, \nu) = \inf_{x \in X} f_0(x)$.
- **Zero duality gap**: Feasible solutions \tilde{x} and $(\tilde{\lambda}, \tilde{\nu})$ have zero duality gap if $f_0(\tilde{x}) = g(\tilde{\lambda}, \tilde{\nu})$ ($\Rightarrow \tilde{x}$ is a minimizer of primal).
- o KKT necessary: Zero duality gap $\Rightarrow \tilde{\lambda} f_i(\tilde{x}) = 0, \forall i \in [m]$ (complementary slackness) and $\nabla_x L(\tilde{x}, \tilde{\lambda}, \tilde{\nu}) = 0$ (vanishing Lagrangian gradient).
- KKT sufficient: Convex program, complementary slackness, and vanishing Lagrangian gradient

 Zero duality gap.

Complementary slackness $(f_0(\tilde{x})=L(\tilde{x},\tilde{\lambda},\tilde{\nu}))\Rightarrow L$ is convex in x and gradient is zero, so \tilde{x} is a global minimizer.

 \circ Program maybe not solvable, but if Slater point, then a solution exists \Rightarrow Only need to show that the KKT conditions are satisfied.

Gradient descent

- Update rule: $x_{t+1} = x_t \gamma \nabla f(x_t)$.
- $\hspace{0.5cm} \circ \hspace{0.1cm} \textbf{VA} \hspace{-0.1cm} : \hspace{0.1cm} \sum_{t=0}^{T-1} (f(\boldsymbol{x}_t) f^{\star}) \leq \frac{\gamma}{2} \sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}_t)\|^2 + \frac{1}{2\gamma} \|\boldsymbol{x}_0 \boldsymbol{x}^{\star}\|^2.$

1st-order convexity on $(\boldsymbol{x}^\star, \boldsymbol{x}_t) \Rightarrow \nabla f(\boldsymbol{x}_t) = \frac{\boldsymbol{x}_t - \boldsymbol{x}_{t+1}}{\gamma} \Rightarrow$ Cosine theorem $\Rightarrow \boldsymbol{x}_t - \boldsymbol{x}_{t+1} = \gamma \nabla f(\boldsymbol{x}_t) \Rightarrow$ Telescoping sum.

o Sufficient decrease (L-smooth, $\gamma := \frac{1}{L}$): $f(x_{t+1}) \leq f(x_t) - \frac{1}{2L} \|\nabla f(x_t)\|^2$.

Smoothness on $(m{x}_{t+1}, m{x}_t) \Rightarrow m{x}_{t+1} - m{x}_t = -rac{1}{L}
abla f(m{x}_t).$

- \circ Convergence results: $(\|\boldsymbol{x}_0 \boldsymbol{x}^\star\| \leq R)$
 - $\circ \ (B\text{-Lipschitz, convex, } \gamma \coloneqq \frac{R}{B\sqrt{T}}) \ \frac{1}{T} \sum_{t=0}^{T-1} (f(\boldsymbol{x}_t) f^\star) \leq \frac{RB}{\sqrt{T}}.$

Apply bounds to VA and find γ by 1st-order optimality.

 \circ (L-smooth, convex, $\gamma \coloneqq \frac{1}{L}$) $f(\boldsymbol{x}_T) - f^\star \le \frac{L}{2T} \|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|^2$

Sufficient decrease to bound gradients of VA with telescoping sum.

 $\circ \ (\textit{L}\text{-smooth, } \mu\text{-SC, } \gamma \coloneqq \frac{1}{L}) \ f(\boldsymbol{x}_T) - f^\star \leq \frac{L}{2} \left(1 - \frac{\mu}{L}\right)^T \|\boldsymbol{x}_0 - \boldsymbol{x}^\star\|^2$

Use μ -SC to strengthen VA bound for squared norm \Rightarrow Upper bound "noise" with $f^{\star} \leq f(x_{t+1})$ and SD \Rightarrow Smoothness on (x^{\star}, x_T) .

Accelerated gradient descent:

$$egin{aligned} m{y}_{t+1} &= m{x}_t - rac{1}{L}
abla f(m{x}_t) \ m{z}_{t+1} &= m{z}_t - rac{t+1}{2L}
abla f(m{x}_t) \ m{x}_{t+1} &= rac{t+1}{t+3} m{y}_{t+1} + rac{2}{t+3} m{z}_{t+1}. \end{aligned}$$

Projected gradient descent

 \circ **Update rule** ($X \subset \mathbb{R}^d$ is closed and convex):

$$\boldsymbol{y}_{t+1} = \boldsymbol{x}_t - \gamma \nabla f(\boldsymbol{x}_t)$$

$$x_{t+1} = \Pi_X(y_{t+1}) := \underset{x \in X}{\operatorname{argmin}} ||x - y_{t+1}||^2.$$

- **Projection onto** ℓ_1 **-ball** can be done in $\mathcal{O}(d \log d)$.
- 1. $(\boldsymbol{x} \in X, \boldsymbol{y} \in \mathbb{R}^d)$: $\langle \boldsymbol{x} \Pi_X(\boldsymbol{y}), \boldsymbol{y} \Pi_X(\boldsymbol{y}) \rangle \leq 0$.
 - Constrained 1st-order optimality \Rightarrow Rearrange.
- 2. $(\boldsymbol{x} \in X, \boldsymbol{y} \in \mathbb{R}^d)$: $\|\boldsymbol{x} \Pi_X(\boldsymbol{y})\|^2 + \|\boldsymbol{y} \Pi_X(\boldsymbol{y})\|^2 \le \|\boldsymbol{x} \boldsymbol{y}\|^2$.
 - Cosine theorem on (1).
- \circ If $oldsymbol{x}_{t+1} = oldsymbol{x}_t$, then $oldsymbol{x}_t = oldsymbol{x}^\star$.
 - Use (1) and $oldsymbol{x}_{t+1} = oldsymbol{x}_t$ to show that 1st-order optimality holds.
- Projected SD: $f(x_{t+1}) \le f(x_t) \frac{1}{2L} \|\nabla f(x_t)\|^2 + \frac{L}{2} \|y_{t+1} x_{t+1}\|^2$.

Smoothness on
$$(x_{t+1}, x_t) \Rightarrow \nabla f(x_t) = L(y_{t+1} - x_t) \Rightarrow \text{Cosine theorem} \Rightarrow y_{t+1} - x_t = -\frac{1}{L} \nabla f(x_t).$$

 \Box

 \Box

 \circ (L-smooth, convex, $\gamma := rac{1}{L}$): $f(m{x}_T) - f^\star \leq rac{L}{2T} \|m{x}_0 - m{x}^\star\|^2$.

VA with additional term $(y_{t+1}$ instead of x_{t+1} and use (2)) and bound gradients with projected SD. Additional terms cancel.

Coordinate descent

- \circ Update rule: $oldsymbol{x}_{t+1} = oldsymbol{x}_t \gamma_i
 abla_i f(oldsymbol{x}_t) oldsymbol{e}_i, \quad i \in [d].$
- \circ Coordinate-wise SD: $f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t) \frac{1}{2L_i} |\nabla_i f(\boldsymbol{x}_t)|^2$.

CW smoothness with
$$\lambda = \frac{-\nabla_i f(m{x}_t)}{L_i}$$
 such that $m{x}_{t+1} = m{x}_t + \lambda m{e}_i.$

 \circ Convergence results (μ -PL, \mathcal{L} -CS, $ar{L} = rac{1}{d} \sum_{i=1}^d L_i$, $\gamma_i \coloneqq rac{1}{L_i}$):

 \circ (L-smooth, μ -PL, $i \sim \mathrm{Unif}([d])$)

$$\mathbb{E}[f(\boldsymbol{x}_T) - f^{\star}] \leq \left(1 - \frac{\mu}{dL}\right)^T (f(\boldsymbol{x}_0) - f^{\star}).$$

$$\mathsf{CW} \; \mathsf{SD} \Rightarrow \mathbb{E}_i[\cdot \mid \boldsymbol{x}_t] \Rightarrow \mathsf{Use} \; \mathsf{sample} \; \mathsf{prob.} \; \Rightarrow \mathsf{PL} \Rightarrow \mathbb{E}_{\boldsymbol{x}_t} \; \mathsf{(LoTE)}.$$

 $\circ \left(\mu\text{-PL}, i \sim \operatorname{Cat}(L_1/\sum_{j=1}^d L_j, \dots, L_d/\sum_{j=1}^d L_j)\right)$

$$\mathbb{E}[f(\boldsymbol{x}_T) - f^{\star}] \leq \left(1 - \frac{\mu}{dL}\right)^T (f(\boldsymbol{x}_0) - f^{\star}).$$

Same as above with different probabilities. $\bar{L} := \frac{1}{d} \sum_{i=1}^d L_i$.

 $\text{$\circ$ $(L$-smooth, μ_1-SC w.r.t. $\ell_1 \Rightarrow \mu_1$-PL w.r.t. ℓ_∞, $i \in \mathop{\mathrm{argmax}}_{j \in [d]} |\nabla_j f(\boldsymbol{x}_t)|$) $ f(\boldsymbol{x}_T) - f^\star \leq \left(1 - \frac{\mu}{dL}\right)_T^T (f(\boldsymbol{x}_0) - f^\star)$

 $f(\boldsymbol{x}_T) - f^* \leq \left(1 - \frac{\mu_1}{L}\right)^T (f(\boldsymbol{x}_0) - f^*).$

 $\mathsf{CW} \; \mathsf{SD} \Rightarrow \ell_\infty \; \mathsf{because} \; \mathsf{of} \; \mathsf{update} \; \mathsf{rule} \Rightarrow \mathsf{PL}.$

 $\frac{1}{\sqrt{d}} \| \boldsymbol{x} - \boldsymbol{y} \|_2 \le \| \boldsymbol{x} - \boldsymbol{y} \|_1 \le \| \boldsymbol{x} - \boldsymbol{y} \|_2 \Rightarrow \frac{\mu}{d} \le \mu_1 \le \mu.$

Nonconvex functions

П

 $\quad \quad \circ \ \, \big(L\text{-smooth, } \gamma \coloneqq \tfrac{1}{L}, \ \exists \boldsymbol{x}^\star\big) \colon \ \tfrac{1}{T} \textstyle \sum_{t=0}^{T-1} \|\nabla f(\boldsymbol{x}_t)\|^2 \leq \tfrac{2L}{T} (f(\boldsymbol{x}_0) - f^\star).$

SD does not require convexity. Rewrite with telescoping sum.

 $\Rightarrow \lim_{t\to\infty} \|\nabla f(\boldsymbol{x}_t)\| = 0.$

- \circ Trajectory analysis: Optimize $f(x) := \frac{1}{2} \left(\prod_{k=1}^d x_k 1 \right)^2$.
- $\circ \ \tfrac{\partial f(\boldsymbol{x})}{\partial x_i} = \left(\prod_k x_k 1\right) \prod_{k \neq i} x_k \ (\nabla f(\boldsymbol{x}) = \boldsymbol{0} \text{ if 2 dims are } 0 \text{ or all } 1\right).$
- $\circ \frac{\partial^2 f(\mathbf{x})}{\partial x_*^2} = \left(\prod_{k \neq i} x_k\right)^2.$
- $\circ \ \frac{\partial^2 f(\mathbf{x})}{\partial x_i \ \partial x_j} = 2 \prod_{k \neq i} x_k \prod_{k \neq j} x_k \prod_{k \neq i,j} x_k, \text{ if } i \neq j.$
- o c-balanced: Let x > 0, $c \ge 1$. x is c-balanced if $x_i \le c \cdot x_i, \forall i, j \in [d]$.
- o If x_t is c-balanced, $\gamma > 0$, then x_{t+1} is c-balanced and $x_{t+1} \geq x_t$.

 \circ If $oldsymbol{x}$ is c-balanced, then for any $I\subseteq [d]$, we have

en for any
$$I\subseteq [a]$$
, we have
$$\prod_{k\not\in I}x_k\le c^{|I|}\Biggl(\prod_{k=1}^dx_k\Biggr)^{1-|I|/d}\le c^{|I|}.$$

 \circ Let $oldsymbol{x}$ be c-balanced and $\prod_k x_k \leq 1$, then

$$\|\nabla^2 f(\boldsymbol{x})\|_2 \le \|\nabla^2 f(\boldsymbol{x})\|_F \le 3dc^2.$$

Thus, f is smooth along the whole trajectory of GD with $L=3dc^2$.

- \circ Convergence $(\gamma:=rac{1}{3dc^2},\ x_0>\mathbf{0}$ and c-balanced, $\delta \leq \prod_k x_{0,k}<1)$ $f(x_T) \leq \left(1-rac{\delta^2}{3c^4}
 ight)^T f(x_0).$
- o δ decays polynomially in d, so we must start $\mathcal{O}(1/\sqrt{d})$ from $m{x}^\star = \mathbf{1}$.

Frank-Wolfe

- \circ Linear minimization oracle: $\mathrm{LMO}_X(g) := \mathrm{argmin}_{m{z} \in X} \langle g, m{z} \rangle$. If $g = \mathbf{0}$, any $m{z}$ minimizes.
- Update rule: $x_{t+1} = (1 \gamma_t)x_t + \gamma_t s_t$, $s_t = \text{LMO}_X(\nabla f(x_t))$.
- o If X = conv(A), then $\text{LMO}_X(g) \in A$: Easy optimization problem in $\mathcal{O}(|A|)$.
- o Advantages: (1) Iterates are always feasible if X is convex, (2) No projections, (3) Iterates \boldsymbol{x}_T have simple sparse representations as convex combination of $\{\boldsymbol{x}_0,\boldsymbol{s}_0,\ldots,\boldsymbol{s}_{T-1}\}$: $\boldsymbol{x}_T = \left(\prod_{t=0}^{T-1}1-\gamma_t\right)\boldsymbol{x}_0 + \sum_{t=0}^{T-1}\gamma_t\left(\prod_{\tau=t+1}^{T-1}1-\gamma_\tau\right)\boldsymbol{s}_t$.
- o ℓ_1 -ball LMO: LMO $(g) = -\operatorname{sgn}(g_i)e_i, i \in \operatorname{argmax}_{j \in [d]} |g_j|$.
- o Spectahedron LMO: $\mathrm{LMO}_X(\mathrm{G}) = \operatorname*{argmin}_{\mathrm{tr}(Z)=1} G \odot Z = v_1 v_1^{\top}$, where v_1 is the eigenvector associated with the smallest eigenvalue of G.
- $\quad \text{O Lality gap: } g(\boldsymbol{x}) := \langle \nabla f(\boldsymbol{x}), \boldsymbol{x} \boldsymbol{s} \rangle, \boldsymbol{s} = \mathrm{LMO}_X(\nabla f(\boldsymbol{x}))$
- Upper bound of optimality gap (convex): $g(x) \ge f(x) f^*$.

$$g(x) = \langle \nabla f(x), x - s \rangle \ge \langle \nabla f(x), x - x^* \rangle \ge f(x) - f^*.$$

- o Descent lemma: $f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t) \gamma_t g(\boldsymbol{x}_t) + \gamma_t^2 \frac{L}{2} \|\boldsymbol{s}_t \boldsymbol{x}_t\|^2$
- Convergence (*L*-smooth, convex, *X* is compact, $\gamma_t = \frac{2}{t+2}$): $f(\boldsymbol{x}_T) f^* \leq \frac{4C}{T+1}, \quad C = \frac{L}{2} \operatorname{diam}(X)^2.$

Lemma
$$-f^\star\Rightarrow$$
 Use $g(x)\geq f(x)-f^\star\Rightarrow$ Rearrange and induction.

 \circ Affine equivalence: (f,X) and (f',X') are affinely equivalent if f'(x)=f(Ax+b) and $X'=\{A^{-1}(x-b)\mid x\in X\}$. Then,

$$\nabla f'(\mathbf{x}') = A^{\top} \nabla f(\mathbf{x}), \quad \mathbf{x}' = A^{-1}(\mathbf{x} - \mathbf{b})$$

$$LMO_{X'}(\nabla f'(\mathbf{x}')) = A^{-1}(\mathbf{s} - \mathbf{b}), \quad \mathbf{s} = LMO_X(\nabla f(\mathbf{x})).$$

Curvature constant:

$$C_{(f,X)} \coloneqq \sup_{\substack{\boldsymbol{x},\boldsymbol{s} \in X, \gamma \in (0,1] \\ \boldsymbol{y} = (1-\gamma)\boldsymbol{x} + \gamma \boldsymbol{s}}} \frac{1}{\gamma^2} (f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle).$$

 \circ Affine invariant convergence (same ass.): $f(\boldsymbol{x}_T) - f^\star \leq \frac{4C_{(f,X)}}{T+1}.$

Descent lemma w.r.t. $C_{(f,X)}$ by setting $\boldsymbol{x}=\boldsymbol{x}_t, \boldsymbol{s}=\mathrm{LMO}_X(\nabla f(\boldsymbol{x}_t)), \gamma=\gamma_t, \boldsymbol{y}=\boldsymbol{x}_{t+1}$ in the supremum. Proof follows in the same way.

 \circ Convergence of $g(\boldsymbol{x}_t)$: $\min_{1 \leq t \leq T} g(\boldsymbol{x}_t) \leq \frac{^{27/2} \cdot C_{(f,X)}}{T+1}$.

Newton's method

- \circ Update rule: $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t \nabla^2 f(\boldsymbol{x}_t)^{-1} \nabla f(\boldsymbol{x}_t)$.
- o Interp: (1) Adaptive gradient descent, (2) Min. 2nd-order Taylor approx. at \boldsymbol{x}_t : $\boldsymbol{x}_{t+1} \in \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^d} f(\boldsymbol{x}_t) + \nabla f(\boldsymbol{x}_t)^\top (\boldsymbol{x} \boldsymbol{x}_t) + \frac{1}{2} (\boldsymbol{x} \boldsymbol{x}_t)^\top \nabla^2 f(\boldsymbol{x}_t) (\boldsymbol{x} \boldsymbol{x}_t).$
- $\begin{array}{l} \circ \ \ \text{Convergence} \ (\|\nabla^2 f(\boldsymbol{x})^{-1}\| \leq \frac{1}{\mu}, \ \|\nabla^2 f(\boldsymbol{x}) \nabla^2 f(\boldsymbol{y})\| \leq B\|\boldsymbol{x} \boldsymbol{y}\|) \\ \|\boldsymbol{x}_{t+1} \boldsymbol{x}^\star\| \leq \frac{B}{2\mu}\|\boldsymbol{x}_t \boldsymbol{x}^\star\|^2. \end{array}$

 $\begin{aligned} & x_{t+1} - x^\star \leq x_t - x^\star + H(x_t)^{-1} (\nabla f(x^\star) - \nabla f(x_t)) \Rightarrow h(t) \coloneqq \nabla f(x + t(x^\star - x)) \\ & \text{with fundamental theorem of calculus} \Rightarrow \text{Take norm of both sides and simplify} \\ & \text{using } \|Ax\| = \|A\|_2 \|x\| \text{ and assumptions.} \end{aligned}$

- $\circ\,$ Ensure bounded inverse Hessians by requiring strong convexity over X.
- $\circ \ \text{ If } \| \boldsymbol{x}_0 \boldsymbol{x}^\star \| \leq \tfrac{\mu}{B} \text{, then } \| \boldsymbol{x}_T \boldsymbol{x}^\star \| \leq \tfrac{\mu}{B} \left(\tfrac{1}{2} \right)^{2^T 1}$

Quasi-Newton methods

- o Time complexity of Hessian is $\mathcal{O}(d^3) \Rightarrow \mathsf{Approximate}$ by H_t .
- Secant condition: $\nabla f(\boldsymbol{x}_t) \nabla f(\boldsymbol{x}_{t-1}) = H_t(\boldsymbol{x}_t \boldsymbol{x}_{t-1}).$
- \circ Idea: We wanted Hessian to fluctuate little in regions of fast convergence \Rightarrow Update $H_t^{-1} = H_{t-1}^{-1} + E_t$ while minimizing $\|AEA^\top\|_F^2$ for some invertible A.
- $\bullet \ H := H_{t-1}^{-1}, \ H' := H_t^{-1}, \ E := E_t, \ \boldsymbol{\sigma} := \boldsymbol{x}_t \boldsymbol{x}_{t-1}, \ \boldsymbol{y} := \nabla f(\boldsymbol{x}_t) \nabla f(\boldsymbol{x}_{t-1}),$ $\boldsymbol{r} := \boldsymbol{\sigma} H \boldsymbol{y}.$ Convex program:
 - minimize $\frac{1}{2}\|AEA^\top\|_F^2$ subject to $E\boldsymbol{y}=\boldsymbol{r} \qquad \text{(secant condition)}$ $E^\top-E=0. \qquad \text{(symmetry)}$

Greenstadt method ($\mathcal{O}(d^2)$): Solving (with Lagrange multipliers) yields

$$E^{\star} = \frac{1}{\boldsymbol{y}^{\top} M \boldsymbol{y}} \left(\boldsymbol{\sigma} \boldsymbol{y}^{\top} M + M \boldsymbol{y} \boldsymbol{\sigma}^{\top} - H \boldsymbol{y} \boldsymbol{y}^{\top} M - M \boldsymbol{y} \boldsymbol{y}^{\top} H \right.$$
$$\left. - \frac{1}{\boldsymbol{y}^{\top} M \boldsymbol{y}} \left(\boldsymbol{y}^{\top} \boldsymbol{\sigma} - \boldsymbol{y}^{\top} H \boldsymbol{y} \right) M \boldsymbol{y} \boldsymbol{y}^{\top} M \right)$$

for some matrix parameter M (induced by A).

- $\text{ BFGS: Set } M = H' \text{: } E^\star = \frac{1}{y^\top \sigma} \Big(-H y \sigma^\top \sigma y^\top H + \Big(1 + \frac{y^\top H y}{y^\top \sigma} \Big) \sigma \sigma^\top \Big).$ Equivalent update: $H' = \Big(I \frac{\sigma y^\top}{y^\top \sigma} \Big) H \Big(I \frac{y \sigma^\top}{y^\top \sigma} \Big) + \frac{\sigma \sigma^\top}{y^\top \sigma}.$
- \circ L-BFGS ($\mathcal{O}(md)$): Recursive BFGS and only go down m steps.

Subgradient method

- Until now, we have only considered smooth (and hence differentiable) functions ⇒
 Generalize notion of gradient.
- \circ Update rule: $\boldsymbol{x}_{t+1} = \Pi_X(\boldsymbol{x}_t \gamma_t \boldsymbol{g}_t), \quad \boldsymbol{g}_t \in \partial f(\boldsymbol{x}_t).$
- $\qquad \qquad \text{Lemma (convex): } \| \boldsymbol{x}_{t+1} \boldsymbol{x}^\star \|^2 \leq \| \boldsymbol{x}_t \boldsymbol{x}^\star \|^2 2\gamma_t (f(\boldsymbol{x}_t) f^\star) + \gamma_t^2 \| \boldsymbol{g}_t \|^2.$
 - Norm of update rule $-x^* \Rightarrow \Pi_X$ is non-expansive \Rightarrow Cosine theorem \Rightarrow Subgradient definition on (x^*, x_t) (exists because of convexity).
- $\circ \ \, (\mathsf{convex}): \ \, \min_{1 \leq t \leq T} f(\boldsymbol{x}_t) f^\star \leq \frac{\|\boldsymbol{x}_1 \boldsymbol{x}^\star\|^2 + \sum_{t=1}^T \gamma_t^2 \|\boldsymbol{g}_t\|^2}{2 \sum_{t=1}^T \gamma_t}.$
 - Rearrange "descent" lemma \Rightarrow Sum and divide by $\sum_{t=1}^{T} \gamma_t$.
- \circ (μ -SC, B-Lipschitz, $\gamma_t := \frac{2}{\mu(t+1)}$): $\min_{1 \le t \le T} f(\boldsymbol{x}_t) f^\star \le \frac{2B^2}{\mu(T+1)}$.
 - Adapt "descent" lemma with μ -SC \Rightarrow Def. of γ_t and $\|g_t\| \leq B$.

Mirror descent

- \circ Exploit non-Euclidean geometry of convex set X.
- \circ Bregman divergence: Let $\omega:\Omega\to\mathbb{R}$ be continuously differentiable on Ω and 1-SC w.r.t. some norm $\|\cdot\|$. Then,

$$V_{\omega}(\boldsymbol{x}, \boldsymbol{y}) := \omega(\boldsymbol{x}) - \omega(\boldsymbol{y}) - \langle \nabla \omega(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle.$$

- $\begin{array}{l} \circ \ \ \text{Properties:} \ V_{\omega}(\boldsymbol{x},\boldsymbol{y}) \geq 0; \ V_{\omega}(\boldsymbol{x},\boldsymbol{y}) \ \text{is convex in} \ \boldsymbol{x}; \ V_{\omega}(\boldsymbol{x},\boldsymbol{y}) = 0 \ \text{iff} \ \boldsymbol{x} = \boldsymbol{y}; \\ V_{\omega}(\boldsymbol{x},\boldsymbol{y}) \geq \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^2; \ \text{and} \ \nabla_{\boldsymbol{x}}V_{\omega}(\boldsymbol{x},\boldsymbol{y}) = \nabla\omega(\boldsymbol{x}) \nabla\omega(\boldsymbol{y}). \end{array}$
- $\circ \ \ \textbf{3-point id.}: \ V_{\omega}(\boldsymbol{x},\boldsymbol{z}) = V_{\omega}(\boldsymbol{x},\boldsymbol{y}) + V_{\omega}(\boldsymbol{y},\boldsymbol{z}) \langle \nabla \omega(\boldsymbol{z}) \nabla \omega(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle.$
- o Update rule: $x_{t+1} \in \operatorname{argmin}_{x \in X} V_{\omega}(x, x_t) + \langle \gamma_t g_t, x \rangle, g_t \in \partial f(x_t)$. This is a generalization of subgradient descent.
- \circ Lemma: $\gamma_t(f(m{x}_t) f^\star) \leq V_\omega(m{x}^\star, m{x}_t) V_\omega(m{x}^\star, m{x}_{t+1}) + rac{\gamma_t^2}{2} \|m{g}_t\|_\star^2$

Rearrange update rule constrained optimality condition \Rightarrow 3Pl \Rightarrow $-V_{\omega}(\boldsymbol{x}_{t+1},\boldsymbol{x}_t) \leq -\frac{1}{2}\|\boldsymbol{x}_t-\boldsymbol{x}_{t+1}\|^2 \Rightarrow$ [Subgradient on $(\boldsymbol{x}^{\star},\boldsymbol{x}_t)$] $\cdot \gamma_t$ $(\pm \boldsymbol{x}_{t+1}$ in inner product) and bound with prev. \Rightarrow Young's inequality: $\langle \gamma_t \boldsymbol{g}_t, \boldsymbol{x}_t - \boldsymbol{x}_{t+1} \rangle \leq \frac{1}{2}\|\boldsymbol{x}_t - \boldsymbol{x}_{t+1}\|^2 + \frac{1}{2}\|\gamma_t \boldsymbol{g}_t\|_{\star}^2$.

 $\circ \text{ (Convex): } \min_{1 \leq t \leq T} f(\boldsymbol{x}_t) - f^\star \leq \frac{V_\omega(\boldsymbol{x}^\star, \boldsymbol{x}_0) + \frac{1}{2} \sum_{t=1}^T \gamma_t^2 \|\boldsymbol{g}_t\|_\star^2}{\sum_{t=1}^T \gamma_t}$

Easily follows from above lemma by summing, dividing by summed γ_t , and telescoping sum.

Smoothing

- $\bullet \ \, \text{Nesterov smoothing:} \ \, f_{\mu}(\boldsymbol{x}) := \max_{\boldsymbol{y} \in \text{dom}(f^{\star})} \langle \boldsymbol{x}, \boldsymbol{y} \rangle f^{\star}(\boldsymbol{y}) \mu \cdot d(\boldsymbol{y}), \text{ where} \\ \, d \text{ is 1-SC and non-negative (proximity function)}.$
- $\begin{array}{l} \circ \ f_{\mu} \ \text{is} \ 1/\mu\text{-smooth and approximates} \ f \ \text{by} \ f(\boldsymbol{x}) \ \ \mu D^2 \ \leq \ f_{\mu}(\boldsymbol{x}) \ \leq \ f(\boldsymbol{x}), \\ D^2 := \max_{\boldsymbol{y} \in \text{dom}(f^{\star})} d(\boldsymbol{y}). \end{array}$
- \circ Applying GD to f_{μ} converges faster than subgradient descent.
- \circ Moreau-Yosida smoothing: $f_{\mu}(m{x}) \coloneqq \min_{m{y} \in \mathrm{dom}(f^{\star})} f(m{y}) \frac{1}{2\mu} \|m{x} m{y}\|_2^2$.
- o f_{μ} is $1/\mu$ -smooth and minimizes exactly: $\operatorname{argmin}_{{\boldsymbol x}\in X} f({\boldsymbol x}) = \operatorname{argmin}_{{\boldsymbol x}\in X} f_{\mu}({\boldsymbol x}).$
- $\circ \
 abla f_{\mu}(m{x}) = rac{1}{\mu}(m{x} ext{prox}_{\mu f}(m{x}))$ (found by Danshkin's theorem).

Proximal algorithms

- \circ Proximal operator: $\operatorname{prox}_{\mu f}(\boldsymbol{x}) := \operatorname{argmin}_{\boldsymbol{y} \in \operatorname{dom}(f)} f(\boldsymbol{y}) + \frac{1}{2\mu} \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- o Minimizer: $x^* = \text{prox}_{\mu f}(x^*), \quad \forall \mu.$
- $\circ \ \ \mathsf{Non\text{-}expansiveness:} \ \|\mathrm{prox}_{\mu f}(\boldsymbol{x}) \mathrm{prox}_{\mu f}(\boldsymbol{y})\| \leq \|\boldsymbol{x} \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y}.$
- o **Proximal point algorithm**: Apply gradient descent to Moreau-Yosida f_{μ} : $m{x}_{t+1} = \mathrm{prox}_{\lambda_t f}(m{x}_t).$
- \circ (Convex): $f(x_{T+1}) f^\star \leq \frac{\|x_1 x^\star\|^2}{2\sum_{t=1}^T \lambda_t}$

Subgradient optimality: $-\frac{x_{t+1}-x_t}{\lambda_t}\in\partial f(x_{t+1})\Rightarrow$ Subgradient exists because of convexity \Rightarrow Subgradient definition \Rightarrow Cosine theorem \Rightarrow Sum over timesteps and use that it is a descent method.

o **Proximal gradient method**: Consider F(x) := f(x) + g(x) with differentiable f (both are convex): $x_{t+1} = \operatorname{prox}_{\gamma_t g}(x_t - \gamma_t \nabla f(x_t))$.

 \circ (f is L-smooth, $\gamma_t := \frac{1}{L}$): $F(\boldsymbol{x}_{T+1}) - F^\star \leq \frac{L\|\boldsymbol{x}_1 - \boldsymbol{x}^\star\|^2}{2T}$.

Subgradient optimality: $\frac{1}{\gamma_t}(x_t - x_{t+1} - \gamma_t \nabla f(x_t)) \in \partial g(x_{t+1}) \Rightarrow \text{Subgradient}$ exists because of convexity \Rightarrow Subgradient definition \Rightarrow Cosine theorem \Rightarrow $-\langle \nabla f(x_t), x_{t+1} - x \rangle = -\langle \nabla f(x_t), x_{t+1} - x_t \rangle - \langle \nabla f(x_{t+1}), x_t - x \rangle \Rightarrow$ Smoothness, convexity, and definition of γ_t .

Stochastic optimization

- o Optimization problem: $\min_{x \in \mathbb{R}^d} F(x) := \mathbb{E}_{\xi}[f(x, \xi)].$
- o Unbiased gradient: $\mathbb{E}_{\boldsymbol{\xi}}[\nabla f(\boldsymbol{x},\boldsymbol{\xi}) \mid \boldsymbol{x}] = \nabla F(\boldsymbol{x})$ (typical assumption).
- Update rule: $\boldsymbol{\xi}_t \sim P$, $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t \gamma_t \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$.
- Bounded variance: $\mathbb{E}[\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t) \nabla F(\boldsymbol{x})\|^2] \le \sigma^2$.
- $\begin{array}{l} \circ \ \, \big(L\text{-smooth, bounded variance, random output, } \gamma \coloneqq \min \Big\{ \frac{1}{L}, \frac{\gamma_0}{\sigma \sqrt{T}} \Big\} \big) : \\ \mathbb{E} \big[\| \nabla F(\hat{\boldsymbol{x}}_T) \|^2 \big] \ \, \leq \ \, \frac{\sigma}{\sqrt{T}} \Big(\frac{2(F(\boldsymbol{x}_1) F^\star)}{\gamma_0} + L \gamma_0 \Big) \ \, + \ \, \frac{2L(F(\boldsymbol{x}_1) F^\star)}{T}, \text{ where } \\ \hat{\boldsymbol{x}}_T \sim \mathrm{Unif} \big(\{ \boldsymbol{x}_1, \dots, \boldsymbol{x}_T \} \big). \end{array}$

Smoothness of F on $(\boldsymbol{x}_{t+1}, \boldsymbol{x}_t)$ in $\mathbb{E} \Rightarrow$ Update rule: $\boldsymbol{x}_{t+1} - \boldsymbol{x}_t = -\gamma_t \nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)$ $\Rightarrow \mathbb{E}[X^2] + \mathbb{E}[X]^2 + \mathrm{Var}[X] \colon \mathbb{E}\big[\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t)\|^2\big] = \|\nabla F(\boldsymbol{x}_t)\|^2 + \\ \mathbb{E}\big[\|\nabla f(\boldsymbol{x}_t, \boldsymbol{\xi}_t) - \nabla F(\boldsymbol{x}_t)\|^2\big] \le \|\nabla F(\boldsymbol{x}_t)\|^2 + \sigma^2 \Rightarrow \gamma_t \le \frac{1}{L} \Rightarrow \mathsf{Rearrange} \Rightarrow \\ \mathsf{Use definition of } \hat{\boldsymbol{x}}_T \Rightarrow \mathsf{Telescoping sum} \Rightarrow \mathsf{Definition of } \gamma_t \Rightarrow \max\{a,b\} \le a+b \\ \mathsf{if } a,b \ge 0. \qquad \Box$

$$\begin{array}{l} \circ \ (L\text{-smooth, } \mathbb{E}\big[\|\nabla f(\boldsymbol{x},\boldsymbol{\xi})\|^2\big] \leq B^2\big) : \\ \mathbb{E}[F(\hat{\boldsymbol{x}}_T) - F^\star] \leq \frac{R^2 + B^2 \sum_{t=1}^T \gamma_t^2}{2\sum_{t=1}^T \gamma_t} \text{, where } \hat{\boldsymbol{x}_t} := \frac{\sum_{t=1}^T \gamma_t \boldsymbol{x}_t}{\sum_{t=1}^T \gamma_t} \text{ and } \|\boldsymbol{x}_1 - \boldsymbol{x}^\star\| \leq R. \end{array}$$

Squared norm of update rule— $x^*\Rightarrow$ Cosine theorem \Rightarrow Law of total exp. to bound inner product \Rightarrow Convexity of $F\Rightarrow$ Telescoping sum \Rightarrow Jensen's ineq. \Box

 $\circ (\mu\text{-SC}, \mathbb{E}[\|\nabla f(\boldsymbol{x},\boldsymbol{\xi})\|^2] \leq B^2, \gamma_t := \frac{\gamma}{t}, \gamma > \frac{1}{2\mu})$ $\mathbb{E}[\|\boldsymbol{x}_T - \boldsymbol{x}^{\star}\|^2] \leq \frac{\max\{\frac{\gamma^2 B^2}{2\mu\gamma - 1}, \|\boldsymbol{x}_1 - \boldsymbol{x}^{\star}\|^2\}}{T}.$

$$\mathbb{E}[\|\omega T - \omega\|] \leq \frac{T}{T}.$$

Squared norm of update rule $-x^* \Rightarrow$ Cosine theorem $\Rightarrow \mu$ -SC to get $\mathbb{E}[\langle \nabla f(x_t, \xi_t), x_t - x^* \rangle] \geq \mu \cdot \mathbb{E}[\|x_t - x^*\|^2] \Rightarrow$ Recursion.

- \circ Adaptive method: $m{g}_t =
 abla f(m{x}_t, m{\xi}_t)$, $m{m}_t = \phi_t(m{g}_1, \dots, m{g}_t)$, $V_t = \psi_t(m{g}_1, \dots, m{g}_t)$, $\hat{\boldsymbol{x}}_t = \boldsymbol{x}_t - \alpha_t V_t^{-1/2} \boldsymbol{m}_t, \, \boldsymbol{x}_{t+1} = \operatorname{argmin}_{\boldsymbol{x} \in X} \left\{ (\boldsymbol{x} - \hat{\boldsymbol{x}}_t)^\top V_t^{-1/2} (\boldsymbol{x} - \hat{\boldsymbol{x}}_t) \right\}.$
 - \circ SGD: $m_t = g_t, V_t = I$.
 - \circ AdaGrad: $m_t = g_t$, $V_t = \frac{\operatorname{diag}(\sum_{\tau=1}^t g_{\tau}^2)}{r}$.
 - Adam: $m_t = (1 \alpha) \sum_{\tau=1}^t \alpha^{t-\tau} g_{\tau}, V_t = (1 \beta) \operatorname{diag} (\sum_{\tau=1}^t \beta^{t-\tau} g_{\tau}^2).$ Recursively: $m_t = \alpha m_{t-1} + (1-\alpha)g_t$, $V_t = \beta V_{t-1} + (1-\beta)\operatorname{diag}(g_t^2)$.

Variance reduction

- SGD requires more iterations due to high variance ⇒ Reduce variance.
- o Finite-sum optimization: $\min_{\boldsymbol{x} \in \mathbb{R}^d} F(\boldsymbol{x}) := \frac{1}{n} \sum_{i=1}^n f_i(\boldsymbol{x})$.
- $\begin{array}{l} \circ \ \ \text{If we want to estimate} \ \theta = \mathbb{E}[X], \text{ we can also estimate} \ \theta \ \text{as} \ \mathbb{E}[X-Y] \ \text{if and only} \\ \text{if } \mathbb{E}[Y] = 0. \ \ \text{Furthermore, } \mathrm{Var}[X-Y] \leq \mathrm{Var}[X] \ \text{if } Y \ \text{is highly positively correlated} \\ \text{with } X. \ \ \text{Specifically, if } \mathrm{Cov}(X,Y) > \frac{1}{2} \mathrm{Var}[Y], \ \text{the variance will be reduced.} \end{array}$
- \circ Let $\alpha \in [0,1]$, we estimate θ by $\hat{\theta}_{\alpha} = \alpha(X-Y) + \mathbb{E}[Y]$. We then have $\mathbb{E}[\hat{\theta}_{\alpha}] = \alpha \mathbb{E}[X] + (1 - \alpha)\mathbb{E}[Y]$

$$\operatorname{Var}[\hat{\theta}_{\alpha}] = \alpha^2(\operatorname{Var}[X] + \operatorname{Var}[Y] - 2 \cdot \operatorname{Cov}(X, Y)).$$

Implication: Trade-off between bias and variance, where $\alpha=1$ makes the estimator unbiased, but the variance decreases when α decreases.

- o SGD estimates $\nabla F(x_t)$ by $\nabla f_{i_t}(x_t)$, but VR estimates the full gradient by $g_t := \alpha(\nabla f_{i_t}(\boldsymbol{x}_t) - Y) + \mathbb{E}[Y],$
- such that $m{g}_t$ satisfies the VR property: $\lim_{t o\infty}\mathbb{E}ig[\|m{g}_tabla F(m{x}_t)\|^2ig]=0.$
- \circ Key idea: If x_t is not too far away from previous iterates $x_{1:t-1}$, we can leverage previous gradient information to construct positively correlated control variates Y
 - \circ Stochastic Average Gradient (SAG): Keep track of the latest gradients $m{v}_i^t$ for all points $i \in [n]$: $\mathcal{O}(nd)$ storage requirement. Estimate full gradient by average of these: $m{g}_t = rac{1}{n} \sum_{i=1}^n m{v}_i^t$. Each iteration we update $m{v}_i^t$ by

$$oldsymbol{v}_i^t = egin{cases}
abla f_{i_t}(oldsymbol{x}_t) & i = i_t \\
abla_i^{t-1} & i
eq i_t. \end{cases}$$

Thus, we have $\alpha=\frac{1}{n}$, $Y=v_{i_t}^{t-1}$, and $\mathbb{E}[Y]=g_{t-1}$,

$$oldsymbol{g}_t = rac{1}{n} \Big(
abla f_{i_t}(oldsymbol{x}_t) - oldsymbol{v}_{i_t}^{t-1} \Big) + oldsymbol{g}_{t-1}.$$

Problem: (1) $\mathcal{O}(nd)$ storage, (2) biased $\alpha \neq 1$. Advantage: $\mathcal{O}((n + \kappa_{\max} \log \frac{1}{\epsilon}))$ iteration complexity, where $\kappa_{\max} = \max_{i \in [n]} \frac{L_i}{\mu}$.

- \circ SAGA: Unbiased version of SAG, because it sets lpha=1: $m{g}_t=
 abla f_{it}(m{x}_t)-m{v}_{it}^{t-1}+$ g_{t-1} . But, it still enjoys the same benefits.
- Stochastic variance reduced gradient (SVRG): Build covariates based on a fixed reference point \tilde{x} that is periodically updated every m-th iteration:

 $g_t = \nabla f_{i_t}(\boldsymbol{x}_t) - \nabla f_{i_t}(\tilde{\boldsymbol{x}}) + \nabla F(\tilde{\boldsymbol{x}}).$ Problems: (1) $\mathcal{O}(n+2m)$ gradient evaluations per epoch, (2) More hyperparameters. Advantages: (1) Unbiased, (2) $\mathcal{O}(d)$ memory cost, (3) Same iteration complexity as SAG(A).

Min-max optimization

- Optimization problem: $\min_{x \in X} \max_{y \in Y} \phi(x, y)$.
- **Saddle point**: $(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star})$ is a saddle point if

 $\phi(\pmb{x}^\star, \pmb{y}) \leq \phi(\pmb{x}^\star, \pmb{y}^\star) \leq \phi(\pmb{x}, \pmb{y}^\star), \quad \forall \pmb{x} \in X, \pmb{y} \in Y.$ Interpretation: No player has the incentive to make a unilateral change, because it can only get worse. Game theory: Nash equilibrium.

Global minimax point: $({m x}^\star, {m y}^\star)$ is a global minimax point if

$$\phi(\boldsymbol{x}^{\star}, \boldsymbol{y}) \leq \phi(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star}) \leq \max_{\boldsymbol{y}' \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}'), \quad \forall \boldsymbol{x} \in X, \boldsymbol{y} \in Y.$$

Interpretation: x^{\star} is the best response to the best response. Game theory: Stackelberg equilibrium.

- $\max_{\boldsymbol{y}\in Y} \min_{\boldsymbol{x}\in X} \phi(\boldsymbol{x}, \boldsymbol{y}) \leq \min_{\boldsymbol{x}\in X} \max_{\boldsymbol{y}\in Y} \phi(\boldsymbol{x}, \boldsymbol{y}).$
- Saddle point lemma: (x^\star,y^\star) is a saddle point iff $\max_{m{y}\in Y}\min_{m{x}\in X}\phi(m{x},m{y})=$ $\min_{\boldsymbol{x} \in X} \max_{\boldsymbol{y} \in Y} \phi(\boldsymbol{x}, \boldsymbol{y})$ and $(\boldsymbol{x}^{\star}, \boldsymbol{y}^{\star})$ are the arguments.
- **Minimax theorem**: If X and Y are closed convex sets, one of them is bounded, and ϕ is a continuous C-C function, then there exists a saddle point in $X \times Y$.
- Duality gap: $\hat{\epsilon}(\boldsymbol{x}, \boldsymbol{y}) := \max_{\boldsymbol{y}' \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}') \min_{\boldsymbol{x}' \in X} \phi(\boldsymbol{x}', \boldsymbol{y}) \ge 0.$
- Saddle point by duality gap: If $\hat{\epsilon}(x,y)=0$, then (x,y) is a saddle point and if $\hat{\epsilon}(x,y)\leq \epsilon$, then (x,y) is an ϵ -saddle point.
- Gradient descent ascent (GDA):

 $\boldsymbol{x}_{t+1} = \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\dot{\boldsymbol{x}}_t, \boldsymbol{y}_t)), \quad \boldsymbol{y}_{t+1} = \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)).$ Does not guarantee convergence in C-C setting (consider $\phi(x,y) = xy$).

• (*L*-smooth, μ -SC-SC, $\gamma := \frac{\mu}{4L^2}$):

$$\|\boldsymbol{x}_T - \boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_T - \boldsymbol{y}^\star\|^2 \le \left(1 - \frac{\mu^2}{4L^2}\right)^T (\|\boldsymbol{x}_1 - \boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_1 - \boldsymbol{y}^\star\|^2).$$

Add μ -SC-SC definitions together \Rightarrow Use L-smoothness for a bound \Rightarrow Use update rule in $\|x_{t+1}-x^\star\|^2+\|y_{t+1}-y^\star\|^2\Rightarrow$ Non-expansiveness of projection \Rightarrow Rearrange \Rightarrow Cosine theorem \Rightarrow Bound inner products using SC-SC and

Extragradient method (EG):
$$\begin{aligned} \boldsymbol{x}_{t+1/2} &= \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)) \\ \boldsymbol{y}_{t+1/2} &= \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t)) \\ \boldsymbol{x}_{t+1} &= \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})) \\ \boldsymbol{y}_{t+1} &= \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})). \end{aligned}$$

- \circ (*L*-smooth, C-C, $\gamma \leq rac{1}{2L}$): $\hat{\epsilon}(ar{x},ar{y}) \leq rac{D_X^2 + D_Y^2}{2\gamma T}$, where $ar{x} = rac{1}{T}\sum_{t=1}^T x_{t+1/2}$, $\bar{\boldsymbol{y}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{y}_{t+1/2}$, and $D_Z = \max_{\boldsymbol{z}, \boldsymbol{z}' \in Z} \|\boldsymbol{z} - \boldsymbol{z}'\|$.
- $\begin{array}{l} \text{$(L$-smooth, μ-SC-SC, $\gamma:=\frac{1}{8L})$:} \\ \|\boldsymbol{x}_{t+1}-\boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_{t+1}-\boldsymbol{y}^\star\|^2 \leq \big(1-\frac{\mu}{4L}\big)\big(\|\boldsymbol{x}_t-\boldsymbol{x}^\star\|^2 + \|\boldsymbol{y}_t-\boldsymbol{y}^\star\|^2\big). \end{array}$

$$\begin{aligned} & \text{Optimistic gradient descent ascent (OGDA):} \\ & \boldsymbol{x}_{t+1/2} = \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t-1/2}, \boldsymbol{y}_{t-1/2})) \\ & \boldsymbol{y}_{t+1/2} = \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_{t-1/2}, \boldsymbol{y}_{t-1/2})) \\ & \boldsymbol{x}_{t+1} = \Pi_X(\boldsymbol{x}_t - \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})) \\ & \boldsymbol{y}_{t+1} = \Pi_Y(\boldsymbol{y}_t + \gamma \nabla_{\boldsymbol{y}} \phi(\boldsymbol{x}_{t+1/2}, \boldsymbol{y}_{t+1/2})). \end{aligned}$$

 \circ In the case $X=Y=\mathbb{R}^d$, this can be seen as negative momentum: $\boldsymbol{x}_{t+1} = \boldsymbol{x}_t - 2\gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_t, \boldsymbol{y}_t) + \gamma \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x}_{t-1}, \boldsymbol{y}_{t-1})$

$$y_{t+1} = y_t + 2\gamma \nabla_y \phi(x_t, y_t) - \gamma \nabla_y \phi(x_{t-1}, y_{t-1}).$$

Proximal point algorithm:

$$(\boldsymbol{x}_{t+1}, \boldsymbol{y}_{t+1}) \in \operatorname*{argmin}_{\boldsymbol{x} \in X} \operatorname*{argmax}_{\boldsymbol{y} \in Y} \phi(\boldsymbol{x}, \boldsymbol{y}) + \frac{1}{2\gamma} \|\boldsymbol{x} - \boldsymbol{x}_t\|^2 - \frac{1}{2\gamma} \|\boldsymbol{y} - \boldsymbol{y}_t\|^2.$$

Variational inequalities

- Generalizes all of the above to mapping $F: \mathcal{Z} \to \mathbb{R}^d$. Goal: Find $z^* \in \mathcal{Z}$, such that $\langle F(\boldsymbol{z}^{\star}), \boldsymbol{z} - \boldsymbol{z}^{\star} \rangle \geq 0, \forall \boldsymbol{z} \in \mathcal{Z}$
- Monotone operator: $\langle F(\boldsymbol{x}) F(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \geq 0$
- μ -strongly monotone: $\langle F(\boldsymbol{x}) F(\boldsymbol{y}), \boldsymbol{x} \boldsymbol{y} \rangle \ge \mu \|\boldsymbol{x} \boldsymbol{y}\|^2$.
- VI strong solution (Stampacchia): $\langle F(z^*), z z^* \rangle \ge 0, \forall z \in \mathcal{Z}.$
- VI weak solution (Minty): $\langle F(z), z z^* \rangle \ge 0, \forall z \in \mathcal{Z}$.
- If F is monotone, then strong \Rightarrow weak. If F is continuous, then weak \Rightarrow strong
- Convex minimization can be cast as VI problem by defining $F = \nabla f$ for a convex function. Min-max problems can be cast as VI problem by defining $F = [\nabla_{\boldsymbol{x}}\phi, -\nabla_{\boldsymbol{y}}\phi]$ for a convex-concave ϕ .
- Extragradient method:

$$\begin{aligned} \boldsymbol{z}_{t+1/2} &= \Pi_{\mathcal{Z}}(\boldsymbol{z}_t - \gamma_t F(\boldsymbol{z}_t)) \\ \boldsymbol{z}_{t+1} &= \Pi_{\mathcal{Z}}(\boldsymbol{z}_t - \gamma_t F(\boldsymbol{z}_{t+1/2})). \end{aligned}$$

• (L-smooth, monotone, $\gamma := \frac{1}{\sqrt{2L}}$):

$$\max_{oldsymbol{z} \in \mathcal{Z}} \langle F(oldsymbol{z}), ar{oldsymbol{z}} - oldsymbol{z}
angle \leq rac{\sqrt{2L}D_{oldsymbol{z}}^2}{T}, ext{ where } ar{oldsymbol{z}} = rac{1}{T} \sum_{t=1}^T oldsymbol{z}_{t+1/2}.$$

Optimality condition w.r.t. $z_{t+1/2} \Rightarrow$ Rewrite using cosine theorem \Rightarrow Optimality condition w.r.t. z_{t+1} (set $z=z_{t+1}$ in the other optimality condition) \Rightarrow Use previous and Cauchy-Schwarz to bound $2\gamma\langle F(z_{t+1/2}),z_{t+1/2}-z\rangle=$ $2\gamma \langle F(\boldsymbol{z}_{t+1/2}), \boldsymbol{z}_{t+1/2} - \boldsymbol{z}_{t+1} \rangle + 2\gamma \langle F(\boldsymbol{z}_{t+1/2}), \boldsymbol{z}_{t+1} - \boldsymbol{z} \rangle \Rightarrow \mathsf{Smoothness} \text{ and }$ $\gamma = \frac{1}{L} \Rightarrow$ Young's inequality: $\|x\| \cdot \|y\| \le \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 \Rightarrow$ Use monotonicity and sum over all timesteps.