THINK BEFORE STARTING THE WRITING OF A PROOF. THINK OF ALL
THE NECESSARY COMPONENTS FIRST. THERE IS ENOUGH TIME.

o Differentiable: f : R% — R is differentiable if
Fy) = f(@) +(Vf(x),y —z) +r(y — =),
[r(v)] _

where lim,,_0 Tol

o Spectral norm: ||All2 = sup| ;=1 | Az (largest eigenvalue).

o Positive semi-definite: V& € R%: x T Az > 0.

o Directional derivative: If f is diff., (Vf(x),

o B-Lipschitz: Va,y € dom(f),

1] If@) — f@)ll < Bllz — ]l

[2] If f differentiable, ||V f(x)| < B.

[3] If f convex, ||g|| < B, Vg € 8f(x) (proof: subgrad def =- Cauchy-Schwarz).
o Convex set: Vz,y € X,A € [0,1]: A&z + (1 - Ny € X.
o Cone: X is a cone if V& € X, \ > 0: Az € X.

o Convexity: Va,y € dom(f) and VYA € [0,1],

[1] fOx+ (1= Ny) <Af(@) + (1 — N f(y).

(2 f(y) = f(=) + (VI(@),y — =)

B] (Vf(x) - Vf(y),z—y) = 0.

[4] V2f(x) is positive semi-definite.

v) = limp_,0 7ﬂm+hz)_ﬂm).

o Convexity preservation: Positive scaling, Sum, Max, and f(Ax + b).
o L-smoothness: Va,y € dom(f),
1] Vi) = Vil < Liz - yl.
2] g(a) = & ||
8] f(y) < f(x) +(Vf(z),y — )
[4] (Vf(x) = Vf(y),z —y) < Lz -yl
8] [V2f(z)ll2 < L.

[6] If fis convex and L-smooth, then f is 1/L-strongly convex:
f@) > f@) + (Vf(@),y — @) + 3¢ llz — yl*

[7] Coordinate-wise: f(x + Ae;) < f(x) + AV, f(x) +

— f(=) is convex.

+ %l& — yl|? (canonical).

Lix2vreR.

Relations: [5] < [1] = [2] < [3] & [4] (If convex, all <).

o Smoothness preservation: Pos. scaling scales, Sum sums. f(Axz + b) has L||A||2.

o p-strong convexity: Va,y € dom(f),
1] f(y) > f(x) + (Vf(z),y —=) +
[2] g(z) = f(=) —
8] (Vf(®) = Vf(y),z—y) > plle—yl* (proof: sum [1] for (x,y) and (y,x)).
[4] 4-SC = PL inequality: 5|V f(@)[|> > pu(f(z) — f*).

fy) > f() + (g, y — x),Vy € dom(f).

— f(=).

£l — yl|* (canonical).

£ll||* is convex.

o Subgradient: g € 0f(x)
o Conjugate function: f*(y) := subgcdom(s) (%> ¥)

o Dual norm: ||y|l« := maxz| <1 (2, y).

Lemmas

d f@® _ f(@g@)—f=)d (z)
dz g(=) — g(x)?

o Cosine theorem: All equivalent formulations,
(1] [l = yl? = llzl* + lyl]* - 2(x, y).
2 (@) =3 (Il + lyl* — llz — yll*).
Bl @—yx—z2) =5 (lz—yl* + |z — =z - ly — =)
o Cauchy-Schwarz:
(1] [, y)| < [l]l[|y]l
[ 1ab) (i a?) (231 07)-

T (e e ? X i
[3] Titu's lemma (b; > 0): (Zl%) <> 5o (proof: a; = \;bf;’ =

o Hélder's inequality (special case): |(x, y)| < ||]/1]|y]lcc-
ll +yl? + [l — yl>.

2?;1 a;x; < ZL 19 LW(mz)
ity ai - ity @i

= (z,y) S 3 (Il + llyll3)-
o Young’s inequality (a,b > 0, % + % =1); ab < ﬁ + L
= |2yl < 5 (=l + lyl[?).
1
Sl < llzlloe < llzll2 < 2/l < V.-

[ Az|| < || A]l2]le|-
lAll2 < |AllF-

o Parallelogram law: 2||z||? + 2||y||? =

o Jensen’s inequality (¢ convex, a; > 0): zp(

o Fenchel’s inequality: (x,y) < f(x) + f*(x)

()

[e)

()

o Mean-value theorem (h cont. on [a, b], diff. on (a,b)):
h(b) — h
Wi M) =h)

P Jc € (a,b).

o Fund. theorem of calculus (% diff. on [a,b], b’ cont. on [a,b]):

/ B (t)dt

h(b) —

o

1o wreeyae]| < J 1w,

Jitdt=1
o Subgradient calculus:
[1] h(z) = af(x) + Bg(x) = Oh(z) = o - Of (x) + B - Ig(x).
[2] h(z) = f(Az + b) = Oh(z) = ATOf(Az + b).
[3] h(x) = max f;(x) = Oh(x) = conv({dfi(x) | fi(x) =
o If f is differentiable at «, then 0f(x) C {V f(x¢)}.
o If f is convex, then 9f(x) # () for all in x in the relative interior.
o If dom(f) convex and 9f(x) # 0, V& € dom(f), then f is convex.
o If f is strictly concave, the subgradient exists nowhere.

o Forp>1,

(0]

fol cdt =c,

h(@)}).

% + % =1, we have dual norms, || - |lp« = | - llq-

Optimality lemmas (assume convexity)

The constrained and non-diff. cases are useful when update rule contains argmin.

o «* is a local minimum: e > 0 such that f(z*) < f(y),Vy : |[z* —y|| < e
Vf(x*)=0.

o Constrained: (Vf(x*),x —x*) > 0,Vx € X.

o Non-differentiable: 0 € 9f(x*).

(0]

o Rearrange the update rule for an equality. E.g., Vf(x:) = %
o Define h(t) := f(x + t(y — x)), where b/ (t) = Vf(x +t(y — =) (y — «) and
use with FTOC: f(y) — f(x) = fol Vi@ +ty—=) (y—x)dt
Or, mean-value theorem: 3¢ € (0,1) : Vf(z +c(y —2) T (y — ) = f(y) — f(x).
o Projection is non-expansive: ||IIx () — IIx (y)| < ||z — y]l.

< S n(f=)— f)
SE

Telescoping sum inequality: 37, ||@: — *||2 — [|@et1 — a*|? < [|l&1 — @

(0]

ming <p<7 ) — f*

*”2_

(o]

o A monotone and bounded sequence has a limit.

o If a value « is unknown for an algorithm. Start with a lower bound (or just
&o = 1) and run the algorithm, doubling every time &¢+1 = 2- & it is incorrect. This
does not increase complexity because, in the end, &1 < 2a and all the previous
values with their iterations are a constant factor, smaller than the final run.

To find the optimal v* that minimizes bound ¢(v), use 1lst-order opt: g(v*) Lo

o

o max{a,b} <a+bifa,b>0.

0 Yt =OWT), i =0(ogT).

o 2| =llz -y +yll <lz—yl+Iyl [z -yl < ||+ yl

= [l =yl = [yl < llzll < [lz -yl + [yl
01—z <exp(—z),Vz > 0= (1—2x)¥ < exp(—zy),Vz > 0,y € R.

IMPORTANT TIPS TO KEEP IN MIND

o When showing convexity, make sure to show that the domain is a convex set.

o If f is convex and want to use the subgradient, state that it exists bc of convexity.
o If something is obviously false, still provide a counterexample.

o Keep in mind divisions by 0 when defining functions. For example, when dividing
by norm. Then, the gradient is not defined = Use subgradient.

o Structure of a proof:
[1] State what needs to be shown exactly and mark by ().

[2] State the assumptions of the question and their implications (think about which
implications are relevant to the proof).

[3] Proof should follow easily: “Hence, (%) holds and the proof is concluded.”.
o If need to show that something does not exist, use proof by contradiction.

o If v is timestep-dependent, generally need to use induction.

Expectation and variance for SGD

o Var[X] :=E[||X — E[X]||?] = E[|| X|?] — |[E[X]|>.
E[||Vf (2, &)|°] = [[VF(e)l|* +E[||V f (2, &) —
<||VF(zo)|* + o°.

= VF(z)|?]

o Law of total expectation: E[X] = Ey [Ex[X | Y]].
o Law of total variance: Var[Y] = Ex[Vary[Y | X]] + Vary [Ex[Y | X]].

Var[X — Y] = Var[X] + Var[Y] — 2 - Cov(X,Y).
o Var[aX] = a?Var[X], Var[X + 8] = Var[X].

(0]



o Unknown distribution P. We only have access to samples X1,..., X, ~ P. We
want to explain data source X through these samples by minimizing risk.

Expected risk: ((H) := Ex [¢(H, X)].
L A(H, X5).

o

o Empirical risk: ¢, (H) := 717 "

o Probably approximately correct (PAC): Let e,6 > 0, H € H is PAC if, with
probability at least 1 — §, ¢(H) < infyey 4(H) + €

o Weak law of large numbers (WLLM): Let H € H be fixed. For any d,¢ > 0,
there exists ng € N such that for n > ng, [, (H) — £(H)| < € with probability at
least 1 — 4.

o Assume that for any §,¢ > 0, there exists ng € N such that for n > ny,

supgeyy [en(H) — £(H)| < e with probability at least 1 — 6. (WLLM holds
uniformly for all hypotheses.) Then, an approximate empirical risk minimizer H,
(£n(Hp) < infrrep £n(H) + €) is PAC for expected risk minimization, meaning
L(Hy) < infreqq £(H) + 3€ with probability at least 1 — 4.

emp. risk min. uniform WLLM

uniform WLLM
< <

) + 3e.

£(Hn)
inf ey 6(H

Zn(f{n) +e€ infgeyp n(H) + 2¢

O
o Empirical risk minimization (¢,,(Hy): empirical, training; ¢(Hy): expected, vali-
dation): We want generalization and learning,
o (Low ¢, (Hy), High £(Hy)): Overfitting (theory is too complex).
o (High ¢,,(Hy), High ¢(Hy)): Underfitting (theory is too simple).
o (Low £n(Hny), Low £(Hy)): Learning.
o (¢n(Hn) = £(Hy)): Generalization.
o Regularization: Punish complex hypotheses.

o W.h.p. we do not have hig~h n(Hy), I9W L(Hy), be~cause Un(Hy)
inf reqy bn(H) + € < o (H) + € < 0(H) + 2¢ < £(Hy) + 3e.

Non-linear programming

o Optimization problem:

<

minimize fo(x)
subject to fi(x) <0, i€[m]
hj(e) =0, j€ [pl-

o Problem domain: X = (N7, dom(f;)) N ( r, dom(h,]-)>.

o Convex program: All f; are convex and all h; are affine with domain R%.

o Lagrangian: L(x,\,v) := fo(x) + >/ Aifi(x Z 1 vihi(@).

o Lagrange dual function: g(\,v) := infzpcx L(:z:,)\7 V).

o Weak Lagrange duality (A > 0, z is feasible): g(\,v) < fo(x).

o Lagrange dual problem (convex program, even if primal is not):
maximize g(A,v)

subject to A>0.

o If a convex program has a feasible solution Z that is a Slater point (f;(Z) <
0,Vi € [m]), then maxx>o,, g(A,v) = infzex fo(x).

o Zero duality gap: Feasible solutions & and (5\, ) have zero duality gap if
fo(&) = g(A, D) (= & is a minimizer of primal).

o KKT necessary: Zero duality gap = Afi(#) = 0,Vi € [m] (complementary
slackness) and V4 L(&, A, ) = 0 (vanishing Lagrangian gradient).

o KKT sufficient: Convex program, complementary slackness, and vanishing La-
grangian gradient = Zero duality gap.

Complementary slackness (fo(&) = L(&,A,#)) = L is convex in @ and

gradient is zero, so & is a global minimizer. O

o Program maybe not solvable, but if Slater point, then a solution exists = Only
need to show that the KKT conditions are satisfied.

Gradient descent

o Update rule: @11 =@ — YV f(xy).
o VA: S0 (flae) = ) < 3 050 IV @)l + g5 llzo — 2.
1st-order convexity on (x*, ) = Vf(x:) = w = Cosine theorem =
x — xi41 = YV f(x¢) = Telescoping sum. O
o Sufficient decrease (L-smooth, v := %) f@eg1) < f(=e) — % |V £ (ze)||%.
Smoothness on (x¢41, %) = Tiy1 — T = —%Vf(wt). O
o Convergence results: (||zo — z*|| < R)
. . T—
o (B-Lipschitz, convex, v := B—%) % t:Ol (fl@e)— ) < R—\/];.
Apply bounds to VA and find « by 1st-order optimality. O
o (L-smooth, convex, v := %) fler) — f* < %Hmo —x*|?
Sufficient decrease to bound gradients of VA with telescoping sum. O

o (L-smooth, u-SC, ~ := %) fer) — (1 - 7) lxo — x*||?

Use u-SC to strengthen VA bound for squared norm = Upper bound “noise”

with f* < f(x¢+1) and SD = Smoothness on (z*, ). O

o Accelerated gradient descent:

1
Ytt1 = Tt — ZVf(wt)

t+1
Zt41 = 2zt — ?Vf(wt)

+1 I 2
@ =
t+1 = t+3yf+1 t+3

Projected gradient descent

o Update rule (X C R is closed and convex):

YV ()

= Mx (yi41) = argmin ||z — ye11]°.
zeX

TR Rt

Yt+1 = Tt —

Tt+1

o Projection onto ¢;-ball can be done in O(dlogd).
1. (z € X,y €RY): (x —Tx(y),y —Hx(y)) <0.

Constrained 1st-order optimality = Rearrange. g
. (x € X,y €RY): |l —Tx ()II” + [ly — Tx (m)I* < [l — yl>.

Cosine theorem on (1). O
o If &t11 = x¢, then &y = x*.

Use (1) and @;11 = ¢ to show that 1st-order optimality holds. O

o Projected SD: f(x141) < f(@) — 5r ||V (o) +

Smoothness on (xy1,2:) = Vf(x¢) = L(yi+1 — ¢) = Cosine theorem =

Lllyerr — meqa |

Yir1 — o = — L Vf(xe). O
o (L-smooth, convex, v := l) fler) — f* < %Hwo — x|

VA with additional term (y¢+1 instead of @41 and use (2)) and bound

gradients with projected SD. Additional terms cancel. d

ViVif(@i)es, i€ [d].
o Coordinate-wise SD: f(x:11) < f(a¢) — %|V¢f(wt)\2.

o Update rule: ;11 = ¢ —

CW smoothness with A = JWLifl(m‘) such that 11 = o + Xe;. |
o Convergence results (u-PL, £-CS, L = %Zle L;, vi == L%)

o (L-smooth, u-PL, i ~ Unif([d]))

Blf(r) = 1< (1= )" (flwo) — ).

CW SD => E;[- | @¢] = Use sample prob. = PL = Eg, (LoTE). O
o (p-PL, i ~ Cat(L1/>>3_ 1L7,... La/s29_, L))

Elf@r) — < (1- )" (o) — )

Same as above with different probabilities. L := é Z?:l L; O
o (L-smooth, 11-SC w.r.t. {1 = p1-PL w.rt. foo, i € argmax ¢ |V f(=ze)])

Jr) =+ < (1= 47)" (f(@o) = %)

f@r) = f* < (1= )" (Fo) = ).

CW SD = /~ because of update rule = PL. O

Tl =yl <llz-ylh <llz -yl = 4§ <m <p

L 3x*): LS V@2 < 22 (f(xo) — f)

SD does not require convexity. Rewrite with telescoping sum.

o (L-smooth, v :=

2
o Trajectory analysis: Optimize f(x) := %(szl T — 1) .

o ag;f) = (ITx 2k — 1) [Tjoss zx (Vf(2) = 0 if 2 dims are 0 or all 1).
% f(x 2

° Z = (Mewim) -
3 f(z PP .

o Friver = 2Tss o ey ok — Taeiy o 8 5

o c-balanced: Let > 0, ¢ > 1. @ is c-balanced if z; < c¢-x;,Vi,j € [d].

o If @ is c-balanced, v > 0, then @41 is c-balanced and x¢ 1 > @4.



o If x is c-balanced, then for any I C [d], we have

d 1—|1|/d
ka<c|I<ka> gc‘”.
k=1

kI
o Let « be c-balanced and [, z; <1, then
IV2f(@)ll2 < [IV*f (@)l F < 3dc.
Thus, f is smooth along the whole trajectory of GD with L = 3dc2.

o Convergence (v := a0 > 0 and c-balanced, § < [, 2o, < 1)

far) < (1= &) fo).

o § decays polynomially in d, so we must start O(1/vd) from x* = 1.

Frank-Wolfe

o Linear minimization oracle: LMO x (g) := argmin_ ¢ x (g, 2).
If g =0, any z minimizes.

o Update rule: x¢11 = (1 —y¢)xt +vese, st = LMOx(Vf(xt)).
o If X = conv(A), then LMOx (g) € A: Easy optimization problem in O(].A|).

o Advantages: (1) lterates are always feasible if X is convex, (2) No projections,
(3) Iterates @ have simple sparse representations as convex combination of

{z0,50,...,87_1}: T = (HtT;ol 1- %)wo +35 T (Hf;ti1 1- ’YT)St-
o {1-ball LMO: LMO(g) = —sgn(g;)e;, i € argmax;¢(q |9;]-
o Spectahedron LMO: LMOx (G) = argming,(z)=1 G © Z = 'ulfvir, where vy is the

Z is PSD
eigenvector associated with the smallest eigenvalue of G.

o Duality gap: g(x) := (Vf(x),x — s),s = LMOx (Vf(x)).
o Upper bound of optimality gap (convex): g(x) > f(x) — f*.
9(@) = (Vf(@),z - s) 2 (Vf(z),z —x*) > f(z) - f* o

o Descent lemma: f(xi1) < f(xt) — veg(ee) + 'yf%Hst — x|

o Convergence (L-smooth, convex, X is compact, y; = H%)
fl@r) —f* < 7%, €= Sdiam(X)2.
Lemma—f* = Use g(x) > f(x) — f* = Rearrange and induction. O

o Affine equivalence: (f, X) and (f/, X’) are affinely equivalent if f/'(x) = f(Ax + b)
and X' = {A"Y(x —b) |z € X}. Then,
V(@) = ATV f(x),
LMOx/ (Vf'(')) = A~ (s — b),

o Curvature constant:

' = A (a — b)
s = LMOx (Vf(x)).

1
sp = (f(y) - f(@) — (VF(@),y — ).
x,s€X,v€(0,1] ¥
y=(1—7)z+vs

Cirx) =

AC¢x)

o Affine invariant convergence (same ass.): f(xr) — f* < T

Descent lemma w.rt. C(y xy by setting @ = x,5 = LMOx (Vf(t)),y
V¢, Y = @¢41 in the supremum. Proof follows in the same way. O

27/2.C
o Convergence of g(x:): min;<;<7 g(xt) < %

Newton’s method

o Update rule: &1 = x¢ — V2 f(xt) "IV f(21).
o Interp: (1) Adaptive gradient descent, (2) Min. 2nd-order Taylor approx. at x;:

Tiy1 € argm(iin fxe) + Vf(:nt)T(m —x¢) + %(m — mt)TVQf(mt)(m —x¢).

xR
o Convergence (||V2f(x)~'|| < ., [IV2f(x) — V2f(y)|| < Blle —yl)):
241 — || < o [l — 2|2

Tip1—2* < ze—2*+H(ze) "NV f(2*) =V () = h(t) :i= Vf(z+t(z*—=z))
with fundamental theorem of calculus = Take norm of both sides and simplify
using ||Az|| = ||Al|2]|z|| and assumptions.

o Ensure bounded inverse Hessians by requiring strong convexity over X.

1 )QT—I

o If lwo —x*|| < &, then [Jar —x*|| < %(5

Quasi-Newton methods

o Time complexity of Hessian is O(d3) = Approximate by H.
o Secant condition: Vf(x:) — Vf(xi—1) = He(xr — Tt—1).

o ldea: We wanted Hessian to fluctuate little in regions of fast convergence =
Update H; ' = t:ll + E; while minimizing [|AEAT |2, for some invertible A.

o H := H;ll, H = H;l, E:=F 0 :=x —x—1, Yy := Vf(xr) — Vf(xe—1),
r:= o — Hy. Convex program:
minimize %HAEATH%
subject to Ey=r (secant condition)
ET —E=0. (symmetry)

o Greenstadt method (O(d?)): Solving (with Lagrange multipliers) yields

1

B = i (ayTM + Myo" — Hyy"M — Myy ™ H
1

*m <yTU - yTHy> ]MnyM>

for some matrix parameter M (induced by A).

-

o BFGS: Set M = H': E* = ﬁ<ny0'T —oy H+ <1 + nyPiy>o'aT).
T T T

= _ 9y _ Yo oo

B ( yTU)H< yTa) tyTe

o L-BFGS (O(md)): Recursive BFGS and only go down m steps.

Subgradient method

o Until now, we have only considered smooth (and hence differentiable) functions =
Generalize notion of gradient.

Equivalent update: H’

gt € Of ().

o Lemma (convex): |li41 — =*]|? < ||@e — 2|2 — 2ve(f(2e) — ) + 2 lge]|2.

o Update rule: ;11 = Ix(x: — y:9¢),

Norm of update rule—a* = Ilx is non-expansive = Cosine theorem =
Subgradient definition on (z*, @) (exists because of convexity). O

2 T 2 2
< lei—a* IP+5L 2 llgell

o (convex): minj<i<7 f(at) — f*

23
Rearrange “descent” lemma => Sum and divide by ZtT:1 Y- ]
o (u-SC, B-Lipschitz, ¢ == ﬁ) miny<i<p f(x:) — f* < uéﬁfl)'
Adapt “descent” lemma with ©-SC = Def. of ; and ||g¢|| < B. O

Mirror descent

o Exploit non-Euclidean geometry of convex set X.

o Bregman divergence: Let w : Q — R be continuously differentiable on Q and
1-SC w.r.t. some norm || - ||. Then,

Vio(e,y) == w(x) —w(y) — (Vu(y),z — y).
Properties: V,(x,y) > 0; Vi, (x,y) is convex in z; Vi, (z,y) = 0iffx = y;
Vo(@,y) > 3lle —yl* and VaVi(2,y) = Vw(@) — Vu(y).
3-point id.: V,,(x,z) = Vi (2, y) + Vu(y, 2) — (Vw(z) — Vw(y), z — y).

Update rule: x; 1 € argmingcx Vi (z, ®¢) + (1tgt, ), gt € Of (x¢). Thisis a
generalization of subgradient descent.

[0)

[e)

(0]

(o]

2
Lemma: ~v;(f(:) — f*) < Vio(x*, 1) — Vio(@*, @eg1) + 2|12

Rearrange update rule constrained optimality condition = 3Pl =
—Vio(xit1,2e) < —%th — @14+1]|% = [Subgradient on (z*, )] -y
(£@t41 in inner product) and bound with prev. = Young's inequality:

(regt, @ — Tey1) < lloe — @eta | + 5 lvegell?- O

T 2 2
Vw(m*amO)JF% >i=1 V¢ lgells
S ’

o (Convex): minj<i<7p f(ae) — f* <

Easily follows from above lemma by summing, dividing by summed ~;, and
telescoping sum.

o Nesterov smoothing: f,(x) 1= maxy,cdom(r*)(®:Y) — [*(y) — p - d(y), where
d is 1-SC and non-negative (proximity function).

o fu is 1/u-smooth and approximates f by f(z) — uD? < fu(z) < f(=),
D? = mMaXyedom(f*) d(y).

o Applying GD to f,, converges faster than subgradient descent.

o Moreau-Yosida smoothing: f,(x) := minycqom(f+) f(y) — i”w — 3.
o fu is 1/u-smooth and minimizes exactly: argmin,c x f(x) = argmingc x fu ().

o Viu(®)=

Proximal algorithms

o Proximal operator: prox,, ;(z) := argmingeqoms) f(¥) + %NH:D —y|%

Y.

l%(:n — prox,, ¢(x)) (found by Danshkin's theorem).

o Minimizer: * = prox,, ¢(x*),
o Non-expansiveness: ||prox,,;(x) — prox,;(y)|| < [z —yll, V,y.

o Proximal point algorithm: Apply gradient descent to Moreau-Yosida f:
Tyy1 = proxy, ¢(xt).

. R el
o (Convex): f(xry1)— f* < 23T N
Subgradient optimality: —m € Of(xt+1) = Subgradient exists because

of convexity = Subgradient definition = Cosine theorem =- Sum over timesteps
and use that it is a descent method.

o Proximal gradient method: Consider F'(z) := f(x) + g(«) with differentiable f
(both are convex): @iy1 = prox%g(ast — %V f(x)).



Lijzi—=*|?

1) Flepg) — F* < =22

o (f is L-smooth, v := ¢

Subgradient optimality: %(mt — @1 — 1tV f(xt)) € Og(we4+1) = Subgradient
exists because of convexity = Subgradient definition = Cosine theorem =-
—(Vf(xe), 41 — ®) = —(Vf(2e), T2 — @) — (Vf(@t 1), 2t — ) =

Smoothness, convexity, and definition of ~:.

Stochastic optimization

o Optimization problem: min pq F(x) := E¢[f(x,£)].

o Unbiased gradient: E¢[V f(x,&) | ] = VF(x) (typical assumption).
o Update rule: & ~ P, ©i11 =zt — 1V f(2t, & ).
o Bounded variance: E[||V f(x:, &) — VF()||?] < o2

o (L-smooth, bounded variance, random output, ~ := min{%, U'Y\/OT});
- o F(x1)—F* L(F(x1)—F*
E[|VF(@&r)|?] < ﬁ(% +L70) + LEEDF)
& ~ Unif({x1,...,27}).

, where

Smoothness of F on (z¢+1,@¢) in E = Update rule: @¢41 — ¢ = —v:V f(@t, &)
= E[X?] + E[X]* + Var[X]: E[|Vf(z:,&)[?] = [VF(=o)|? +
]E[HVf(wt,gt) — VF(wt)HQ} < |VF(z)|]? + 02 = v < % = Rearrange =
Use definition of &7 = Telescoping sum = Definition of 74 = max{a,b} < a+b
if a,b> 0. O

o (L-smooth, E[||V f(x,&)|I?] < B?):

2, g2 T .2 T
E[F(&r) — F*] < %, where @ := % and |1 —2*|| < R.

Squared norm of update rule—x* = Cosine theorem = Law of total exp. to
bound inner product = Convexity of F' = Telescoping sum = Jensen's ineq. [J

o (WSC E[IVf(x,&)I?] < B> =% 7> 35;)

2 p2
B
max{ B2 ||y —* |}

Efler —2*|?] < T

Squared norm of update rule—a* = Cosine theorem = ©-SC to get
E[(V f(xt, &), @ — 2*)] > p- E[||lw; — *]|2] = Recursion.

o Adaptive method: g;: = Vf(x¢, &), m¢ = ¢e(g1,...,9t), Vi = ¥e(g1, ...
:i:t = X+ — atVflmmt, Tt41 = argminmex{(:c — it)T%71/2($ — :i:t)}

O

,gt),

o SGD: my =g¢, Vi = 1.
. t 2
o AdaGrad: m; = g¢, Vi = M.

o Addam: m; = (1 - )3t ;o' 7gr, Vi = (1 — B)diag(3L_, B "g2).
Recursively: my = ami—1 + (1 — a)ge, Vi = Vi1 + (1 — B)diag(g?).

Variance reduction

o SGD requires more iterations due to high variance = Reduce variance.

o Finite-sum optimization: min_ a4 F(x) := % v fi(z).

o If we want to estimate § = E[X], we can also estimate 0 as E[X — Y] if and only
if E[Y] = 0. Furthermore, Var[X — Y] < Var[X] if Y is highly positively correlated
with X. Specifically, if Cov(X,Y) > %Var[Y], the variance will be reduced.

o Let a € [0,1], we estimate 6 by 0, = a(X —Y) + E[Y]. We then have
E[fa] = aE[X] + (1 — a)E[Y]
Var[fa] = o (Var[X] 4 Var[Y] — 2 - Cov(X, Y)).

Implication: Trade-off between bias and variance, where o = 1 makes the estima-
tor unbiased, but the variance decreases when o decreases.

o SGD estimates VF(x¢) by Vf;, (@), but VR estimates the full gradient by
gt = a(Vfi, () = Y) + E[Y],
such that g; satisfies the VR property: lim;_, o ]E[Hgt — VF(a:t)Hﬂ =0.
o Key idea: If ; is not too far away from previous iterates x1..—1, we can leverage
previous gradient information to construct positively correlated control variates Y.
o Stochastic Average Gradient (SAG): Keep track of the latest gradients v! for
all points ¢ € [n]: O(nd) storage requirement. Estimate full gradient by average
of these: g; = 1 377 | w!. Each iteration we update v by

’U? _ szf (mt) 7= it
A P i # it
1 t—1
Thus, we have a = oY= v and E[Y] = g¢—1,

1 _
g = (Vfit () — 'Uﬁt 1) +gt—1.
Problem: (1) O(nd) storage, (2) biased o # 1. Advantage: O((n + Kmax log %))
iteration complexity, where Kmax = MaX;cn] %
o SAGA: Unbiased version of SAG, because it sets o« = 1: gy = V fj, (@¢) — vft_l -+
g:—1. But, it still enjoys the same benefits.

o Stochastic variance reduced gradient (SVRG): Build covariates based on a
fixed reference point & that is periodically updated every m-th iteration:
gt = Vi, (@) = Vi, (&) + VF(&).
Problems: (1) O(n + 2m) gradient evaluations per epoch, (2) More hyperpa-
rameters. Advantages: (1) Unbiased, (2) O(d) memory cost, (3) Same iteration
complexity as SAG(A).

Min-max optimization

o Optimization problem: mingc x maxycy ¢(x,y).

o Saddle point: (*,y*) is a saddle point if

P(*,y) < d(=*,y") < d(x,y"), Ve € X,yeY.
Interpretation: No player has the incentive to make a unilateral change, because it
can only get worse. Game theory: Nash equilibrium.

o Global minimax point: (x*,y*) is a global minimax point if
o(x*,y) < p(x*,y") < max oz, y"), Ve X,ycY.
y'e

Interpretation: x* is the best response to the best response. Game theory: Stack-
elberg equilibrium.

0 maxycy Mingex ¢(x,y) < minge x maxycy ¢(x,y).

o Saddle point lemma: (xz*,y*) is a saddle point iff maxy,cy mingec x ¢(x,y) =
minge x maxycy ¢(,y) and (z*,y*) are the arguments.

o Minimax theorem: If X and Y are closed convex sets, one of them is bounded,
and ¢ is a continuous C-C function, then there exists a saddle point in X x Y.

Duality gap: é(z,y) := max,cy ¢(z,y’) — ming ¢ x ¢(x',y) > 0.

Saddle point by duality gap: If &(x,y) = 0, then (x,y) is a saddle point and if
é(z,y) < ¢, then (x,y) is an e-saddle point.

Gradient descent ascent (GDA):
xrp1 = x (2 — YVad(@e,yt)), Yi+1 =y (ye + YVyd(xe, yt)).
Does not guarantee convergence in C-C setting (consider ¢(z,y) = zy).

o (L-smooth, p-SC-SC, v := ;55

2\T
ler =22 + lyr — 72 < (1= L) (21 — 222 + g — w7,

[0)

(0]

(o]

Add p-SC-SC definitions together = Use L-smoothness for a bound = Use
update rule in ||z¢+1 — *||2 + ||yt+1 — y*||?> = Non-expansiveness of projection
= Rearrange = Cosine theorem =- Bound inner products using SC-SC and

smoothness. (]

o Extragradient method (EG):
xiy1/e = Lx (@ — YV (@i, yi))

Yirr2 =y (ye +7Vyd(ze, ye))

1 = Hx (2 — 7V2¢(mt+l/2:yt+l/2))

Yt+1 = Uy (Yt + YVyd(@ip1/0, Yst1/2))-

2 2

o (L-smooth, C-C, v < i) &z, y) < %%m

= % Z?:l Yit1/2: and Dz = maxy »'cz Iz — =
L-smooth, u-SC-SC, ~ := é):

e — 22 + llyerr —o* 12 < (1 — &) (loe — 2| + lly: — v*112).

o Optimistic gradient descent ascent (OGDA):
Zip1e = Ux (@ — YV d (@i 1/, Yi—12))

Yepre = Uy (Yt +7Vyd(@e_1/2, Y—1/2))
241 = Hx (2t — YVad(@ir1/2, Yer1/2))
Yi+1 = Uy (Yr + YVyd(@ip1/2: Yg1/2))-

, where & = % Z;'F:l Tyi1/a,
Il

[0)
—~ @

o In the case X =Y = R, this can be seen as negative momentum:
Tip1 =@t — 2YVad(@t, Yt) + YVad(@i—1,Y:-1)

Yt+1 = Yt + 27Vyd(xt, yt) — YVyd(Ti—1,Yt—1)-

o Proximal point algorithm:

. 1 2 1 2
(®141,Yt+1) € argminargmax ¢(z,y) + — |l — xl|” — —lly — wel|”
zeX  yeY 2y 2y

Variational inequalities

o Generalizes all of the above to mapping F' : Z — R®. Goal: Find z* € Z, such
that (F(z*),z —2*) > 0,Vz € Z.

o Monotone operator: (F(x) — F(y),z —y) > 0.

o u-strongly monotone: (F(x) — F(y),z —y) > ullz — y|%.

o VI strong solution (Stampacchia): (F(z*),z —2*) > 0,Vz € Z.

o VI weak solution (Minty): (F'(2z),z —2*) > 0,Vz € Z.

o If F' is monotone, then strong = weak. If F' is continuous, then weak = strong.

o Convex minimization can be cast as VI problem by defining F* = WV f for
a convex function. Min-max problems can be cast as VI problem by defining
F = |Vg¢, —Vy¢] for a convex-concave ¢.

o Extragradient method:
ziy1 = z(ze — 7 F(20))
zt41 = Uz (2t — 1 F(244172))-
o (L-smooth, monotone, ~ := \/%)

2
V2LD%
T

maxzez(F(2),z2 — 2z) < , where z = % Y Zi41/2-

Optimality condition w.r.t. 2,1/, = Rewrite using cosine theorem = Opti-

mality condition w.r.t. z¢11 (set 2 = zy1 in the other optimality condition)
= Use previous and Cauchy-Schwarz to bound 2v(F' (2 y1/5), 244172 — 2) =

29(F(2441/2), Ze1/2 — Zt4+1) + 29(F(2441/3), Zt+1 — 2) = Smoothness and
v = % = Young's inequality: ||lz|| - [|y|| < %||:v||2 + %HyH2 = Use monotonicity
and sum over all timesteps. d




