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List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A→ B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

T ∈ Rd1×···×dn Tensor

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

θ ∈ Θ Parametrization of a model, where Θ is a compact sub-
set of RK

X Input space

Y Output space

D ⊆ X ×Y Labeled training data
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1 Backpropagation

Backpropagation is the single most important algorithm in modern ma-
chine learning, because it is used to compute gradients of composite
functions efficiently. It is a linear-time dynamic program for computing
derivatives, i.e., it stores intermediate results to be as fast as forward
propagation.

In machine learning, most of the time, we have inputs x ∈ X and
outputs y ∈ Y from a dataset D ⊆ X × Y , and we want to fit some
function fθ : X → Y such that it minimizes some loss function,

∑
(x,y)∈D

ℓ( fθ(x), y).

We need this function’s gradient to be able to use an algorithm such
as gradient descent to optimize it.1 For a composite function, it is time 1 Most of the time, this function cannot be solved in

closed form.consuming to derive the gradient by hand. Thus, we use backpropagation
to automatically compute the gradients, as long as we have access to the
derivatives of its primitive functions.

Example 1.1 (Computation graph). A composite function can be
represented using intermediate variables such that each variable
is computed by a single primitive function. Let’s say we have the
following function,

f (x, y) = sin(xy + exp(y)).

Then, we can represent the intermediate variables as the follow-
ing,

z1 = xy

z2 = exp(y)

z3 = z1 + z2

z4 = sin(z3).

x

y

z1

z2

z3 z4

×

+

exp(·)

sin(·)

We could also describe a function as a labeled, directed acyclic2 hy- 2 The fact that our computation graph is acyclic
makes it possible for backpropagation to be linear.pergraph3, where each node is a variable and each hyperedge is labeled
3 A hypergraph allows the edges to have multiple
sources and targets. This is needed because func-
tions can have multiple inputs and multiple out-
puts.
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with a function. Given a function f : Rn → Rm, y = f (x) ∈ Rm, for input
xj and outputs yi, Bauer’s formula gives the following,

∂yi
∂xj

= ∑
p∈P(j,i)

∏
(k,l)∈p

∂zl
∂zk

,

where P(j, i) is the set of paths from vertex j to vertex i and p ∈ P(j, i)
is the set of edges that make up the path p. I.e., the partial derivative
is a sum over all paths in the computation graph, where the derivative
over each path is computed by the chain rule.4 When computing the 4 d

dx f (g(x)) = d
dg(x) f (g(x)) · d

dx g(x).

partial derivatives for functions with dense computation graphs naively,
we are typically summing over an exponential number of paths, because
many of these partial derivatives are recomputed many times. We can
use dynamic programming to store these values and avoid computing
them again. In this case, the amount of computation scales linearly with
the number of edges.

1: function ForwardPropagation( f , x)

2: zi ←

xi if i ≤ m

0 otherwise
▷ Initialize input variables

3: for i = m + 1, . . . , n do
4: zi ← gi(zParents(i)) ▷ Set intermediate variables
5: end for
6: return z
7: end function

Algorithm 1. Forward propagation algorithm that
assumes that the edges are topologically sorted so
i < j implies that zi is computed before zj.

1: function Backpropagation( f , x)
2: z← ForwardPropagation( f , x)

3:
∂ f
∂zi
←

1 if i = n

0 otherwise
▷ Base case

4: for i = n− 1, . . . , 1 do ▷ O(n)
5:

∂ f
∂zi
← ∑zp∈Parents(zi)

∂ f
∂zp

∂zp
∂zi

▷ Chain rule
6: end for
7: return ∇x f
8: end function

Algorithm 2. Backpropagation algorithm that as-
sumes that the edges are topologically sorted so
i < j implies that zi is computed before zj.

The general framework that any backpropagation framework uses is
the following,

1. Write down a composite function as a hypergraph with intermediate
variables as nodes and hyperedges labeled with primitive functions;

2. Given a set of inputs, perform forward propagation through the graph
to compute the function’s value (Algorithm 1);

3. Run backpropagation on the graph using the stored forward values
(Algorithm 2). Intuitively, we set up a dynamic programming table
using Bauer’s formula.
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Example 1.2 (Backpropagation table for Example 1.1).

∂ f
∂z4

= 1

∂ f
∂z3

=
∂ f
∂z4

∂z4

∂z3
= cos(z3)

∂ f
∂z2

=
∂ f
∂z3

∂z3

∂z2
= cos(z3)

∂ f
∂z1

=
∂ f
∂z3

∂z3

∂z1
= cos(z3)

∂ f
∂x

=
∂ f
∂z1

∂z1

∂x
= cos(z3)y

∂ f
∂y

=
∂ f
∂z1

∂z1

∂y
+

∂ f
∂z2

∂z2

∂z1
= cos(z3)x + cos(z3) exp(y).
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2 Log-linear modeling

Let’s say we want to model the conditional probability p(y | x). A naive
way of doing this is the following,

p(y | x) .
=

count(x, y)
count(x)

.

There are two main problems with this interpretation of discrete condi-
tional probability,

• Suppose count(x, y) = 0, then the probability will be 0, i.e., the model
says that y is impossible in context x;

• There is no way to look at finer-grained aspects of x, i.e., some values
of x might be related.

Thus, we need a more general framework for modeling conditional
distributions. One such general framework is to simply exponentiate
some scoring function score : X ×Y → R that we construct,5 and let the 5 The exponentiation makes sure that it is non-

negative.conditional probability be proportional to it,

p(y | x) ∝ exp score(x, y) > 0.

The linear scoring function looks like the following,

score(x, y) = θ⊤ f (x, y)

with feature weights θ ∈ RK and f (x, y) ∈ RK as a vector describing y
in context x. The conditional probability then looks like the following,

pθ(y | x) =
1

Zθ
exp

(
θ⊤ f (x, y)

)
Zθ(x) = ∑

y′∈Y
exp

(
θ⊤ f (x, y′)

)
.

This is called log-linear modeling, because if we take the logarithm of
the conditional probability, we get a linear model,

log pθ(y | x) = θ⊤ f (x, y)− log Zθ(x).

The design of the feature function f (x, y) is a big portion of the work
in log-linear modeling. It can be split into two parts: preprocessing and
extracting features. The preprocessing simply consists of steps such as
tokenization, lower-casing, stemming, stop-word removal, and reducing
vocabulary. After the preprocessing, we can obtain features. Examples
include one-hot encoding, bag-of-words, n-grams, and word embeddings.

Maximum likelihood estimation (MLE) is a way of finding the parameters
θ ∈ Θ that minimizes the negative log-likelihood (a.k.a. cross entropy) of the
training data, i.e., we want to minimize the following,

θ̂ = argmin
θ∈Θ

− log ∏
(x,y)∈D

pθ(y | x)

= argmin
θ∈Θ

∑
(x,y)∈D

− log pθ(y | x),
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where Θ is a compact (bounded and closed) subset of RK.6 In log-linear 6 The reason for not taking θ ∈ RK is that the
weights will likely go to infinity.modeling, this objective function is convex, thus any local minimum is a

global minimum. We usually optimize the log-likelihood with gradient-
based methods,

∇θ ∑
(x,y)∈D

− log pθ(y | x) = ∑
(x,y)∈D

∇θ

(
log Zθ(x)− θ⊤ f (x, y)

)
= ∑

(x,y)∈D
∇θ log Zθ(x)−∇θθ⊤ f (x, y)

= ∑
(x,y)∈D

1
Zθ(x) ∑

y′∈Y
∇θ exp

(
θ⊤ f (x, y′)

)
− f (x, y)

= ∑
(x,y)∈D

∑
y′∈Y

1
Zθ(x)

exp
(

θ⊤ f (x, y′)
)
∇θθ⊤ f (x, y′)− f (x, y)

= ∑
(x,y)∈D

∑
y′∈Y

pθ(y′ | x) f (x, y′)− f (x, y)

= ∑
(x,y)∈D

Ey′ [ f (x, y′)]− ∑
(x,y)∈D

f (x, y).

Due to convexity, the global minimum is the only point that has its
gradient equal 0. Thus, at the optimal parameters, the following is the
case,

f (x, y) = Ey′ [ f (x, y′)].

Therefore, the optimum is where the observed feature counts f (x, y)
look like the expected feature counts Ey′ [ f (x, y′)] through the lens of
the model. In other words, the training data looks exactly like what our
model predicts through the eyes of our feature function. This is referred
to as expectation matching.

Furthermore, we can derive the Hessian of the negative log-likelihood
to be the covariance matrix of f (x, ·) w.r.t. θ,
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∇θ⊤ pθ(y | x) = ∇θ⊤Zθ(x)−1 exp
(

θ⊤ f (x, y)
)

= Zθ(x)−1∇θ⊤ exp
(

θ⊤ f (x, y)
)
+
(
∇θ⊤Zθ(x)−1

)
exp

(
θ⊤ f (x, y)

)
=

1
Zθ(x)

exp
(

θ⊤ f (x, y)
)
∇θ⊤θ⊤ f (x, y)− 1

Zθ(x)2 exp
(

θ⊤ f (x, y)
)
∇θ⊤Zθ(x)

= pθ(y | x) f (x, y)⊤ − pθ(y | x)
1

Zθ(x) ∑
y′∈Y

∇θ⊤ exp
(

θ⊤ f (x, y′)
)

= pθ(y | x) f (x, y)⊤ − pθ(y | x)
1

Zθ(x) ∑
y′∈Y

exp
(

θ⊤ f (x, y′)
)
∇θ⊤θ⊤ f (x, y′)

= pθ(y | x) f (x, y)⊤ − pθ(y | x) ∑
y′∈Y

pθ(y′ | x) f (x, y′)⊤

= pθ(y | x)
(

f (x, y)⊤ −Ey′
[

f (x, y′)⊤
])

.

∇2
θ − log pθ(y | x) = ∑

(x,y)∈D
∇θ⊤∇θ− log pθ(y | x)

= ∑
(x,y)∈D

∇θ⊤ ∑
y′∈Y

pθ(y′ | x) f (x, y′)− f (x, y)

= ∑
(x,y)∈D

∑
y′∈Y

f (x, y′)∇θ⊤ pθ(y′ | x)

= ∑
(x,y)∈D

∑
y′∈Y

f (x, y′)pθ(y′ | x)
(

f (x, y′)⊤ −Ey′′
[

f (x, y′′)⊤
])

= ∑
(x,y)∈D

∑
y′∈Y

pθ(y′ | x) f (x, y′) f (x, y′)⊤ −Ey′′
[

f (x, y′′)⊤
]

∑
y′∈Y

pθ(y′ | x) f (x, y′)

= ∑
(x,y)∈D

Ey′
[

f (x, y) f (x, y)⊤
]
−Ey′

[
f (x, y)⊤

]
Ey′ [ f (x, y)]

= ∑
(x,y)∈D

Covy′∼pθ(·|x)
[

f (x, y′)
]
.

2.1 Softmax

The probability simplex ∆K−1 is a subspace of RK
≥0

such that the sum of the components of its elements
is 1. It is denoted as ∆K−1, because it has K − 1
free parameters, and looks like a triangle in three
dimensions.

The softmax : RK → ∆K−1 function is the default way of building prob-
abilistic models using neural networks, because it maps vectors to cat-
egorical probability distributions. It is basically the same as log-linear
modeling. It is defined as

softmax(h)y
.
=

exp(hy/T)

∑y′∈Y exp(hy′/T)
.

Usually, the temperature is set to T = 1.7 This is a generalization of log- 7 As T → 0, softmax becomes the argmax function
and as T → ∞, softmax becomes a uniform categor-
ical distribution.

linear modeling, where, instead of θ⊤ f (x, y), we can use any function of
the input.



natural language processing 2023–2024 7

2.2 The exponential family

The exponential family is a family of probability distributions of the fol-
lowing form,

pθ(x) =
1

Zθ
h(x) exp

(
θ⊤ϕ(x)

)
,

where Zθ is the partition function that normalizes the probability distri-
bution, h(x) determines the support of the function, θ are the canonical
parameters, and ϕ(x) are the sufficient statistics. Importantly, h(x) may
not depend on θ. Any distribution that can be brought into this form is
part of this family.8 8 Notice that the form of the exponential family is

a generalization of softmax.
The advantage of the exponential family is that they have conjugate

priors, which make intractable posteriors tractable. Intuitively, this is
because the posterior must be in the same form as the prior, thus we must
be able to summarize the data into a finite vector (sufficient statistics).
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3 Multi-layer perceptrons

For log-linear models to find an appropriate model, the data has to be lin-
early separable.9 The solution to this problem is the multi-layer perceptron 9 If the data is non-linear, we can use a feature func-

tion f that makes the feature vector linearly sepa-
rable by hacking the non-linearity into the feature
function (e.g., if the data is ellipsoidal, we would
choose an ellipsoidal feature function.) But, this re-
quires us to know the decision boundary’s shape a
priori to set the feature function.

(MLP) [Haykin, 1994]. They jointly learn a non-linear feature function
with the model’s parameters. MLPs consist of n alternating linear projec-
tions and non-linearities,10

10 The non-linearities are very important, because
otherwise we would just get a linear model, since
a stack of linear transformations are equal to some
single linear transformation. Thus, if the model
would not contain non-linearities, we would not
gain any expressiveness.

hn = σn

(
W⊤

n hn−1

)
h1 = σ1

(
W⊤

1 e(x)
)

,

where e(x) ∈ Rd is a continuous vector encoding of the input x. Then,
we can combine this non-linear feature representation of the input with
the parameters to obtain a categorical probability distribution,

softmax
(

θ⊤hn

)
.

Basically, the only difference is that we now learn the feature function.

Using backpropagation, we can compute the derivative of a weight
matrix Wk of an MLP as follows,

∂ℓ

∂Wk
=

∂ℓ

∂y
∂y

∂hn

(
n

∏
m=k+1

∂hm

∂hm−1

)
∂hk
∂Wk

=
∂ℓ

∂y
∂y

∂hn

(
n

∏
m=k+1

∂

∂hm−1
σm

(
W⊤

m hm−1

)) ∂

∂Wk
σk

(
W⊤

k hk−1

)
=

∂ℓ

∂y
∂y

∂hn

(
n

∏
m=k+1

σ′m

(
W⊤

m hm−1

)
Wm

)
σ′k

(
W⊤

k hk−1

)
hk−1

If we use the ReLU activation function, this becomes the following,

=
∂ℓ

∂y
∂y

∂hn

(
n

∏
m=k+1

1{W⊤
m hm−1 > 0} ·Wm

)
1{W⊤

k hk−1 > 0} · hk−1.

This is the cause of “dead“ neurons. When their values become negative,
their derivative becomes 0. Thus, there is no way for gradient descent
to learn anymore. Also, the derivative of all children of “dead“ neurons
become 0, because of the chain rule.

3.1 Word embeddings

To be able to use MLPs, we would need a continuous vector encoding of
words/sentences. A naive idea would be to encode one-hot word counts
of sentences. However, this approach discards word ordering informa-
tion. A naive solution would be to then encode n-grams to regain some
word ordering information, however the vectors would explode in size
to O(|V|n), where |V| is the vocabulary size.

A great idea is to use unsupervised learning to train word embeddings
on large corpora.11 The first model that made use of this idea is Skip- 11 Easy to get due to the internet.
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Gram [Mikolov et al., 2013]. Its high-level idea is that it predicts whether
a word w′ is in the context of a word w.12 The weights of this model are 12 “You shall know a word by the company it

keeps.“the word embeddings and they are used to predict the model’s objective.
The idea is then that the model needs a good representation of the words
to be able to do this task successfully, thus we can use the embeddings
that this model trains for other tasks.

The first step of Skip-Gram is to preprocess the corpus. This is done
by collecting positive and negative samples.13 To collect positive samples, 13 A reason for collecting negative samples is be-

cause then we do not need to compute the normal-
izing constant Z(w). This is due to the fact that we
are simply maximizing the output for positive sam-
ples and minimizing the output for negative sam-
ples while training. But, if we did not have negative
samples, we would have to normalize the output
to be a probability between 0 and 1, because oth-
erwise we would not know whether the output is
good or not.

it goes through all words w and collects all words w′ in the context of
w. Then, it randomly generates other words w′ as negative samples, i.e.,
they are not in the context of w, and adds them to the dataset.

Then, we use the embeddings to predict whether a context word is in
a word’s context,

p(c | w) =
1

Z(w)
exp

(
ew(w)⊤ec(c)

)
Z(w) = ∑

c∈V
exp

(
ew(w)⊤ec(c)

)
.

We use two different embedding types, because if w = c, then e(w)⊤e(c)
would be positive and thus the probability very high, even though this
case is very unlikely, because words do usually not appear in their own
context. Thus, to mitigate this, we use two different context and word
embeddings.

3.2 Sentiment analysis

w1

w2

w3

...

e(w1)

e(w2)

e(w3)

⊕ fθ

...

∈
R

d

∈
R

d

y

Figure 3.1. Architecture of a simple sentiment clas-
sifier, where fθ is a multi-layer perceptron.

An example application is sentiment analysis [Pang et al., 2008], which
classifies sentences as positive or negative. MLPs and word embeddings
can be used for this and work very well [Iyyer et al., 2015]. The model
first embeds all the words in the sentence and pools them together into
one vector representation of the sentence.14 Then, this vector is passed

14 Pooling together discards word order, but for this
simple task, it will still work very well.

into an MLP, which is used as input to a softmax with a single output
that tells us how positive the sentence is.
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4 Structured prediction

In NLP, we often have the case that the input and output of a model has
some structure. E.g., in context-free parsing, we have a sentence as input
and want to output a parse tree. To be able to train a model and perform
inference, we need to be able to compute the log-likelihood,

pθ(y | x) .
=

1
Zθ(x)

exp(scoreθ(y, x))

Zθ(x) .
= ∑

y′∈Y
exp(scoreθ(y′, x)).

However, often there are an exponential, or even infinite, amount of
possible structures y ∈ Y for an input x ∈ X . For training, this has the
result that the normalizer Zθ is very inefficient to compute, since it is a
sum over a very large amount of values. For inference, this has the result
that we would need to search a very large space for the best output y.

The solution to this problem is that we need to make use of the struc-
ture to design algorithms for computing the normalizer and finding the
most probable output. The next sections will include NLP problems,
where we need to design algorithms to compute the normalizer effi-
ciently.
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5 Language modeling

In language modeling, Σ is a finite, non-empty set of symbols. In the
context of natural language, this is usually set to be the vocabulary of
words or tokens. A string over an alphabet Σ is any finite sequence of
alphabet symbols. The output space Y is set to the set of all possible
strings Σ∗, which is infinite, thus there is no way to sum over every
possible structure, nor is there an easy way to output the maximum
scoring structure.

A language model (LM) is a probability distribution over Σ∗, i.e., LMs
assign probabilities to strings y ∈ Σ∗. We can discriminate between two
types of LMs,

• Globally normalized LMs, which define a single scoring function scoreθ :
Σ∗ → R and normalizes the scores across all y ∈ Σ∗,15 15 Global LMs are not used much, because their nor-

malizer requires a sum over an infinite set. Thus,
we will focus on local LMs.

p(y) .
=

1
Zθ

exp scoreθ(y);

• Locally normalized LMs, which decompose string probabilities into con-
ditional probabilities p(yi | y<i) over symbols yi given the previous
symbols y<i,

p(y) .
= p(eos | y) ·

N

∏
i=1

p(yi | y<i)

p(yi | y<i)
.
=

1
Zθ(y<i)

exp scoreθ(yi, y<i).

Local LMs are collections of conditional probability distributions p(yi |
y<i), which intuitively tells us how probable symbol yi is to follow the
already seen string y<i. In practice, we also need beginning-of-sentence
(bos) and end-of-sentence (eos) symbols. We condition on bos for the
first token to model that the sequence starts with y1 and we condition on
the entire string with eos to model the probability that no more symbols
follow. We can also use local LMs to generate strings by

continuously sampling from the probability distri-
bution p(yi | y<i) until we sample eos, e.g.,

he walks the


p(dog | he · · · ) = 0.5
p(cat | he · · · ) = 0.24
p(eos | he · · · ) = 0.01.

A well-defined LM always assigns probability to eos given any his-
tory y<i, because otherwise we could get in the situation where we have
a history that never ends in eos, which will not result in a string. Models
that have this problem are called non-tight. The probability of all sen-
tences in a non-tight model do not sum to 1. To mitigate this problem,
we ensure a model is tight by forcing p(eos | y<i) > ξ > 0 for every
history y<i.

The problem with local LMs is that there are infinitely many distribu-
tions p(· | y<i) with y<i ∈ Σ∗. Thus, we need some way of being able to
compute all these distributions.
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5.1 n-grams

The n-gram solution is to limit histories y<i to a length n− 1. This as-
sumption leads to the following probability distribution,

p(yi | y<i) = p(yi | yi−n+1, . . . , yi−1).

This ensures a finite number |Σ|n−1 of histories.

The naive implementation of n-gram would be to define a separate
conditional probability distribution for every possible context of size
n− 1. Thus, we can assign each history a probability distribution based
on the counts we observe in training data,

p(yi | yi−n+1, . . . , yi−1) =
count(yi−n+1, . . . , yi−1, yi)

count(yi−n+1, . . . , yi−1)
.

However, this does not allow us to share parameters between histories,
which might be very similar and give much insight.16 Furthermore, it is 16 E.g., the distributions over

p(· | she walks) p(· | he walks)

are parametrized independently, even though their
distributions should be extremely similar.

very memory inefficient, since we need to store (|Σ̄| − 1) |Σ|n−1 parame-
ters to specify the |Σ|n−1 conditional distributions for each history, where
Σ̄ = Σ ∪ {eos}.

The neural n-gram [Bengio et al., 2000] is a more efficient approach
that does allow parameter sharing. It uses word embeddings to encode
the words and histories,

p(yi | y<i) =
exp

(
e(yi)

⊤hi
)

∑y′∈Σ̄ exp
(
e(y′)⊤hi

) ,

where hi = enc(y<i) = enc(yi−n+1, . . . , yi−1).17 The crucial idea of this 17 Bengio et al. [2000] used a neural network to en-
code the history. In this architecture, the words in
the history yi−n+1:i−1 are concatenated (preserve
word-order) and used as input to a neural network
that outputs a d-dimensional representation hi .

approach is that if the word embedding is similar to the encoding of the
history, it is more likely. This approach has O(d|V|) space complexity for
all n.

5.2 Recurrent neural networks

hi+1hihi−1

xixi−1xi−2

· · · · · ·

· · · · · ·

Wh, Wx , b

Figure 5.1. Diagram of the RNN architecture. Each
hidden state hi has “seen“ all previous tokens
x1:i−1.

The fixed history size of the n-gram model is not realistic. We want to be
able to encode the entire history, which is possible with recurrent neural
networks (RNN). RNNs work by having two inputs at every timestep:
the time-dependent hidden state hi−1, representing all words before the
current one, and embedding of the current token e(yi−1). These are com-
bined to represent the entire history. There are many variations, but the
simplest one is the Elman RNN [Elman, 1990],

hi = σ(Whhi−1 + Wxe(yi−1) + b),

where Wh ∈ Rd×d, Wx ∈ Rd×d, and b ∈ Rd are learned parameters. At
their core, RNNs are just a non-linear combination of the recurrent state
and the inputs.
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RNNs are trained by unrolling the timesteps and applying backprop-
agation. The problem with this is that RNNs become prone to the van-
ishing/exploding gradient problem, because computing the gradient of
the parameters involves a lot of matrix operations with itself. The LSTM
[Hochreiter and Schmidhuber, 1997] and GRU [Cho et al., 2014] architec-
tures seek to solve this problem.

∂ℓ

∂Wh
=

∂ℓ

∂y
∂y

∂hN

∂hN
∂Wh

=
∂ℓ

∂y
∂y

∂hN

N

∑
i=1

∂hN
∂hi

∂hi
∂Wh

=
∂ℓ

∂y
∂y

∂hN

N

∑
i=1

(
N

∏
m=i+1

∂hm

∂hm−1

)
∂hi

∂Wh

=
∂ℓ

∂y
∂y

∂hN

N

∑
i=1

(
N

∏
m=i+1

∂

∂hm−1
σ(Whhi−1 + Wxe(yi−1) + b)

)
∂

∂Wh
σ(Whhi−1 + Wxe(yi−1) + b)

=
∂ℓ

∂y
∂y

∂hN

N

∑
i=1

(
N

∏
m=i+1

σ′(Whhi−1 + Wxe(yi−1) + b)Wh

)
σ′(Whhi−1 + Wxe(yi−1) + b)hi−1

If we use the tanh activation function with a derivative that never exceeds
1, we get the following,

≈ ∂ℓ

∂y
∂y

∂hN

N

∑
i=1

hi−1

N

∏
m=i+1

Wh.

This contains many multiplications of Wh with itself, which causes ex-
ploding or vanishing gradient (dependent on whether the determinant
of Wh is greater than or less than 1).
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6 Semirings

Definition 6.1 (Monoid). A monoid is a 3-tuple ⟨K,⊙, e⟩, such that

1. ⊙ is associative for all values in K. ∀x, y, z ∈ K,

(x⊙ y)⊙ z = x⊙ (y⊙ z);

2. e ∈ K is the identity element. ∀x ∈ K,

x⊙ e = x.

Definition 6.2 (Semiring). A semiring is a 5-tuple ⟨K,⊕,⊗, 0, 1⟩,
such that

1. ⟨K,⊕, 0⟩ is a commutative monoid;

2. ⟨K,⊗, 1⟩ is a monoid;

3. ⊗ distributes over ⊕. ∀x, y, z ∈ K,

(x⊕ y)⊗ z = (x⊗ z)⊕ (y⊗ z)

z⊗ (x⊕ y) = (z⊗ x)⊕ (z⊗ y);

4. 0 is an annihilator for ⊗. ∀x ∈ K,

0⊗ x = 0

x⊗ 0 = 0.

Semirings are very useful for generalizing algorithms that only make
use of associativity, commutativity, and distributivity. For example, if we
have an efficient algorithm for computing the normalizer,

Z = ∑
y∈Y

N

∏
n=1

exp score(yn).

We can “semiringify“ it to compute the following,

⊕
y∈Y

N⊗
n=1

exp score(yn).

Then, we can use any semiring with this algorithm. For inference, we
would then want to use for example the Viterbi semiring ⟨R, max,×, 0, 1⟩
to compute the following,

max
y∈Y

N

∏
n=1

exp score(yn).
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Definition 6.3 (Closed semiring). A closed semiring is a semiring
with an additional unary operation: the Kleene star,

x∗ =
∞⊕

n=0
x⊗n.

The Kleene star must obey the following two axioms,

x∗ = 1⊕ x⊗ x∗

x∗ = 1⊕ x∗ ⊗ x.

Closedness allows us to compute infinite sums within a semiring. For
example, the real semiring is closed if we let its set be (−1, 1), because
then we can compute the Kline star to be the following using the closed
form of the geometric series,

x∗ =
∞

∑
n=0

xn =
1

1− x
.
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7 Part-of-speech tagging

V

N

Det

V

N

Det

V

N

Det

V

N

Det

· · ·

· · ·the man walks the

Figure 7.1. Example POS graph with T =
{N, V, Det}. For inference, we want to find the best
N-length path within this graph. For training, we
want to compute the sum over all N-length paths
within this graph. The dashed edges are the back-
pointers to the argmaxes, and the thick line is the
best path.

In part-of-speech tagging (POS tagging), we want to predict a POS tag
t ∈ T for every word of the input sentence w of length N. In other words,
given an N-dimensional input sequence of words w ∈ ΣN , we want to
output an N-dimensional sequence of tags t ∈ T N . This can be seen as
searching through a POS graph as in Figure 7.1. The output space T N

is exponential, so we need to design an algorithm to efficiently compute
the normalizer Z(w), and find the maximum scoring tagging.

7.1 Conditional random fields

Conditional random fields (CRF) are a conditional probabilistic model for
structured labeling. Whereas a classifier predicts a label for a single sam-
ple without considering neighboring samples in the structure, a CRF
does take context into account. In other words, CRFs are a model for
computing the normalizer Z in a structured labeling case. Note that the bigram assumption does not mean

that the current tag only depends on the previ-
ous and current word, because the word representa-
tions can be anything. E.g., if we use a bidirectional
RNN for the word representations, the tags will
still depend on the entire input sentence. However,
a problem that this can cause is that it cannot cor-
rectly tag garden-path sentences, since we cannot
change the start of the tagging after seeing the end
of the tagging. An example garden-path sentence
is “The horse raced past the barn fell.“

In the sequence labeling case of POS tagging, we will assume that tags
only depend on their immediate neighbors,

score(t, w) =
N

∑
n=1

score(⟨tn−1, tn⟩, w, n),

which can be further decomposed into transition and emission scores,

score(⟨tn−1, tn⟩, w, n) = transition(⟨tn−1, tn⟩) + emission(wn, tn).

This balances how likely tn is to follow tn−1 and how likely word wn is
to be assigned tag tn.

We can use the new decomposed scoring function to find an efficient
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algorithm for computing the normalizer under a semiring,

⊕
t∈T N

N⊗
n=1

exp score(⟨tn−1, tn⟩, w, n)

=
⊕

t1∈T
· · ·

⊕
tn∈T

exp score(⟨t0, t1⟩, w, 1)⊗ · · · ⊗ exp score(⟨tN−1, tN⟩, w, N)

=
⊕

t1∈T
exp score(⟨t0, t1⟩, w, 1)⊗

(
· · · ⊗

(⊕
tn∈T

exp score(⟨tN−1, tN⟩, w, N)

))
,

where distributivity is used in the last step. The backward and forward
algorithms (Algorithms 3 and 4) are direct results of this rederivation,
which compute the normalizer in O

(
N · |T |2

)
.

1: function BackwardAlgorithm(w, score, ⟨A,⊕,⊗, 0, 1⟩)
2: β[N]← 1
3: for n = N − 1, . . . , 0 do
4: for tn ∈ T do
5: β[n, tn] ←

⊕
tn+1∈T exp(score(⟨tn, tn+1⟩), w, n + 1) ⊗

β[n + 1, tn+1]

6: end for
7: end for
8: return β[0, bot]

9: end function

Algorithm 3. Backward algorithm that computes
the semiring-sum over all taggings of a sentence w.
It can be seen as iteratively computing the larger
semiring-sum from the derived equation.

1: function ForwardAlgorithm(w, score, ⟨A,⊕,⊗, 0, 1⟩)
2: α[0]← 1
3: for n = 1, . . . N do
4: for tn ∈ T do
5: α[n, tn] ← ⊕

tn−1∈T exp(score(⟨tn−1, tn⟩), w, n) ⊗
α[n− 1, tn−1]

6: end for
7: end for
8: return α[N, eot]

9: end function

Algorithm 4. Forward algorithm that computes the
same thing as Algorithm 3, but then in a different
fashion. This version is more intuitive, because it
starts at the beginning and ends at the end.

We can thus use these algorithms to compute the normalizer Z(w)

during training. For inference, the Viterbi algorithm is a version of the
backward algorithm under the Viterbi semiring, where backpointers to
the argmax are kept such that the maximally scoring tagging can be
constructed by backtracking the backpointer.
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8 Finite-state automata
An n-gram LM can be represented by a WFSA by
setting the states to be the history. The initial states
are all bos. We can only end on the eos state. A
state can go to another if the history can follow
the other and the weight is the probability of that
happening. The initial and final weights are all 1.

A CRF can also be represented by a WFSA, where
each POS tag is a state. We can start and end on any
state. The transitions then go from tag to tag, where
the weight is the score of the target tag following
the source tag. The initial weights are then the score
of the tag following bos, and the target weights are
the score of eos following the tag.

A finite-state automaton (FSA) is a computational device that determines
whether a string s ∈ Σ∗ is an element of a given language L ⊆ Σ∗. To
check whether a string is part of a language defined by an FSA, the FSA
reads in letters of an input string s ∈ Σ∗. Then, it transitions from state to
state according to the transition function δ and the letters a ∈ s. If there
is a path from an initial state to a final state while taking transitions as
specified, the FSA accepts the string and is part of its language.

The Kleene star of an alphabet Σ is defined as

Σ∗ .
=

∞⋃
n=0

Σn.

Definition 8.1 (Finite-state automaton). A finite-state automaton is
a 5-tuple A = ⟨Σ, Q, I, F, δ⟩, such that

• Σ is an alphabet;

• Q is a finite set of states;

• I ⊆ Q is the set of initial states;

• F ⊆ Q is the set of final states;

• δ ⊆ Q× (Σ ∪ {ϵ})×Q is a finite multi-set that defines the transi-
tions between states. Let ⟨q0, a, q1⟩ ∈ δ be a transition, then, if we
make that transition, we go to state q1 from q0 and concatenate a
to the current string.

A weighted finite-state automation (WFSA) adds weights from a semiring
to the transitions (δ ⊆ Q× (Σ ∪ {ϵ})×K×Q), initial states (λ : I → K),
and final states (ρ : F → K). Weights are added together using the ⊗
operator.

A weighted finite-state transducer (WFST) further adds an output alpha-
bet. The transitions then go from state to state while mapping input
characters to output characters. Formally, δ ⊆ Q × (Σ ∪ {ϵ}) × (Ω ∪
{ϵ})×K×Q, where Ω is the output alphabet.

8.1 WFST composition

WFST composition of two transducers T1 and T2 is a common opera-
tion that involves mapping the inputs of T1 to the outputs of T2. This
requires the output alphabet of T1 to be equal to the input alphabet of
T2. Intuitively, it is the same as first running the input through T1 then
that output through T2,

x
T1=⇒ z

T2=⇒ y.

The weight of mapping x to y using the composition of two WFSTs is the
semiring-sum of the weights of all possible transformations of the above
form.
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Definition 8.2 (WFST composition). Formally, the composition T =

T1 ◦ T2 of two WFSTs,

T1 = ⟨Σ, Ω, Q1, I1, F1, δ1, λ1, ρ1⟩
T2 = ⟨Ω, Ξ, Q2, I2, F2, δ2, λ2, ρ2⟩,

is the WFST T = ⟨Σ, Ξ, Q, I, F, δ, λ, ρ⟩, such that

T (x, y) =
⊕

z∈Ω∗
T1(x, z)⊗ T2(z, y).

1: function NaiveComposition(T1, T2)
2: T ← ⟨Σ, Ω, Q, I, F, δ, λ, ρ⟩ ▷ Create a new WFST
3: for q1, q2 ∈ Q1 ×Q2 do

4: for q1
a:b/w1−−−→ q′1, q2

c:d/w2−−−→ q′2 ∈ E1(q1)× E2(q2) do
5: if b = c then
6: Q← Q ∪ {(q1, q2), (q′1, q′2)} ▷ Add states

7: δ← δ ∪ {(q1, q2)
a:d/w1⊗w2−−−−−→ (q′1, q′2)} ▷ Add arcs

8: end if
9: end for

10: end for
11: for (q1, q2) ∈ Q do ▷ Initial and final weights
12: λ((q1, q2))← λ1(q1)⊗ λ2(q2)

13: ρ((q1, q2))← ρ1(q1)⊗ ρ2(q2)

14: end for
15: return T
16: end function

Algorithm 5. Naive version of the algorithm for
computing the composition of two WFSTs.

8.2 Pathsum

A path π ∈ δ∗ is an ordered set of consecutive transitions,(
q1

a1:b1/w1−−−−→ q2, q2
a2:b2/w2−−−−→ q3, . . . , qN−1

aN :bN/wN−−−−−→ qN

)
.

The weight of this path is defined as

w(π)
.
= λ(q1)⊗

N⊗
n=1

wn ⊗ ρ(qN).

The pathsum is then the semiring-sum over all paths in a WFST,

Z(T ) .
=

⊕
π∈Π(A)

w(π)

=
⊕

π∈Π(A)

(
λ(q1)⊗

N⊗
n=1

wn ⊗ ρ(qN)

)
.
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Under the real semiring, the pathsum computes

∑
π∈Π(A)

(
λ(q1)×

N

∏
n=1

wn × ρ(qN)

)
,

which is the normalizer, while under the Viterbi semiring, the pathsum
computes

max
π∈Π(A)

(
λ(q1)×

N

∏
n=1

wn × ρ(qN)

)
,

which is the maximum score of a path.

8.3 Lehmann’s algorithm

Generally, there are an infinite amount of paths in a WFST, because of
possible cycles. Thus, we need to design an algorithm that can compute
this potentially infinite semiring-sum. Lehmann’s algorithm [Lehmann,
1977] computes the semiring-sum matrix R over all inner paths between
all pairs of nodes in O

(
|Q|3

)
under a closed semiring. Then, we can use

these to compute the normalizer with the following equation,

Z(T ) .
=
⊕

i,k∈Q

λ(qi)⊗ Rik ⊗ ρ(qk).

1: function Lehmann(W , ⟨W ,⊕,⊗, 0, 1⟩) ▷ W is closed
2: R(0) ←W ▷ W ∈ W |Q|×|Q|
3: for j← 1, . . . , |Q| do
4: for i← 1, . . . , |Q| do
5: for k← 1, . . . , |Q| do

6: R(j)
ik ← R(j−1)

ik ⊕ R(j−1)
ij ⊗

(
R(j−1)

jj

)∗
⊗ R(j−1)

jk
7: end for
8: end for
9: end for

10: return I ⊕ R(|Q|)

11: end function

Algorithm 6. Lehmann’s algorithm to compute the
inner path semiring-sums.

Lehmann’s algorithm is a dynamic programming algorithm where
R(j)

ik is the semiring-sum over all paths between i and k through {1, . . . , j}.
The base case is then the weight matrix W since that contains the weights
of going from i to k directly.

Intuitively, the recurrence relationship,

R(j)
ik = R(j−1)

ik ⊕ R(j−1)
ij ⊗

(
R(j−1)

jj

)∗
⊗ R(j−1)

jk ,

says that the sum over all paths through {1, . . . , j} is equal to the sum
over all paths through {1, . . . , j− 1} plus the sum over all paths through
j. The recurrence here is that we can use R(j−1)

ik as the sum over all paths
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through {1, . . . , j− 1}. We can compute the sum over all paths through j
by the following,

R(j−1)
ij ⊗

(
R(j−1)

jj

)∗
⊗ R(j−1)

jk ,

which is the weight of all paths from i to j, j to j (cycles), and finally j to
k.

1: function Floyd-Warshall(W)
2: R(0) ←W
3: for j← 1, . . . , |Q| do
4: for i← 1, . . . , |Q| do
5: for k← 1, . . . , |Q| do
6: R(j)

ik ← min
{

R(j−1)
ik , R(j−1)

ij + R(j−1)
jk

}
7: end for
8: end for
9: end for

10: return min
{

I, R(|Q|)
}

11: end function

Algorithm 7. Floyd-Warshall algorithm to compute
the shortest path distance between any two ver-
tices in a graph without negative cycles. This is
very similar to Lehmann’s algorithm in the semir-
ing ⟨R, min,+, ∞, 0⟩.

The Floyd-Warshall algorithm [Floyd, 1962, Warshall, 1962] has the
same intuition as Lehmann’s algorithm. It is also a dynamic program
with the same state space. Also, the recurrence relationship is very similar,
but it assumes no negative cycles, thus it does not need the Kleene star
to account for cycles from j to j.
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9 Transliteration

Transliteration is the mapping of strings in one character set to strings in
another character set. An example of this is the phonetic translation of
English words. Formally, we want to develop a probabilistic model that
can map strings from input vocabulary Σ to an output vocabulary Ω, i.e.,
we want to compute p(y | x) for all x ∈ Σ∗, y ∈ Ω∗. We can use a WFST
to specify the transliteration of Σ∗ to Ω∗ as a globally normalized model.
The scoring function is then the semiring-sum over all paths that aligns
x with y,

score(y, x) .
= ∑

π∈Π(y)
w(π).

To compute the normalizer, we need to design a WFST such that the
input can only be x and that the output can be any element of Ω∗. To
compute score(y, x), we need a WFST such that the input can only be x
and the output only y. We can guarantee such behavior by defining three
transducers,

• Tx is the transducer that maps x to x;

• Tθ is the transducer that maps any source string in Σ∗ to any target
string Ω∗ (Figure 9.1);

• Ty is the transducer that maps y to y.

α β

γ

ϵ : α
a : α
b : α
c : α

ϵ : β
a : β
b : β
c : β

ϵ : γ
a : γ
b : γ
c : γ

ϵ : γ
a : γ
b : γ
c : γ

a : ϵ
b : ϵ
c : ϵ

ϵ : α
a : α
b : α
c : α

a : ϵ
b : ϵ
c : ϵ

ϵ : β
a : β
b : β
c : β

a : ϵ
b : ϵ
c : ϵ

· · ·

insertion

substitution
deletion

Figure 9.1. Mapping WFST between the alphabets
{a, b, c} and {α, β, γ}. The vertex label denotes the
last added symbol to the output string. This WFST
maps any string of the input alphabet to any string
of the output alphabet. Intuitively, it has insertion,
substitution, and deletion operations.

We can compose Tx ◦ Tθ to get a transducer that has as input only x
and output any target string in Ω∗. We can use Lehmann’s algorithm
to compute the normalizer Zθ(x) using the real semiring, and the max-
imally scoring output using the Viterbi semiring. We can then use the
transducer composition Tx ◦ Tθ ◦ Ty to compute scoreθ(y, x) by using the
real semiring (or the log semiring to keep it in log-space). Thus, we have
all the components we need for training and inference.
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10 Constituency parsing

S

NP

i

VP

VP

V

shot

NP

Det

an

N

elephant

PP

P

in

NP

Det

my

N

pajamas

(a) The shooter is wearing the pajamas.
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(b) The elephant is wearing the pajamas.

Figure 10.1. Two possible constituency trees of the
ambiguous sentence “I shot an elephant in my pa-
jamas.“A parse tree is a hierarchy of constituents, where a constituent is a

multi-word unit that functions as a single unit. Each constituent encap-
sulates all of its leaf descendants, which are the words of the sentence.
We say that a tree yields the sentence that can be found on its leaves.
However, language is ambiguous, so some sentences have multiple trees
that yield it. The goal is to compute the best parse tree that yields a given
natural language input sentence.

10.1 Context-free grammars

Intuitively, a grammar defines a set of sentences that are deemed gram-
matical. Any sentence that can be yielded by a tree that consists of rules
defined by the grammar is deemed grammatical.
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Definition 10.1 (Context-free grammar). A context-free grammar is
a 4-tuple ⟨N , S, Σ,R⟩, such that

• N is a set of non-terminal symbols, written as uppercase letters
N1, N2, . . .;

• S ∈ N is a distinguished start non-terminal. Every complete parse
tree must have this symbol at its root;

• Σ is an alphabet of terminal symbols, written as lowercase letters
a1, a2, . . .;

• R is a set of production rules of the following form,

N→ α,

where N ∈ N and α ∈ (N ∪ Σ)∗.

A context-free grammar (CFG) encodes a subset of Σ∗, where a sentence
is only part of the subset if we can construct a tree from R that yields
the sentence, starting from S.

10.2 Parsing

We might be able to assign multiple trees to a single sentence. To be able
to pick the best tree, we can assign a probability to each rule, and pick
the tree with the highest probability.

Definition 10.2 (Probabilistic context-free grammar). A probabilistic
CFG is a 5-tuple G = ⟨N , S, Σ,R, p⟩, where p : R → [0, 1] is a locally
normalized probability distribution over rules. The probability of a
tree under a PCFG is defined as follows,

p(t | s) = ∏
r∈t

p(r).

Instead of probabilities, we could also, more generally, assign weights
to each production rule. The score of assigning a tree t to a sentence w
then decomposes over the production rules,

score(t, w)
.
= ∑

r∈t
score(r),

where a tree t is simply a multiset of rules. However, we run into the
problem that the normalizer Z(w) will diverge if the ruleset contains a
cycle rule, e.g., N→ N.
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Definition 10.3 (Chomsky normal form). A grammar is in Chomsky
normal form if all rules are of the following form,

N1 → N2 N3

N→ a.

Theorem 10.4 (CNF theorem). For any grammar G, we can find an-
other grammar G′ that accepts the same set of strings and probabili-
ties as G and is in CNF.

A CFG in Chomsky normal form (CNF) does not contain any cyclic
rules, since they are not allowed by the permitted rule forms. Thus, the
normalizer can no longer diverge, since there are not an infinite amount
of trees that yield the same string w. Furthermore, the CNF theorem
guarantees that we can create all the same CFGs in CNF as if we did not
constrain them to be in CNF.

10.3 Cocke-Kasami-Younger algorithm

i shot an elephant in my pajamas

VP

S

NP V Det N P Det N

S

VP

NP

VP

NP

PP

NP

Figure 10.2. The CKY chart of the ambiguous sen-
tence “I shot an elephant in my pajamas.“ See Fig-
ure 10.1 for the resulting trees. The differently col-
ored squares indicate which tree the constituent is
part; red indicates that it is part of both trees.

Despite there not being an infinite amount of trees in CNF form, there
are still an exponential amount of trees. Thus, we need to design an algo-
rithm to efficiently compute the normalizer. The Cocke-Kasami-Younger
(CKY) [Cocke, 1969, Kasami, 1966, Younger, 1967] algorithm provides an
efficient dynamic program to compute the normalizer Z(w) of CFGs in
CNF. It works by looking at iteratively larger spans, and the subtrees
that make up these spans, since a span from i to j can only be made
up of smaller spans within this span. E.g., in Figure 10.2, PP covers the
subtrees with root P that covers in and NP, which covers my pajamas.
Furthermore, see Figure 10.2 for an illustration of how the algorithm
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1: function WeightedCKY(w, ⟨N , S, Σ,R⟩, score)
2: C← 0 ▷ Chart
3: for i = 1, . . . , N do
4: for X→ wi ∈ R do
5: C[i, i + 1, X]← C[i, i + 1, X]⊕ exp score(X→ wi)

6: end for
7: end for
8: for ℓ = 2, . . . , N do
9: for i = 1, . . . , N − ℓ+ 1 do

10: k← i + ℓ

11: for j = i + 1, . . . , k− 1 do
12: for X→ YZ ∈ R do
13: C[i, k, X] ← C[i, k, X] ⊕ exp score(X → YZ) ⊗

C[i, j, Y]⊗C[j, k, Z]
14: end for
15: end for
16: end for
17: end for
18: return C[1, N + 1, S]
19: end function

Algorithm 8. Semiringified CKY algorithm that
runs in O

(
N3|R|

)
, where N is the input string

length. If all possible rules exist, the runtime is
O
(

N3|N |3
)
.

works fully. It starts from the bottom of the chart and works its way up
using dynamic programming.

This algorithm runs in O
(

N3 · |R|
)
, where N is the length of the sen-

tence. We can semiringify this algorithm to compute the best parse, where
the Viterbi semiring finds the maximally scoring tree, and the real semir-
ing computes the normalizer.
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11 Dependency parsing

Dependency parsing is an alternative to constituency parsing. The basic
idea is to link every word with its syntactic head.18 18 We encode this as an arc in a graph, see Fig-

ures 11.1 and 11.2.

the boy eats rösti

r Figure 11.1. Projective dependency tree of “The boy
eats Rösti.“

In a dependency tree, only one word gets to be the root, and each
word has a single parent, called its syntactic head. This allows for words
to be linked that have other words in between not part of this structure,
in contrast to constituency parsings.

There are two types of dependency trees, projective and non-projective.
Projective dependency trees do not allow for crossing arcs, which make
them closely related to constituency trees. Non-projective dependency
trees do allow for crossing arcs, which will be the focus of this text. An
example of a non-projective dependency tree can be found in Figure 11.2.

ryan ate rösti for lunch which was delicious

r Figure 11.2. Non-projective dependency tree, with-
out labels, of “Ryan ate Rösti, which was delicious.“

As always, we want to be able to parametrize a probability distribution
over non-projective spanning trees, given a sentence w. So, we need to
be able to compute the normalizer Z(w). However, there are (N− 1)N−2

spanning trees with the single root constraint, thus we need to design a
more efficient algorithm that makes use of its structure. We do this by
decomposing the scoring function over the edges,

score(t, w)
.
= score(r, w) + ∑

(i→j)∈t
score(i, j, w).

Thus, we only need a matrix A, containing exp score(i, j, w) and a vector
ρ, containing exp score(r, w).
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Theorem 11.1 (Kirchhoff’s matrix-tree theorem [Kirchhoff, 1847]).
For an undirected unweighted graph G with N vertices, let L be the
graph Laplacian,

Lij =

−Aij i ̸= j

∑k ̸=i Akj otherwise,

where A is the adjacency matrix, i.e., Aij = 1 if i ∼ j, otherwise
Aij = 0. Let L̂i ∈ R(N−1)×(N−1) be the matrix created by removing
the i-th row and column of L. Then, we have

NT(G) = det
(

L̂i
)
,

where NT(G) is the number of trees in G.

Tutte [1948] generalized Kirchhoff’s MTT to directed trees, which al-
lows us to compute the normalizer Z(w) in O

(
N3) as follows,19 19 Since computing the determinant can be done in

O
(

N3).
Z(w) = det(L).

However, this does not account for the single-root constraint. Koo et al.
[2007] further generalized Tutte’s MTT by modifying the graph Lapla-
cian,

Lij =


ρj i = 1

−Aij i ̸= j

∑k ̸=i Akj otherwise.

So, we can now compute Z(w) = det(L) in O
(

N3).
However, we are not able to semiringify this algorithm. Thus, we must

design a new algorithm for inference.

11.1 Chu-Liu-Edmonds algorithm

A valid dependency tree must adhere to the following three constraints,

• All non-root nodes have exactly one incoming edge;

• No cycles;

• Only one outgoing edge from the root.

This is called an arborescence,20 and we can find the maximum-weight

20 The first two constraints are satisfied by the
maximum-weight spanning tree, which we could
compute with Kruskal’s algorithm. However, it
does not adhere to the third constraint, because
Kruskal’s algorithm only works for undirected
graphs.

arborescence with the Chu-Liu-Edmonds algorithm [Chu, 1965, Edmonds
et al., 1967], sped up to O

(
N2) by Tarjan [1977].

The algorithm starts by constructing the greedy graph, which is the
graph that takes the best incoming edge to each node, except the root.
If the greedy graph contains a cycle, we contract the cycle into a single
node c, and break the cycle by reweighting the enter edges, which are
the edges that go into c.
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Figure 11.3. Chu-Liu-Edmonds algorithm. The sec-
ond graph is the greedy graph. The third graph is
the contracted graph, where we contract the cycle
into its own node. Then, we construct the greedy
graph again. We have two edges emanating from
the root, so we must eliminate the one with the
lowest swap score. Then, we expand by choosing
all the edges in the cycle that are not canceled.

Then, we pick the greedy graph from the contracted graph. If there is
more than one edge emanating from the root, we need to delete edges
outgoing from the root to satisfy the single-root constraint. We remove
the edge with the lowest swap score, which is the difference between the
next-best incoming edge and the current incoming edge of each node in
the graph.

If there is still a cycle, contract again, and continue doing this recur-
sively until there are no more cycles. Then, expand all the cycles by
picking the edges that are not canceled by the greedy graph with the
contracted node.
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12 Semantic parsing

Language cannot only be syntactically ambiguous, but also semantically
ambiguous. Also, syntactically valid sentences do not necessarily mean
anything. A good example of this is Chomsky’s famous sentence “Col-
orless green dreams sleep furiously.“ In semantic analysis, we want to
be able to reduce a natural language sentence, such as “Everyone loves
someone else“, to its logical form,

∀p[Person(p)→ ∃q[Person(q) ∧ p ̸= q ∧ Loves(p, q)]].

Note that this sentence is ambiguous, because we can swap the order of
the quantifiers to a different logical form,

∃p[Person(p)→ ∀q[Person(q) ∧ p ̸= q ∧ Loves(q, p)]].

The challenge of semantic analysis, as always, is parsing a natural
language sentence to its logical form. For this, we must use the principle
of compositionality, which states that the meaning of a complex expression
is a function of the meanings of that expression’s constituent parts.21 21 This must hold, because otherwise we would not

know the meaning of most sentences, since we have
not heard most possible order of words that form a
sentence.

Proverbs are edge cases to this principle, since
those words have meaning together that are inde-
pendent of its parts.

12.1 Linear-indexed grammars

Linear-indexed grammars (LIG) [Aho, 1968] are a mildly context-sensitive
family of grammars. The structure of an LIG is very similar to that of
a CFG, but non-terminal symbols have an associated stack that can be
passed to exactly one child,22 22 The fact that the stack can only be passed to ex-

actly one child is what makes it linear.

N[σ]→ α M[σ] β.

Definition 12.1 (Linear-indexed grammar). A linear-indexed gram-
mar is a 5-tuple ⟨N , S, I, Σ,R⟩, such that

• N is a set of non-terminal symbols, written as uppercase letters
N, M, . . .;

• S ∈ N is a distinguished start non-terminal;

• I is a finite set of indices, written as function letters f , g, h, . . .;

• Σ is an alphabet of terminal symbols, written as lowercase letters
a1, a2, . . .;

• R is a set of production rules of one of the following forms,

N[σ]→ α M[σ] β

N[σ]→ α M[ f σ] β Push

N[ f σ]→ α M[σ] β Pop.
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To make a grammar that encodes the subset {anbncn | n ∈ N} is
impossible with a CFG, but it is possible with an LIG, using the following
grammar,

S[σ]→ a S[ f σ] c

S[σ]→ T[σ]

T[ f σ]→ T[σ] b

T[]→ ϵ.

Intuitively, it keeps track of how many times a and c are added on either
side. Then, once it switches over to T from S after adding n times a and n
times c on either side, we add n times b in the middle. The stack allows
us to “count“ to n.

12.2 Lambda calculus

Lambda calculus [Church, 1932] is a model for semantic analysis, based
on the principle of compositionality. On a high level, lambda calculus
first parses a sentence into simpler constituents, and then constructs the
semantic representations using a bottom-up approach.

S : Likes(alex, bob)

NP : alex VP : (λx.Likes(x, bob))

V : (λy.(λx.Likes(x, y))) NP : bob
Alex

Boblikes

Figure 12.1. Lambda calculus on “Alex likes Bob.“

Lambda calculus has only the following rules,

• x, y, z, . . . are variables;

• (λx. f (x)), which is the lambda operator, where x is a variable and f (x)
an expression;

• (M N), which is an application of function M to an argument N, where
they are both lambda terms.

A variable is bound if it belongs to a scope of abstraction holding its
name. Otherwise, a variable is free. E.g., x is bound to λx and z is free in
((λx.λy.Likes(x, y))z).

To be able to represent natural language sentences, we also need the
following,
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• Constants that represent objects, denoted by e.g. alex, bob, . . .;

• Predicates that represent relations between objects, denoted by e.g.
Teacher(·), Likes(·, ·), . . .;

• Quantifiers ∃ and ∀.

Furthermore, lambda calculus has two operations,

• α-conversion is the process of renaming the variable of a lambda op-
erator and all of its bound occurrences. E.g.,

(λx.x)→ (λy.y);

• β-reduction is the process of applying one lambda term to another, i.e.,
in (λx.M N), we replace all occurrences of x in M by N, and remove
the lambda operator. E.g.,

(λx.(λy.xy) z)→ (λy.zy).

However, sometimes a β-reduction would result in a free variable
becoming bound. Then, we would first need to apply an α-conversion.
Two lambda terms are equivalent if one can be obtained from the other
after a series of α-conversions and β-reductions.

12.3 Combinatory logic

Combinatory logic [Curry et al., 1958] is an alternative to lambda calculus
that formalizes the concept of computation and the construction of com-
putable functions. Unlike lambda calculus, combinatory logic does not
use abstractions. Instead, it uses complex functions using a few primitive
higher order functions.

The basic terms of combinatory logic are

• x, y, z, . . . are variables;

• I, S, K are the primitive combinators, which are functions that map
functions to functions.

Terms are then recursively constructed using the rule of application,
where (A B) denotes applying A to B.

The following are the primitive combinators,23 23 In combinatory logic, parentheses are left-
associative, e.g., (K x y) means ((K x) y) and
(S x y z) means ((S x) y z).• (K x y) = x manufactures constant functions;

• (S x y z) = (x z (y z)), which applies x to y after first substituting z
into each of them;

• (I x) = x works as the identity function.24 24 I as a primitive combinator is not necessary, since
it can be constructed from S and K,

((S K K) x) = (S K K x)

= (K x (K x))

= x.
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Any lambda term is equivalent to a combinatory term that only uses the
S and K combinators.

Further, there are the following combinators that are introduced for
convenience,

(C x y z) = ((x z) y) Cross

(B x y z) = (x (y z)) Composition

(T x y) = (y z) Type-raising.

The B and T combinators will be used in combinatory categorial gram-
mars.

12.4 Combinatory categorial grammars

Combinatory categorical grammars (CCG) are an efficiently parsable group
of grammars that are mildly context-sensitive, which means that they
have more expressive power than context-free grammars. CCGs allow
us to model coordination and cross-serial dependencies in language, which
CFGs cannot.

Definition 12.2 (Combinatory categorial grammar). A combinatory
categorial grammar is a 5-tuple ⟨VT , VN , S, f , R⟩, such that

• VT is a finite set of terminals;

• VN is the finite set of atomic categories;

• S ∈ VN is the distinguished start category;

• f is a function mapping terminals VT ∪ {ϵ} to finite subsets of
C(VN);

• R is a finite set of combinatory rules.

C(VN) is the infinite set of categories that contains all elements of
VN and recursively contains all elements such that if c1, c2 ∈ C(VN),
then c1/c2, c1\c2 ∈ C(VN).

CCGs have two main parts: a lexicon that associates words with cate-
gories and rules that specify how categories can be combined into other
categories. The lexicon contains all information specific to a given lan-
guage, i.e., valency, word order, and semantics. The structure information
is encoded in the categories.25 25 Unlike CFGs, which encode structure in their

rules.
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The rules R are the following (inspired by combinatory logic),

X/Y Y =⇒ X (>)

Y X\Y =⇒ X (<)

X/Y Y/Z =⇒ X/Z (B>)

Y\Z X\Y =⇒ X\Z (B<)

∀T ∈ VN : X =⇒ T/(T\X) (T>)

∀T ∈ VN : X =⇒ T\(T/X) (T<),

of which there are also generalized versions.

mary likes john

NP (S\NP)/NP NP
mary λx.λy.Likes(y, x) john

>

S\NP
λy.Likes(y, john)

<

S
Likes(mary, john)

(a) CCG derivation of “Mary likes John.“

what states border texas

(S/(S\NP))/N N (S\NP)/NP NP
λ f .λg.λx. f (x) ∧ g(x) λx.State(x) λx.λy.Borders(y, x) texas

> >

S/(S\NP) S\NP
λg.λx.State(x) ∧ g(x) λy.Borders(y, texas)

>

S
λx.State(x) ∧ Borders(x, texas)

(b) CCG derivation of “What states border Texas? “

Figure 12.2. Simple example CCG derivations.
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13 Transformers

Attention is a mechanism in neural networks that a model can learn to
make predictions by selectively attending to a given set of data by using
query q, key k, and value v vector representations. The query and key
vectors are used to determine how much weight should be given to the
value vector.26 The weights are computed by aij = softmax(q⊤j ki), so the 26 Note the parallel with dictionaries/hashmaps in

programming languages, but, in the attention mech-
anism, we do a “soft-lookup“.

values after the attention block can be computed as follows,

att(xi) = ∑
j

aijvi,

which is a linear combination of the values according to the attention
weights computed by the query and keys.

Q = W⊤
Q XK = W⊤

K X

V = W⊤
V X

softmax

A

output

Figure 13.1. Self-attention mechanism.

Self-attention blocks learn the query, key, and value representations
from data. More specifically, it learns matrices WQ, WK, and WV and
computes the vectors from these matrices:

qi = W⊤
Q xi

ki = W⊤
K xi

vi = W⊤
V xi.

Then, we can use these to compute the output of the self-attention block:

self-att(X) = softmax

(
(W⊤

Q X)⊤(W⊤
K X)√

dq

)
W⊤

V X,

where dq is the square root of the dimensionality of the query and key
vectors. Furthermore, we need to add a positional encoding to provide
ordering information to the model.27 This is done by a sinusoidal posi- 27 The self-attention operation is permutation equiv-

ariant.tional encoding and are simply combined with X by addition.
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Figure 13.2. Transformer encoder architecture.

Transformers [Vaswani et al., 2017] use multi-headed self-attention,
which is a module where self-attention is applied M times independently
to the data. Thus, this module learns M different ways of looking at the
same dataset. The outputs of each self-attention block is concatenated and
linearly transformed to the expected dimensionality. Transformers follow
this by normalization and MLP layers, as can be seen in Figure 13.2.

13.1 Translation

Translation is a sequence-to-sequence problem, where we want to com-
pute the probability that y is the translation of x. We can do this with
transformers by encoding the input sequence x using encoders, and feed-
ing this representation of the input to a decoder. The decoder takes as in-
put the input sequence and the already generated (incomplete) sequence
y<i. It then runs the encoder as in Figure 13.2 and projects the output
to a probability distribution over tokens using a linear layer, followed by
softmax.
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encoder

x

encoder

decoder

...

decoder

decoder

decoder

...

Figure 13.3. Translation architecture

In previous problem statements, we were usually able to compute
the globally maximum output using some dynamic program. However,
in this case, that is not possible. This model is only locally normalized.
But, we can do something more optimal than greedily picking the next
token. We can view this problem as a graph search problem over possible
output sentences. We still cannot explore every path of the O

(
|Σ|Nmax

)
paths, but we use beam search. Beam search keeps track of a maximum
of k paths at any given time. Then, it prunes paths that are the worst.
This is still not globally optimal, but it is a bit better than the greedy
approach.
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