
Backpropagation
Linear-time dynamic program for computing derivatives.
1. Write down composite function as a labeled, acyclic, directed

hypergraph with intermediate variables as nodes and
hyperedges labeled with primitive functions;

2. Given input, perform forward propagation;
3. Run backpropagation on the graph using forward values.

∂yi
∂xj

= ∑p∈P(j,i) ∏(k→ℓ)∈p
∂zℓ
∂zk

.

sin′(x) = cos(x), cos′(x) = − sin(x), yx = exp(x log(y)),
log′(x) = 1

x , exp′(x) = exp(x).

Log-linear modelling

score(y, x) = θ⊤ f(x, y).
Result of NLL gradient equal to 0:

n

∑
i=1

f(xi, yi) =
n

∑
i=1

Ey|xi,θ[f(xi, y)].

Hessian (Hθ = ∇θ⊤∇θ):

Hθ

(
n

∑
i=1
− log p(yi | xi)

)
=

n

∑
i=1

Covy|xi,θ[f(xi, y)].

To derive this, first derive the following:
∇θ⊤ p(yi | xi) = p(yi | xi)

(
f(xi, yi)

⊤ −Ey′|xi

[
f(xi, y′)⊤

])
.

Softmax: Softmax(h)y =
exp(hy/T)

∑y′∈Y exp(hy′/T)
.

T → 0: argmax (structured perceptron). T → ∞: uniform.
Exponential family: p(x | θ) = 1

Z(θ)h(x) exp
(
θ⊤ϕ(x)

)
.

Z(θ): partition function. h(x): support. θ: parameters. ϕ(x)
feature function.
Advantage: conjugate priors, compress all data into finite
parameters ϕ(x) without losing information.

Multi-layer perceptron
Problem with log-linear modelling: Data must be linearly sep-
arable. Solution: Hack the non-linearity into the feature function.
Problem: We need to know the decision boundary shape a priori.
Solution: Learn the non-linear feature function with an MLP:

hk = σk

(
W⊤

k hk−1

)
, h1 = σ1

(
W⊤

1 e(x)
)

,

Then Softmax

(
θ⊤hn

)
for prob. dist.

e(x) obtained with Skip-Gram: predict whether 2 words
are within same context. Positive and negative samples (no
normalizer needed). Intuition: need good representation of
words for this task that can be used by other tasks.
Derivative:

∂ℓ

∂Wk
=

∂ℓ

∂y
∂y

∂hn

(
n

∏
m=k+1

σ′m(· · ·)Wm

)
σ′k(· · ·)hk−1.

Structured prediction
To be able to train a model, we need to compute:

p(y | x) =
exp score(y, x)

Z(x)
, Z(x) = ∑

y′∈Y
exp score(y′, x).

Problem: Y is exponentially or infinitely large. This makes
Z(x) inefficient/impossible to compute during training, and it
is hard to find the best ŷ ∈ Y during inference. Solution: Design
algorithms that make use of the structure of the input and output.

Language modelling

p(y) = p(eos | y) ·
N

∏
i=1

p(yi | y<i)

p(yi | y<i) =
1

Z(y<i)
exp score(y<i, yi).

Problem: Model is non-tight (total prob. ̸= 1) if we have a history
that never ends in eos. Solution: Force p(eos | y<i) > ξ > 0
for every possible history y<i.
Problem: infinitely many histories. n-gram: p(yi | y<i) = p(yi |
yi−n+1, . . . , yi−1) (only look at last n− 1 word counts). Problem:
probability can be 0. Solution: Laplace smoothing. Problem:
Related sentences have no dependency. Neural n-gram (Bengio et
al.): Use embeddings and MLP with n− 1 history as input and
output dist. over next words. Problem: Unrealistic assumption of
n-grams. RNN: hi = σ(Whhi−1 +Wxe(yi−1) + b) (encode entire
history using hidden states).
Derivative:

∂ℓi
∂Wh

=
∂ℓi
∂yi

∂yi
∂hN

i

∑
j=1

(
i

∏
m=j+1

σ′(· · ·)Wh

)
σ′(· · ·)hi−1.

Problem: Vanishing gradient. Solution: LSTM/GRU.

Semirings

Definition monoid ⟨K,⊙, e⟩:
1. ⊙ is associative: (x⊙ y)⊙ z = x⊙ (y⊙ z).
2. e ∈ K is the identity element: x⊙ e = x.
Definition semiring ⟨K,⊕,⊗, 0, 1⟩:
1. ⟨K,⊕, 0⟩ is a commutative monoid: x⊕ y = y⊕ x.
2. ⟨K,⊗, 1⟩ is a monoid.
3. ⊗ distributes over ⊕: (x⊕ y)⊗ z = (x⊗ z)⊕ (y⊗ z) and

z⊗ (x⊕ y) = (z⊗ x)⊕ (z⊗ y).
4. 0 is an annihilator of ⊗: 0⊗ x = 0 and x⊗ 0 = 0.
Closed: x∗ =

⊕∞
n=0 x⊗n. The Kleene star must be in K and obey

the following two axioms: x∗ = 1⊕ x⊗ x∗ and x∗ = 1⊕ x∗ ⊗ x.
Boolean: ⟨{0, 1},∨,∧, 0, 1⟩. Viterbi: ⟨[0, 1], max,×, 0, 1⟩. Inside:
⟨R+ ∪ {∞},+,×, 0, 1⟩, Real: ⟨R ∪ {∞}, min,+, ∞, 0⟩, Tropi-
cal: ⟨R+ ∪ {∞}, min,+, ∞, 0⟩, Log: ⟨R ∪ {∞}, log(exp a +
exp b),+,−∞, 0⟩, Expectation: ⟨R2, ⟨a1 + b1, a2 +
b2⟩, ⟨a1b1, a1b2 + a2b1⟩, ⟨0, 0⟩, ⟨1, 0⟩⟩, Counting: ⟨N,+,×, 0, 1⟩.

Part-of-speech tagging

Input: w ∈ ΣN. Output: t ∈ T N.
CRF: Classifier that makes use of the structure. (It classifies 1 tag
per 1 word while considering the tags of the other words.) We
will assume that tags only depend on their immediate neighbors,

score(t, w) =
N

∑
n=1

score(⟨tn−1, tn⟩, w, n)

score(⟨tn−1, tn⟩, w, n) = trans(tn−1, tn) + em(wn, tn),
We can “neuralize“ a CRF by making the transition and emission
scores the learned weights of the model.
Forward algorithm: Start at bot and go word by word, tag by
tag. (Viterbi: for every node, compute the argmax and keep
track). Then,

αn,tn ←
⊕

tn−1∈T
exp score(⟨tn−1, tn⟩, w, n)⊗ αn−1,tn−1 .

Return: αN,eot. Runtime: O(N|T |2). Intuition: sum over all
paths in POS graph.
Forward-backward algorithm is an instantiation of backprop-
agation, because it is analogous to the forward and backward
pass. It is a sum over products on the paths.
Dijkstra’s decoding: Paths can only get worse
∀a, b ∈ K : a ⪯ (b ⊗ a), 0-closedness). Thus, the first
N-length tagging popped from the priority queue must be the
best. Runtime: O(N|T |2 + N|T | log(N|T |)).

Finite-state automata
Definition WFST: input alphabet Σ, output alphabet Ω, finite
states Q, initial states I ⊆ Q, final states F ⊆ Q, initial state
weights λ : I → K, final state weights ρ : F → K, transitions
δ ⊆ Q× (Σ∪ {ϵ})× (Ω∪ {ϵ})×K×Q.
Pathsum (Rik is inner pathsum i to k):

Z(T) =
⊕

i,k∈Q

λ(qi)⊗Rik ⊗ ρ(qk).

Infinite paths because of cycles: need Lehmann’s algorithm to
compute semiring-sum over inner paths between all nodes under
a closed semiring. Recurrence:

R(j)
ik ← R(j−1)

ik ⊕R(j−1)
ij ⊗

(
R(j−1)

jj

)
∗ ⊗R(j−1)

jk .

Return I ⊕ R(|Q|). Runtime: O(|Q|3). Intuition: R(j)
ik is the

semiring-sum over all paths between i and k through {1, . . . , j}.
Floyd-Warshall (min path in graph with no negative cycles):

R(j)
ik ← min

{
R(j−1)

ik , R(j−1)
ij + R(j−1)

jk

}
.

Return: min
{

I, R(|Q|)
}

.

WFST composition T = T1 ◦ T2: Σ∗
T1=⇒ Ω∗

T2=⇒ Ξ∗ with

1

weights such that
T (x, y) =

⊕
z∈Ω∗
T1(x, z)⊗T2(z, y).

Transliteration
Transliteration is the mapping of strings in one character set to
strings in another. Formally, we want to compute p(y | x) for
all x ∈ Σ∗ to y ∈ Ω∗. We use WFSTs to specify it as a globally
normalized model. We need three transducers:
1. Tx is the transducer that maps x to x;
2. Tθ is the transducer that maps any string in Σ∗ to any string

in Ω∗;
3. Ty is the transducer that maps y to y.
Compose Tx ◦ Tθ to compute Zθ(x) with Lehmann’s. Compose
Tx ◦ Tθ ◦ Ty to compute scoreθ(y, x).

Constituency parsing
Definition CFG: Finite non-terminalsN , start symbol S, terminals
Σ, production rules R of form N→ α.
PCFG: Locally normalized probability distribution p : R→ [0, 1].
WCFG: Globally normalized with score(t, w) = ∑r∈t score(r),
where t is a multiset of rules.
Problem: Cycles. Solution: A grammar is in CNF if all rules
look like N1 → N2 N3 or N→ a.
Cocke-Kasami-Younger algorithm: Draw chart. Look at iter-
atively larger spans, finding children that fill up the entire span.
For each span, make sure to check all smaller spans that make up
this span, because there might be sneaky rules in the grammar.

Ci,k,X ←
⊕

X→YZ
exp score(X→ YZ)⊗Ci,j,Y ⊗Cj,k,Z.

Return: C1,N+1,S. Runtime: O(N3|R|).

Dependency parsing

There are (N − 1)N−2 spanning trees with the single root
constraint, thus we need an efficient algorithm to compute Z(w).
Scoring function:

score(t, w) = score(r, w)︸ ︷︷ ︸
ρr

+ ∑
(i→j)∈t

score(i, j, w)︸ ︷︷ ︸
Aij

.

Problem with Kirchhoff’s MTT: Undirected graph.
Problem with Tutte’s MTT: No single-root constraint.
Solution Koo MTT: To compute Z(w) with single-root constraint,
we construct the Laplacian matrix (root scores on first row, sum
over columns) (Kirchhoff removes i-th row and column),

Lij =


ρj i = 1 (KH and Tutte is without this condition)

−Aij i ̸= j
∑k ̸=i Akj otherwise.

Z(w) = det(L). Runtime: O(N3).
Chu-Liu-Edmonds algorithm: (1) Compute greedy graph by

taking all max incoming edges for each node. (2) If cycle, treat
as single node and contract it by reweighting incoming edges,
such that they break the cycle (add weight of all other edges in
cycle node). (3) If there are multiple edges emanating from the
root, remove (permanently) the edge with the lowest swap loss
(weight of current edge − next best incoming edge of child). (4)
Repeat until there are no more cycles (cycle nodes may contain
smaller cycle nodes). (5) Expand the contractions by deleting the
edge from the cycle that is pointed at the node with an edge in
the greedy graph that contains this cycle node. (6) Repeat until
there are no more cycle nodes, making sure to remove cycles
if they come up. Runtime: O(N2).

Semantic parsing

Lambda calculus: variables x, y, z, lambda operator (λx. f (x)),
application of two lambda terms (M N).
β-reduction: ((λx.M) N)→ M[x := N].
α-conversion: λx.M[x]→ λy.M[y].
If free variable becomes bound after β-reduction, first do
α-conversion.
Combinatory categorial grammar rules:

X/Y Y =⇒ X (>)

Y X \Y =⇒ X (<)

X/Y Y/Z =⇒ X/Z (B>)

Y/Z X/Y =⇒ X/Z (B<)

X =⇒ T/(T \X) (T>)

X =⇒ T \ (T/X) (T<).
CCGs are mildy context-sensitive (because there are infinite
non-terminals, any recursive combination of atomic non-terminals
and /,\), but using only > and < is a context-free grammar.
CCGs allow for coordination and cross-serial dependencies.
If lambda calculus with CCG, first derive the CCG parse tree.
Then, combine the λ expressions. M on the left and N on the right,
then > combines (M N) and < combines (N M). Iteratively sim-
plify the λ expressions of greater spans using the smaller spans.
Linear-indexed grammar: Mildly context-sensitive grammar is
a CFG where the non-terminals have stacks that contain indices
from a finite set I. Rules have the following form (RHS can be ϵ):

N[σ]→ α M[σ] β

N[σ]→ α M[f σ] β (push)
N[f σ]→ α M[σ] β (pop).

Transformers
Attention: Query, key, and values where the query and keys
decide how much is “attended“ to the values (soft-lookup
in hashmap). Self-attention: Learn the queries WQ ∈ Rd×d,
keys WK ∈ Rd×d, and values WV ∈ Rd×d from a single input

X ∈ Rd×n:
SelfAtt(X) = Softmax

((
W⊤Q X

)
⊤(W⊤K X)/

√
dq

)(
W⊤

V X
)
⊤.

Runtime: O(nd2 + dn2). Problem: Permutation equivariant.
Solution: Add positional encoding: Ppi = sin(p/10000i/d) if i is
even, and Ppi = cos(p/10000i/d) if i is odd.
1. Encoder: ⊕P→MHSA→ ⊕→ LN→MLPs→ ⊕→ LN;
2. Decoder: Add linear projection and softmax.
Residual layers help with gradient problems. Layer norm helps
with internal covariate shifts. MHSA: Concatenate heads and
project to Rd.
Sequence-to-sequence: Encode input sequence with n sequential
encoders. Then, input this to the decoders together with a
representation of previous output tokens (these output a prob.
dist. over next tokens).
Problem: Greedily picking the most probable next token does
not necessarily result in the globally maximum output, and we
cannot go over every single possible output, which is infinite.
Solution: Beam search (keep track of at most k paths at once),
nucleus sampling (only consider top p% probability mass).

Axes of modelling
Bias-variance tradeoff. High bias: Low model complexity,
underfitting, misses correlations in training data. High variance:
High model complexity, overfitting, fits too well on the training
data (captures noise).
Regularization: Tradeoff between bias and variance, e.g.,
ℓ(θ) + λ∥θ∥2

2.
Cross-entropy ≡ NLL. Minimize NLL ≡ MLE. θ̂ =
argminθ∈Θ− log ∏(x,y)∈D pθ(y | x). MLE problems: only suit-
able for probabilistic models, easily overfit if small training dataset.
Precision = true positive

predicted positive , Recall = true positive
true positive+false negative , F1

= precision·recall
precision+recall .

Locally normalized: + Efficient to train, − Label bias.
Globally normalized: + Scores at each step can have differing
“importance“. − Requires computation of normalizer, which
usually requires independence assumptions.

2

Tips
When deriving the gradient of a model, think of which paths
exist in the computational graph between the two nodes. Sum
over the paths and product within the paths.
If it is possible to reuse terms during backpropagation, adjust
the time complexity to do that.
Linear algebra multiplication complexities:
1. Vector-vector (R1×d, Rd×1): O(d);
2. Matrix-vector (Rn×m, Rm×1): O(nm);
3. Matrix-matrix (Rn×m, Rm×ℓ): O(nmℓ).
Activation functions:
1. σ(x) = 1

1+exp(−x) (R→ [0, 1]),
σ′(x) = σ(x)(1− σ(x));

2. ReLU(x) = max{0, x} (R→ R≥0),
ReLU′(x) = 1{x > 0};

3. tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) (R→ [−1, 1]),

tanh′(x) = 1− tanh2(x).

3

