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List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

T ∈ Rd1×···×dn Tensor

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

Jx f (x) ∈ Rn×m Jacobian of f : Rn → Rm at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

θ ∈ Θ Parametrization of a model, where Θ is a compact sub-
set of RK

X Input space

Y Output space

D ⊆ X ×Y Labeled training data
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1 Neural networks

1.1 Multi-layer perceptron

x

w b

· + σz1 z2 ŷ

Figure 1.1. Computation graph of a perceptron
[Rosenblatt, 1958], where σ(x) = 1{x > 0}.
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Figure 1.2. XOR problem. As can be seen, the data
is not linearly separable, and thus not solvable by
the perceptron.
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Figure 1.3. Example multi-layer perceptron archi-
tecture.

The original perceptron [Rosenblatt, 1958] was a single layer perceptron
with the following non-linearity,

σ(x) .
= 1{x > 0}.

The classification of a single point can then be written as

ŷ = 1{w⊤x + b > 0}.

The learning algorithm then iteratively updates the weights for a data
point that was classified incorrectly,

θ← θ+ η (yi − ŷi)︸ ︷︷ ︸
residual

xi,

where η is the learning rate. This is essentially gradient descent with a
Hinge loss, where if y < ŷ, then we decrease the weights, while if y > ŷ,
we increase the weights. If the data is linearly separable, the perceptron
converges in finite time.

The problem with the single-layer perceptron was that it could not
solve the XOR problem; see Figure 1.2. This can be solved by introducing
hidden layers,

ŷ = σ(Wkσ(Wk−1 · · · σ(W1x))).

We call this architecture a multi-layer perceptron (MLP); see Figure 1.3.
We then want to estimate the parameters θ = {W1, . . . , Wk, b1, . . . , bk},
using an optimization algorithm such as gradient descent, which we call
“learning“. We can compute the gradient by backpropagation, which we
will see in a later section.

1.2 Loss functions

We need an objective to optimize for. We typically call this objective func-
tion the loss function, which we minimize. In classification, we typically
optimize the maximum likelihood estimate (MLE),

argmax
θ

p(D | θ)
iid
= argmax

θ

n

∏
i=1

p(yi | θ)

= argmin
θ

− log
n

∏
i=1

p(yi | θ) log is monotonic.

= argmin
θ

−
n

∑
i=1

log p(yi | θ).

If the model predicts the parameters of a Bernoulli distribution,1 MLE is 1 I.e., y ∈ {0, 1}, but it predicts the probability of
y = 1 with ŷ ∈ [0, 1].
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equivalent to binary cross-entropy,

L(θ) = −
n

∑
i=1

log Ber(yi | ŷi
.
= f (xi | θ)) f is a model that outputs the Bernoulli parameter.

Note that this parameter must be in [0, 1], thus we
use a sigmoid non-linearity,

σ(x) =
1

1 + exp(−x)
.

= −
n

∑
i=1

log ŷyi
i (1− ŷi)

1−yi

= −
n

∑
i=1

yi log ŷi + (1− yi) log(1− ŷi).

This loss is minimized if yi = ŷi for all i ∈ [n]; see Figure 1.4. We
can extend this to multi-class classification by using the softmax and a
categorical distribution.

0 0.2 0.4 0.6 0.8 1
0

2

4

ŷi

ℓ

yi = 1
yi = 0

Figure 1.4. Loss function for if yi = 0 and yi = 1 in
binary cross entropy.

If we the choose the model to be Gaussian, we end up minimizing the
mean-squared error,

L(θ) =
n

∑
i=1
∥yi − fθ(xi)∥2

2.

Furthermore, the Laplacian distribution yields minimizing the ℓ1 norm,

L(θ) =
n

∑
i=1
∥yi − fθ(xi)∥1.

If we have prior information about the weights p(θ), we could also
optimize for the maximum a posteriori (MAP),

argmax
θ

p(θ | D) = argmax
θ

p(θ)p(D | θ)

iid
= argmax

θ

p(θ)
n

∏
i=1

p(yi | θ)p(θ)

= argmin
θ

− log

(
p(θ)

n

∏
i=1

p(yi | θ)

)

= argmin
θ

− log p(θ)−
n

∑
i=1

log p(yi | θ)

Note that MAP and MLE are equivalent if p(θ) is uniform over the
domain of weights. Assuming a Gaussian prior distribution over θ, MAP
yields Ridge regression,

L′(θ) = L(θ) + λ∥θ∥2
2.

1.3 Backpropagation

Typically, we cannot find the optimal parameters θ⋆ in closed form, so
we must use an optimization algorithm. Optimization algorithms, such
as gradient descent, typically require computing the gradient w.r.t. the
parameters. Backpropagation is an algorithm for computing the gradient
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of any function, given that we have access to the derivatives of the prim-
itive functions it consists of.2 It then computes the gradient by making 2 For example, to compute the gradient of f (x, y) =

σ(x⊤y), we would need access to d
dx σ(x), ∂

∂x x⊤y,
and ∂

∂y x⊤y.
use of dynamic programming, the chain rule, and sum rule.

Let ŷi < yi, then we want to increase ŷi to match yi. Furthermore,
consider the following loss function,

ℓ =
1
2
(y− ŷ)2, ŷ = σ(w⊤h),

and the MLP architecture, then intuitively, we can do two things to in-
crease ŷi:

1. We could increase the weight connected to a node with a high acti-
vation value in the previous hidden layer. Typically, we optimize by
moving the weights in the direction of the gradient,

∂L
∂wk

=
∂L
∂ŷ

∂ŷ
∂w⊤h

∂w⊤h
∂wk

= (y− ŷ)σ′
(

w⊤h
)

hk.

This matches our intuition, because the amount that we increase wk

by is proportional to the activation connected to that weight hk;

2. Or, we could increase the activation that is connected to a strong
weight in the previous hidden layer. Again, we move the weights
in the direction of the gradient,

∂L
∂hk

=
∂L
∂ŷ

∂ŷ
∂w⊤h

∂w⊤h
∂hk

= (y− ŷ)σ′
(

w⊤h
)

wk.

This also matches our intuition, since the amount that we want to
increase hk by is proportional to wk. We cannot increase hk directly,
but we can update the weights connected to hk, which brings us back
to the first case. This update will be proportional to ∂L

∂hk
by the chain

rule. In this way, we can recursively update all the weights using
gradient information.

Thus, using first-order methods that iteratively move the weights in
the direction of the gradient should work well. Gradient descent itera-
tively updates the parameters by the following,

θ← θ− η∇θL(ŷ, y),

until the gradient is small.

1.4 Activation functions

In MLPs, the activation function should be non-linear, or the resulting
MLP is just an affine mapping with extra steps. This is because the
product of affine mappings are themselves affine mappings.
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1.5 Universal approximation theorem

Theorem 1.1 (Universal approximation theorem [Hornik et al., 1989]).
Let σ : R → R be a non-constant, bounded, and continuous acti-
vation function. Let Im denote the m-dimensional unit hypercube
[0, 1]m and the space of real-valued function on Im is denoted by
C(Im).

Let g ∈ C(Im) be any function in the hypercube. Let ϵ > 0, n ∈
N, vi, bi ∈ R, wi ∈ Rm for i ∈ [n], then

g(x) ≈ fθ(x) =
n

∑
i=1

viσ(w⊤i x + bi),

where | fθ(x)− g(x)| < ϵ for all x ∈ Im.

In words, this means that any continuous function can be approxi-
mated by a single hidden layer MLP with a continuous non-linear ac-
tivation function with arbitrary precision. The universal approximation
theorem holds for any single hidden layer network. However, this hid-
den layer may need to have infinite width to approximate f . In practice,
deeper networks work better than wider networks.
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2 Convolutional neural networks

When dealing with high-dimensional data, such as images, it is not prac-
tical to work with MLPs, because the amount of parameters would ex-
plode in size.3 By making use of the locality of images, we can drastically 3 Mapping a 256 × 256 × 3 input image to a 1-

dimensional output would already require nearly
2 million parameters.

decrease the number of parameters.

2.1 Convolution

Figure 2.1. Illustration of applying a correlation to
a pixel.

The correlation operator takes a filter K, moves it along the entire image,
and outputs the patch-wise multiplication, for each patch of the same
size as the filter. It is defined as follows,

(K ⋆ I)[i, j] =
k

∑
m=−k

k

∑
n=−k

K[m, n]I[i + m, j + n].

The convolution operator is very similar. The only difference is that the
kernel is mirrored in a convolution,

(K ∗ I)[i, j] =
k

∑
m=−k

k

∑
n=−k

K[m, n]I[i−m, j− n].

Theoretically, the convolution operator is more useful, because it is
commutative.4 In practice with neural networks, it does not matter, since 4 I ∗K = K ∗ I, but I ⋆K ̸= K ⋆ I.

the weights will just be updated to be the same, except that they are
mirrored. Thus, we will only be referring to the convolution from now
on.

A convolution operator C is a linear, shift-equivariant transformation,
i.e.,

C(αx + β) = αC(x) + β Linearity.

Tt(C(x)) = C(Tt(x)). Translation equivariant.

Since convolutions are linear, discrete convolutions can be implemented
using matrix multiplication,

K ∗ I =


k1 0 0 · · · 0
k2 k1 0 · · · 0
k3 k2 k1 · · · 0
...

...
...

. . .
...

0 0 0 · · · km




I1

I2

I3
...
In

 .

2.2 Convolutional neural network

x

ŷpoolingconv

dense

Figure 2.2. Example schematic of a CNN architec-
ture.

A convolutional neural network (CNN) [Krizhevsky et al., 2012] is com-
posed of a sequence of convolutional layers and pooling layers, followed by
a final dense layer (MLP).
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This architecture is loosely inspired by the brain, which, at a high level,
first extracts high-level features and then more and more specific features.
Furthermore, the HMAX model of the brain distinguishes between sim-
ple and complex cells, which correspond to the linear layer and max-pool
layer, respectively.

conv(x; θ)x

CoutCin

W

H

Figure 2.3. Schematic of a convolutional layer. Each
input-output channel pair has its own kernel, so θ
has K× K× Cin × Cout parameters.

Convolutional layer. A convolutional layer applies many filters W ∈
RCin×Cout×k×k to an input image Z ∈ RCin×H×W by convolution,

Z(ℓ)
j =

Cin

∑
k=1

W (ℓ)
kj ∗ Z(ℓ−1)

k + bj, j ∈ [Cout].

This filter is learned. Hence, we need to derive its derivative. We will
focus on the single filter case (Cin = Cout = 1) for simplicity, whose
forward pass is computed by

z(ℓ)[i, j] =
k

∑
m=−k

k

∑
n=−k

w(ℓ)[m, n]z(ℓ−1)[i−m, j− n] + b.

We can express the derivative of the cost function L w.r.t. the output
of the (ℓ− 1)-th layer as the following,

δ(ℓ−1)[i, j] =
∂L

∂z(ℓ−1)[i,j]

= ∑
i′

∑
j′

∂L
∂z(ℓ)[i′,j′]

∂z(ℓ)[i′,j′]
∂z(ℓ−1)[i,j]

= ∑
i′

∑
j′

δ(ℓ)[i′, j′]
∂

∂z(ℓ−1)[i,j] ∑
m

∑
n

w(ℓ)[m,n]z(ℓ−1)[i′ −m,j′ − n] + b

= ∑
i′

∑
j′

δ(ℓ)[i′, j′]w(ℓ)[i′ − i, j′ − j].

From this, we can see that we can compute all values of δ(ℓ−1) by a single
convolution,

δ(ℓ−1) = δ(ℓ) ∗ Flip
(

W (ℓ)
)
= δ(ℓ) ⋆ W (ℓ).

Using this value, we can compute the derivative w.r.t. the weights,
which we need for the parameter update in algorithms such as gradient
descent,

∂L
∂w(ℓ)[m,n]

= ∑
i

∑
j

∂L
∂z(ℓ)[i,j]

∂z(ℓ)[i,j]
∂wℓ[m,n]

= ∑
i

∑
j

δ(ℓ)[i, j]
∂

∂w(ℓ)[m,n] ∑
m′

∑
n′

w(ℓ)[m′,n′]z(ℓ−1)[i−m′,j− n′] + b

= ∑
i

∑
j

δ(ℓ)[i, j]z(ℓ−1)[i−m, j− n].
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Again, this has the form of a convolution, thus we can compute all deriva-
tives of W (ℓ) by convolution,

∂L
∂W (ℓ)

= δ(ℓ) ∗ Z(ℓ−1).

As shown, we can use convolutions for both computing the forward
pass, as well as the backward pass. Thus, we first do the forward pass,
then compute all δ(ℓ) for all layers ℓ by convolution, and finally we can
compute the derivative by convolution as well.

Pooling layers. Pooling layers makes the data more manageable. The
most common pooling layer is max pooling, which outputs the maximum
value for each patch. It can be seen as a non-linear convolutional filter,
where it simply outputs the maximum value. Usually, pooling is done
with a stride, such that the output becomes exponentially smaller; see
Figure 2.4. Because of this, the receptive field becomes exponentially larger.

1 2 3 4

5 6 7 8

1 3 8 7

4 3 6 5

6 8

4 8

Figure 2.4. Toy example of max pooling.

The forward pass is computed as follows,

z(ℓ)[i, j] = max
{

z(ℓ−1)[i′, j′]
∣∣∣ i′ ∈ [si : si + k], j′ ∈ [sj : sj + k]

}
,

where s is the stride and k is the kernel size. Let [i⋆, j⋆] be the indices
which corresponded to the maximum value in the forward pass, then we
can compute the error propagation in the backward pass by

∂z(ℓ)[i,j]
∂z(ℓ−1)[i′,j′]

= 1{[i′, j′] = [i⋆, j⋆]}.

Note that the max pooling layer has no learnable parameters. Hence,
the backward pass is only a propagation of the error, and not used for a
weight update.

Dense layer. The dense layer is simply a linear layer that maps the final
convolutional layer to the network’s output. All previous convolutional
and pooling layers can be seen as extracting features from the image,
while the final dense layer makes the actual prediction.
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3 Fully convolutional neural network

Semantic segmentation is a computer vision task that involves assigning
a semantic class to each pixel in an image. While in image classifica-
tion, the model must output a single class for the entire image, semantic
segmentation requires classifying a class for each pixel individually.

A naive approach would be to apply a single convolutional layer to an
image, and then running a classifier on each individual pixel. However,
this method is inefficient, because we have to run the classifier H ×W
times. Instead, we use the output of convolutional neural networks. A
naive approach of using CNNs would be to simply apply n convolutional
layers with no downsampling, and then considering the last output as
the predicted segmentation map. However, this method is expensive.

In practice, the most common approach is to downsample the features
obtained using convolution and pooling layers and then upsample them
again. By downsampling, this method is more computationally efficient,
has larger receptive field, and suffers less from “The curse of dimen-
sionality.” By upsampling, the model produces an output of the same
resolution as the input.

3.1 Upsampling methods

Nearest neighbor. Nearest neighbor upsampling copies the same value
into all corresponding pixels at a higher resolution; see Figure 3.1.

6 6 8 8

6 6 8 8

4 4 8 8

4 4 8 8

6 8

4 8

Figure 3.1. Nearest neighbor upsampling.

Bed of nails. Bed of nails upsampling only copies each value once into
the output in the top left value, and pads the rest with zero; see Figure 3.2.

6 0 8 0

0 0 0 0

4 0 8 0

0 0 0 0

6 8

4 8

Figure 3.2. Bed of nails upsampling.

Max unpooling. Max unpooling also uses zero padding, like bed of nails.
However, it also remembers the original position of the maximum value
before the corresponding max pooling in the downsampling phase. This
information is then used to place each element back in the correct posi-
tion; see Figures 2.4 and 3.3.

0 0 0 0

0 6 0 8

0 0 8 0

4 0 0 0

6 8

4 8

Figure 3.3. Max unpooling the output of Figure 2.4.

Transposed convolutions. Transposed convolution [Shelhamer et al., 2016]
is a learned upsampling technique. This layer learns a kernel that is used
to produce the terms whose sum will be the final output. Each term is
obtained by multiplying all the element of the kernel by the same value of
one single input pixel and then inserting the result in the correct position
of a matrix of the same size as the output.

3.2 U-net

The U-net [Ronneberger et al., 2015] is an FCNN architecture, whose main
idea is to combine global and local feature maps by copying correspond-
ing tensors from earlier stages in each upsampling stage; see Figure 3.4.
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This allows the network to capture both local and global context. In each
upsampling, the corresponding output from the downsampling phase is
appended to the output. The copied tensor can be seen as the “global”
information, while the input of the upsampling layer is the “local” infor-
mation. Combining these allows for more fine-grained outputs.

in
pu

t

se
gm

en
ta

ti
on

Figure 3.4. U-net architecture. Down arrows are
downsampling layers, up arrows are upsampling
layers, and right arrows copy.
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4 Recurrent neural networks

Recurrent neural networks (RNN) are a type of neural network that pro-
cesses sequential data, such as text and video. Unlike traditional neural
networks, which take fixed-length inputs, RNNs can take inputs of vari-
able length.5 Generally, RNNs have the following form, 5 This is useful for data structures such as text,

where the number of words in a text is not fixed.

h(t) = fθ

(
h(t−1), x(t)

)
.

In this way, an RNN behaves much like a dynamical system. If we unroll
the timesteps, it becomes clear how h(t) depends on x(1:t),

h(t) = fθ

(
fθ

(
· · ·
(

fθ

(
h(0), x(1)

)
, · · ·

)
, x(t−1)

)
, x(t)

)
.

Because of this, we can see h(t) as a representation of x(1:t).

RNNs can have different applications, for example, one to one, where
at each time step we have one input and one output,6, one to many, where 6 E.g., part-of-speech tagging.

we have one input and we output a sequence of elements,7 many to one, 7 E.g., image captioning, where the image is the one
input, and the caption is a sequence of words.where we have a sequence of inputs and one output,8 and many to many,
8 E.g., sentiment classification, where the input is a
text and the output is a single output that deter-
mines how positive or negative the text is.

where we map a sequence to another sequence of a different length.9

9 E.g., machine translation, where we map a sen-
tence in one language to a sentence of another.

4.1 Elman RNN

The Elman RNN [Elman, 1990] is characterized by a hidden vector h(t),
which forms the state of the network at timestep t. The hidden state is
updated at each timestep by combining the previous hidden state with
the input,

fθ

(
h(t−1), x(t)

)
= tanh

(
Whh(t−1) + Wxx(t)

)
. We use the tanh activation function, because it is

centered at 0.

Since h(t) represents the subsequence x(1:t), we can use it as input to an
MLP,

ŷ = Wyh(t).

Then, we can compute the loss function as the sum of each individual
loss function,

L .
=

T

∑
t=1

ℓ(t).

h(t+1)h(t)h(t−1)· · · · · ·

ℓ(t+1)ℓ(t)ℓ(t−1)

Wh, Wx

L

Figure 4.1. The computational graph of an unrolled
recurrent neural network. The inputs x1:T and out-
puts y1:T are omitted.

We use backpropagation through time (BPTT) to compute the gradient of
an RNN. This involves first unrolling the RNN; see Figure 4.1. Then we
can compute the gradient by backpropagation on the resulting computa-
tional graph,

∂ℓ(t)

∂W
=

t

∑
k=1

∂ℓ(t)

∂ŷ(t)
∂ŷ(t)

∂h(t)
∂h(t)

∂h(k)
∂+h(k)

∂W
,

where ∂+h(k)

∂W is the immediate derivative that treats h(k−1) as constant
w.r.t. W .
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Let’s only consider the following term of the product,

∂h(t)

∂h(k)
=

t

∏
i=k+1

∂h(i)

∂h(i−1)

=
t

∏
i=k+1

∂

∂h(i−1)
σ
(

Whh(i−1) + Wxx(i)
)

=
t

∏
i=k+1

W⊤
h diag

(
σ′
(

Whh(i−1) + Wxx(i)
))

.

Assuming that the norm of the gradient of σ is upper bounded by some
γ ∈ R,10 i.e., 10 For example, the gradient of tanh is bounded by

1.
∥∥∥diag

(
σ′
(

Whh(t−1) + Wxx(t)
))∥∥∥ < γ.

Let λ1 be the largest eigenvalue of Wh, then we have two cases,

1. λ1 < 1
γ . Then we have the following,∥∥∥∥∥ ∂h(i)

∂h(i−1)

∥∥∥∥∥ ≤ ∥Wh∥
∥∥∥diag

(
σ′
(

Whh(t−1) + Wxx(t)
))∥∥∥ <

1
γ

γ = 1. Triangle inequality and ∥Wh∥ = λ1.

Let η < 1 be the upper bound of all gradients between h(i) and h(i−1),
then by induction, we have∥∥∥∥∥ ∂h(t)

∂h(k)

∥∥∥∥∥ =

∥∥∥∥∥ t

∏
i=k+1

∂h(i)

∂h(i−1)

∥∥∥∥∥ < ηt−k.

This converges to zero, as t→ ∞. Thus, we have a vanishing gradient;

2. λ1 > 1
γ . Using the same logic as in the other case, this yields∥∥∥∥∥ ∂h(t)

∂h(k)

∥∥∥∥∥ =

∥∥∥∥∥ t

∏
i=k+1

∂h(i)

∂h(i−1)

∥∥∥∥∥ > ηt−k.

for an upper bound η > 1. Thus, this diverges to ∞ as t → ∞. Thus,
we have a exploding gradient.

Thus, we will always have vanishing or exploding gradients when using
an Elman RNN. This makes it hard for the architecture to capture long-
term dependencies. A naive solution is to truncate BPTT to only go back
m steps. However, then we still lose long-term signals, which we wanted
to preserve.

4.2 Long-short term memory

We need to make sure there is constant error flow. For this, we need
a connection between timesteps that avoids exploding and vanishing
gradients. A simple solution is the leaky unit,

ĥ(t) = fθ

(
h(t−1), x(t)

)
h(t) = αh(t−1) + (1− α)ĥt.
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The long-short term memory (LSTM) architecture [Hochreiter and Schmid-
huber, 1997] takes this idea further by keeping a separate memory cell.
Access to this cell is protected through gates to make sure that there is
always a path between units, such that errors can propagate; see Fig-
ure 4.2. Furthermore, in contrast to the leaky unit, the LSTM Learns how
to “remember” and “forget” information.

x(t)

h(t)

×

×
×

+

σ σ σtanh

tanh

f i g o

c(t)

h(t)

Figure 4.2. LSTM architecture. The yellow squares
are neural networks, and the white squares are
point-wise operators. As can be seen, there is an
”information highway“ that can easily propagate
errors at the top, because of the minimal modifica-
tions made to it.

The cell of an LSTM consists of 4 gates. All gates get h(t−1) and x(t) as
input. In particular, these gates have the following instructions,

• f : Rd ×Rd → [0, 1]d is the forget gate and has the role of scaling the
old cell state h(t−1). It “decides which information should be forgot-
ten” from the previous cell state. It does so by outputting a vector in
[0, 1]d where 0 means forgetting completely and 1 means remembering
everything;

• g : Rd ×Rd → [−1, 1]d is the gate that decides what to write in the cell
state c(t);

• i : Rd ×Rd → [0, 1]d is the input gate and has the role of “deciding
which values of the cell state c(t) should be updated” at the current
time step. Again, it does so by outputting a vector in [0, 1]d to decide
what of the output of the g gate should be written to the cell state c(t);

• o : Rd ×Rd → [0, 1]d is the output gate and has the role of “deciding
which values of the current cell state c(t) should be put in the output
of the cell h(t)”.

We first compute all the gates,

f (t) = σ
(

Wh f h(t−1) + Wx f x(t)
)

You can also chain multiple LSTM units one after
another, which results in this computation being
performed multiple times per layer. If this is the
case, then we replace x(t) by the hidden vector of
the previous unit for all units after the first.

i(t) = σ
(

Whih
(t−1) + Wxix(t)

)
o(t) = σ

(
Whoh(t−1) + Wxox(t)

)
g(t) = tanh

(
Whgh(t−1) + Wxgx(t)

)
.
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Then, we compute the outputs that are propagated to the next layer,

c(t) = f (t) ⊙ c(t−1) + i(t) ⊙ g(t) f (t) ⊙ c(t−1) computes what to keep/forget and

i(t) ⊙ g(t) computes what to add.
h(t) = o(t) ⊙ tanh

(
c(t)
)

.

The addition in the computation of c(t) allows for gradients to directly
propagate through c(t−1) ⊙ f . Also, it allows the model to “select” what
information should be retained. For example, at a high level in text, it
might be helpful to store information such as gender and countries of
origin. See [Olah, 2015] for more information about the gates.

4.3 Gradient clipping

While LSTMs are a great solution to the vanishing gradient problem, we
still have the possibility of exploding gradients. This is what gradient
clipping solves. The idea is to limit the maximum value of the gradient if
it surpasses a predetermined threshold. In practice, the gradient descent
step gets transformed into the following update rule,

θ←

θ− γg ∥g∥ ≤ k

θ− γ k
∥g∥ g otherwise,

where g is the gradient, γ is the learning rate, and k is the gradient
threshold.
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5 Generative models

In discriminative models, the goal is to learn a function that maps inputs x
to their correct output y. On the other hand, generative models aim to learn
the underlying hidden structure of a dataset by modeling the distribution
pmodel to generate new samples that resemble the distribution pdata.

Generative models

Explicit density Implicit density

DirectTractable Intractable

VAE

VariationalAutoregressive

Normalizing flow

GAN

Figure 5.1. Taxonomy of generative models.

Generative models can be classified into two main categories:

• Explicit models explicitly define the probability distribution pmodel and
then sample from it;

• Implicit models define a model from which we can sample. By being
able to sample from the model, it implicitly induces a probability
distribution pmodel.

See Figure 5.1 for further classifications of different models.
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6 Autoencoders

Autoencoders [Kramer, 1991] are generative models. This means that their
objective is to learn the underlying hidden structure of the data. They
aim to model the distribution pmodel(x) that resembles pdata(x) to gener-
ate new samples. Autoencoders are an explicit generative model, which
means that they explicitly define the probability distribution pmodel(x)
and then sample from it to generate new data points.

In machine learning, we often have high-dimensional data x ∈ Rn,
such as images, audio, or time-series. Hence, it is crucial to find a low-
dimensional representation that can effectively compress the data while
preserving its essential information.

f g

latent space

x x̂

Z

X X

Figure 6.1. Autoencoder architecture.

Autoencoders offer a solution by making use of the encoder-decoder
structure; see Figure 6.1. The encoder f projects the input space X into a
latent space Z , while the decoder g maps the latent space Z back to the
input space X . The assumption made by the autoencoder architecture is
that if the decoder is capable of reconstructing the original input solely
from the compressed representation, then this compressed representa-
tion must be meaningful. Consequently, the composition g ◦ f aims to
approximate the identity function on the data for a low reconstruction
error.

Furthermore, to enable the generation of new samples from the latent
space, the latent space must be well structured, characterized by conti-
nuity and interpolation. Continuity means that the entire space must be
covered by the data points, while interpolation means that if we inter-
polate between two points, then the interpolation must also be a well
behaved data point.

6.1 Linear autoencoders

If we restrict f and g to be linear, the encoder f becomes equivalent to
the projection performed by principal component analysis. The advantage
of such a reconstruction is that it can be found in a closed form, and it is
interpretable. However, it is not very powerful.

6.2 Non-linear autoencoders

We can gain a lot of performance by allowing f and g to be non-linear. In
this case, the encoder and decoder are implemented as neural networks.
To train these networks, we optimize for the reconstruction error,

ϕ⋆, ψ⋆ ∈ argmin
ϕ,ψ

N

∑
n=1
∥xn − gψ( fϕ(xn))∥2

We can distinguish between undercomplete and overcomplete latent spaces.
A latent space is undercomplete if dim(Z) < dim(X ), while it is over-
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complete if dim(Z) > dim(X ). The idea of an undercomplete hidden
representation is to enable the network to learn the important features
of the data by reducing the dimensionality of the hidden space. This
prevents the autoencoder from simply copying the input and forces it
to extract meaningful and discriminative features. Next, overcomplete la-
tent spaces are useful for denoising and inpainting autoencoders, where
we have an imperfect input and want a perfect output. The overcomplete-
ness allows the model to extract more features from the transformed
input, leading to improved performance.

6.3 Variational autoencoders

While autoencoders are good at reconstruction, they struggle at generat-
ing new high quality samples. This is due to the latent space not being
“well-structured”, meaning that there is no continuity or interpolation.
There are large regions in the latent space where there are no observa-
tions, thus the model does not know what to output when it get an input
from those regions.

Variational autoencoders (VAE) [Kingma and Welling, 2013] are designed
to have a continuous latent space. It achieves this by making the en-
coder output a probability distribution over latent vectors, rather than
a single latent vector. Generally, it outputs a mean vector µ and stan-
dard deviation vector σ2 to form a Gaussian distribution over latents
N (µ, diag(σ2)). The idea is that even for the same input, the latent vec-
tor can be different, but in the same area. This means that data points
cover areas in the latent space, rather than single points, ensuring conti-
nuity and interpolation.

However, since there are no limits on the values taken by µ and σ2,
the encoder may learn to generate very different µ for each class while
minimizing σ2. This would mean that the encoder essentially outputs
points again to decrease the reconstruction error. We can avoid this by
minimizing the KL-divergence between the output distribution and a
standard normal distribution.11 Intuitively, this encourages the encoder 11 The KL-divergence is defined as

DKL(p∥q) .
= E

[
log
(

p(x)
q(x)

)]
.

It is not symmetric and non-negative.

to distribute the encodings evenly around the center of the latent space.

To train the model, we want to maximize the likelihood of the training
data,

p(x) =
∫

pψ(x | z)p(z)dz. pψ(x | z) is induced by the decoder.

However, this is intractable, because we cannot compute it for all z ∈ Z .
Thus, we define an approximation of the posterior, qϕ(z | x), which is
computed by the encoder. We can now derive the evidence lower bound
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(ELBO),

log p(x) = Ez∼qϕ(·|x)[log p(x)] x does not depend on z.

= Ez∼qϕ(·|x)

[
log

pψ(x | z)p(z)
p(z | x)

]
Bayes’ rule.

= Ez∼qϕ(·|x)

[
log
(

pψ(x | z)p(z)
p(z | x)

qϕ(z | x)
qϕ(z | x)

)]
q(z|x)/q(z|x) = 1.

= Ez|x[log pψ(x | z)]−Ez|x

[
log

qϕ(z | x)
p(z)

]
+ Ez|x

[
log

qϕ(z | x)
p(z | x)

]
= Ez|x[log pψ(x | z)]− DKL(qϕ(z | x)∥p(z)) + DKL(qϕ(z | x)∥p(z | x))

≥ Ez|x[log pψ(x | z)]− DKL(qϕ(z | x)∥p(z)). KL-divergence is non-negative.

The first term of the ELBO encourages low reconstruction error, which
encourages the latent space to be structured such that similar data is
clustered together. The second term makes sure that the approximate
posterior qϕ does not deviate too far from the prior p. The second term
can be computed in a closed-form, since both arguments are Gaussian,

qϕ(z | x) = N (z; µϕ(x), diag(σ2
ϕ(x)))

p(z) = N (z; 0, I).

A minor problem is that, during training, we cannot compute the
derivative of expectations w.r.t. the parameters that we wish to optimize.
Thus, we must use the reparametrization trick, which involves treating
the random sampling as a single noise term. In particular, instead of
sampling z ∼ N (µ, diag(σ2)), we sample ϵ ∼ N (0, I) and compute
z = µ + σ ⊙ ϵ. Using this trick, we can remove the mean and variance
from the sampling operation, meaning that we can differentiate w.r.t. the
model parameters.

After training, we can sample a latent vector z ∼ N (0, I) and pass it
to the decoder, which will give a good output, because the latent space
is well-structured.

6.4 β-VAE

VAEs still have problems with their latent space; the representations
are still entangled.12 This means that we do not have an explicit way of 12 The latent space is disentangled if every dimen-

sion changes a single feature of the output.controlling the output. For example, in the MNIST dataset [Deng, 2012],
we have no way of explicitly sampling a specific number. The β-VAE
[Higgins et al., 2017] solves this problem by giving more weight to the KL
term with an adjustable hyperparameter β that balances latent channel
capacity and independence constraints with reconstruction accuracy. The
intuition behind this is that if factors are in practice independent from
each other, the model should benefit from disentangling them.
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In practice, we want to force the KL loss to be under a threshold δ > 0,

maximize
ϕ,ψ

Ex∼D
[
Ez∼qϕ(·|x)

[
log pψ(x | z)

]]
subject to DKL

(
qϕ(z | x)∥p(z)

)
< δ.

Rewriting this as a Lagrangian, using the Karush-Kuhn-Tucker condi-
tions, we get

L(ϕ, ψ, β) = Ez∼qϕ(·|x)[log pψ(x | z)]− β(DKL(qϕ∥p(z))− δ)

= Ez∼qϕ(·|x)[log pψ(x | z)]− βDKL(qϕ∥p(z)) + βδ

≥ Ez∼qϕ(·|x)[log pψ(x | z)]− βDKL(qϕ∥p(z)).

Thus, this becomes our new objective function that we wish to maximize.
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7 Autoregressive models

We saw that VAEs are approximate models, since they cannot exactly
compute the likelihood p(x) to maximize it. Autoregressive models solve
this by computing the likelihood with the chain rule,

p(x) =
n

∏
i=1

p(xi | x1:i−1).

Autoregressive models use data from the same input variable at pre-
vious timesteps. This is where they get their name from; they perform
regression of themselves. In particular, autoregressive models generate
one element of the sequence at a time, conditioning on previously gen-
erated elements. Thus, it takes x1:k as input and outputs xk+1. Because
of this, they can build a probability distribution over possible sequences,
using the chain rule as above.

The hard part of this approach is that we must parametrize all possible
conditional distributions p(xk+1 | x1:k). Suppose we have a binary image
consisting of n pixels. Then, we need

n

∑
i=1

2i−1 ∈ O(2n)

parameters to parametrize this model. Thus, we need to make additional
assumptions to find more compact representations of the distribution.13 13 A naive solution would be to assume that all

points are independent, which would result in

p(x) =
n

∏
i=1

p(xi).

Then, we only require n parameters. However, in
practice, this would result in a random sampling of
pixels, making the generations incoherent.

We will explore the idea of learning a function fi : {0, 1}i−1 → [0, 1],
parametrized by θi, which takes as input the previous pixels and out-
puts the parameter for the Bernoulli distribution. The total number of
parameters is

n

∑
i=1
|θi|.

Furthermore, we need to think about in which order we generate the
pixels of the image. Intuitively, it would make sense to do left-right top-
down or top-down left-right. However, in practice, randomly ordering the
pixels works just as well. One just needs to make sure that the ordering
remains the same for all data points.

7.1 Fully visible sigmoid belief network

In a fully visible sigmoid belief network (FVSBN) [Frey, 1998], each timestep
has its own function fi that is modeled by logistic regression,

fi(x1:i−1) = σ
(

α
(i)
0 + α

(i)
1 x1 + · · ·+ α

(i)
i−1xi−1

)
.

At the i-th timestep, we have i parameters denoted by θi = [α0, . . . , αi−1].
Thus, the total number of parameters is

n

∑
i=1
|θi| =

n

∑
i=1

i =
n2 + n

2
∈ O

(
n2
)

,
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which is much better than the exponential number of parameters we had
before.

7.2 Neural autoregressive density estimator

The problem with FVSBN is that they are likely not expressive enough
for any meaningful tasks, since they only consist of a single linear layer
for each timestep. The neural autoregressive density estimator (NADE) [Uria
et al., 2016] offers an alternative parametrization based on MLPs, where
we have hidden layers, increasing expressivity, and the weights are shared
between timesteps, decreasing the number of parameters. Specifically, the
hidden layer activations can be computed by the following,

hi = σ(W:,1:i−1x1:i−1 + b)

x̂i = σ(Vi,:hi + ci).

The advantage of shared parameters is that the total number of parame-
ters gets reduced from O

(
n2d
)

to O(nd), and the hidden unit activations
can be evaluated in O(nd) by using an alternative recursive definition,

a0 = 0

ai+1 = ai + W:,ixi

hi = σ(ai + b).

Since NADE is a model for binary data, x̂ ∈ [0, 1] is the probability
p(xi | x1:i−1) at each timestep i. NADE is trained by maximizing the
average log-likelihood,

1
T

T

∑
t=1

log p
(

x(t)
)
=

1
T

T

∑
t=1

log
n

∏
i=1

p
(

x(t)i | x(t)1:i−1

)
=

1
T

T

∑
t=1

n

∑
i=1

log p
(

x(t)i | x(t)1:i−1

)
. Thus, we optimize the log-likelihood exactly,

which was not possible for VAEs.

During training, a teacher forcing approach is used, where the ground
truth values of pixels are used for conditioning, rather than the predicted
ones. This leads to more stable training. However, at inference time we
use the predicted value, since we do not have access to the ground truth.

7.3 Masked autoencoder distribution estimation

The idea behind masked autoencoder distribution estimation (MADE) [Ger-
main et al., 2015] is to construct an autoencoder which fulfills the autore-
gressive property, such that its outputs can be used as conditionals. In
order to achieve this, no computational path between output unit x̂k+1

and any of the input units xk+1, . . . , xn may exist. This has the result that
x̂k+1 is only conditioned on x1:k, relative to the ordering.

The way to do this is to first assign a number from 1 to n to each input
unit xi, which we call the ordering. Then, for each hidden unit, uniformly
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sample an integer m, between 1 and n− 1. In the hidden layers, we then
only allow units in layer ℓ to propagate to units in layer ℓ+ 1 with higher
or equal value. Finally, we allow connections between the last hidden
layer and the output only to units with value that is strictly greater. Let
m(ℓ)(k) be the value assigned to the k-th element of layer ℓ, then these
constraints can be encoded in mask matrices,

MW(ℓ)

ij = 1
{

m(ℓ−1)(j) ≤ m(ℓ)(i)
}

MV
ij = 1

{
m(n)(j) < m(V)(i)

}
.

Then, we alter the weight matrices by

W̄ (ℓ) = W (ℓ) ⊙MW(ℓ)

V̄ = V ⊙MV ,

and use those instead.

p(x1 | x2, x3) p(x2) p(x3 | x2)

x1 x2 x3

213

213

2 212

2 121

Figure 7.1. MADE masking with n = 3.

However, a problem with this approach is that it requires very large
hidden layers to retain expressivity. And, while it is possible to compute
p(x) in a single pass, sampling still requires n passes.

7.4 Generating images

Figure 7.2. Pixel-RNN generation process.

Pixel-RNN. The idea behind Pixel-RNN [Van Den Oord et al., 2016]
is to generate image pixels starting from the corner and modeling the
dependency on previous pixels using an RNN. In particular, a pixel value
is dependent on its top-left neighboring pixels and the RNNs hidden
state; see Figure 7.2. However, the problem with this approach is that
the generation of new pixels depends on the hidden state, making the
generation process sequential, and thus slow.

Figure 7.3. Pixel-CNN generation process. The
black pixel depends explicitly on the yellow pix-
els, where the thick-lined pixels denote the masked
convolutional layer. The black pixel should also de-
pend on the gray pixels, but it does not due to the
way the stacked masked convolutions work; a blind
spot.

Pixel-CNN. We can solve the problem of Pixel-RNN by assuming that
pixel values only depend on a context region around the pixel. This is
exactly what the Pixel-CNN does [Van Den Oord et al., 2016]. This allows
for parallelization during training, because the context region values are
known during training.14 Just as Pixel-RNN, it starts from the top-left

14 However, we still have to sequentially predict ev-
ery token during inference, but this is an issue with
all autoregressive models.

corner, but it models the dependencies with a CNN. During training, we
need to make sure that only the previously generated pixels are used for
prediction of the next, thus we need a mask that masks out all unknown
pixel values. However, stacking layers of masked convolutions creates a
blind spot in the convolution; see Figure 7.3. The solution to this is to
combine horizontal and vertical stacks of convolutions [Van den Oord
et al., 2016]. The former conditions on the row so far, while the latter
conditions on all rows above. The final output is obtained by summing
the two outputs.

To enforce the autoregressive property, the model also needs to go over
the color channels in an autoregressive manner. Thus the conditional
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probability is expressed as

p(xi | x1:i−1) = p(xi,R | x1:i−1)p(xi,G | x1:i−1, xi,R)p(xi,B | x1:i−1, xi,R, xi,G).

7.5 Generating audio

Figure 7.4. Stacked dilated convolutional layers in
WaveNet.

WaveNet [van den Oord et al., 2016] adapts the Pixel-CNN framework
for audio data. However, audio typically has much longer time horizons,
since they consist of 16000 samples per second. To be able to capture
these long-term dependencies efficiently, WaveNet incorporates dilated
convolutions [Yu and Koltun, 2016]. This allows for an exponential in-
crease in the receptive field. In dilated convolutions, the filter is applied
with gaps between the filter elements. WaveNet increases the dilation
factor as we go up in the layers to attain an exponential receptive field;
see Figure 7.4.

7.6 Variational RNN

RNNs can also be used to generate sequences by sampling h(0) and then
sequentially predicting the next element, and updating the hidden state.
However, the generation of new sequences is very slow, because of the
sequential nature of the generation process. Another limitation of vanilla
RNNs is that their structure is entirely deterministic and thus limited in
expressive power.

h(t−1) h(t)

z(t)

x(t)

Figure 7.5. Computational graph of VRNN for in-
ference.

h(t−1) h(t)

z(t)

x(t)

Figure 7.6. Computational graph of VRNN for gen-
eration.

The variational RNN [Chung et al., 2015] (VRNN) introduces stochas-
ticity to the generations of the RNN, which are typically deterministic. It
does so by adding a VAE and sampling the hidden state h(t) from it. For
inference (i.e., encoding), it samples the new hidden state by

z(t) ∼ qϕ

(
· | x(t), h(t−1)

)
h(t) ∼ pθ

(
· | h(t−1), z(t), x(t)

)
.

For generation, zt may not depend on xt, so we have

z(t) ∼ qϕ

(
· | h(t−1)

)
x(t) ∼ pθ

(
· | h(t), z(t)

)
h(t) ∼ pθ

(
· | h(t−1), z(t), x(t)

)
.

The prior is also sampled from a learned distribution.

The conditional VRNN (C-VRNN) is an extension to the VRNN, where
we can condition on e.g. style or, in the case of MNIST, which digit
should be generated. During training, the model predicts the conditional
variable, called the posterior, and hidden state from the input x(t). From
the hidden state it also predicts the conditional variable, called the prior.
It then minimizes the reconstruction error from the style variable, and
the KL divergence between prior and posterior. During inference, it only
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uses the priors for next token prediction, predicted from the hidden state,
since it does not have access to x(t). Then, given the predicted token, it
predicts the posterior conditional variables, which are used to predict the
next hidden state h(t+1).

7.7 Transformers

Transformers [Vaswani et al., 2017] are used in nearly all the state-of-
the-art models at the moment. At the basis of transformers lies the self-
attention mechanism, where we extract key, value, and query represen-
tations from the input. These are then used in a soft-lookup mechanism,
where the query and key values decide how much attention is paid to
the values.15 15 Note the parallel with dictionaries in program-

ming languages, which use a hard-lookup.
It computes the keys, values, and queries by

K = XWK

V = XWV

Q = XWQ,

where X ∈ Rn×d and WK, WV , WQ ∈ Rd×d. Now, we have key, value,
and query representations of the input that are all in Rn×d. Then, we can
compute the output by

Y = softmax

(
QK⊤√

d

)
V .

Intuitively, the softmax computes how much “attention” should be given
to each of the previous timesteps by outputting a probability distribution
over timesteps.

Since Y ∈ Rn×d is of the same dimensionality as X, we can stack
self-attention layers. This is the basis of the transformer architecture.
However, this does not respect the autoregressive property, thus we need
to use a mask M to prevent the model from accessing future timesteps,
where

M =


−∞ −∞ · · · −∞

0 −∞ · · · −∞
...

...
. . .

...
0 0 · · · −∞

 .

Then, the attention computation becomes

Y = softmax

(
QK⊤√

d
+ M

)
V .

The computational complexity of self-attention is O
(
n2d
)
, which is

quite high for large inputs, such as audio and images. But, we gain a
maximum path length of O(1) to any of the previous timesteps, making
sure that no information gets “forgotten”, and it allows for easy error
propagation during training, in contrast to RNNs.
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8 Normalizing flows

As we have seen, VAEs learn meaningful representation through latent
variables, but they suffer from intractable marginal likelihoods. On the
other hand, autoregressive models have a tractable likelihood, but lack
a latent space and direct feature learning mechanism. Normalizing flows
[Rezende and Mohamed, 2015] try to have the best of both worlds; mean-
ingful latent space and a tractable likelihood. They achieve this by lever-
aging the change of variable technique of integration.

8.1 Change of variables

In the one-dimensional, integration by substitution works as follows. Let
g : [a, b] → I be a differentiable function with a continuous derivative
and f : I → R be a continuous function, where I ⊂ R is an interval.
Then, ∫ g(b)

g(a)
f (x)dx =

∫ b

a
f (g(u))g′(u)du.

Similarly, we can make the same change of variables transformation
to probability distributions. Let z ∼ pZ, x = f (z), where f (·) is a mono-
tonic and differentiable function with an inverse z = f−1(x). Then, the
probability density function of x is

pX(x) = pZ

(
f−1(x)

)∣∣∣∣d f−1(x)
dx

∣∣∣∣ = pZ(z)
∣∣∣∣d f−1(x)

dx

∣∣∣∣.
We can generalize this to any dimensionality by the following,

pX(x) = pZ

(
f−1(x)

)∣∣∣det
(

Jx f−1(x)
)∣∣∣ = pZ(z)|det(Jz f (z))|−1, We need to normalize by the determinant of f ,

because the total probability must be 1. Recall that
the determinant quantifies the volume change of
an operation.

where the last equality is a property of Jacobians of invertible functions.
We can view the absolute determinant as computing the volume of
change of f . Normalizing flow models parametrize fθ.

Thus, this gives us a way to compute the probability of x in an exact
and tractable manner. The downside of this approach is that f must be
invertible, thus we must carefully parametrize the model, which means
that we cannot use any model we might want to use. Furthermore, this
has the consequence that it must preserve dimensionality, thus the latent
space must be as large as the data space.

From a computational perspective, we require the Jacobian of the trans-
formation to be computed efficiently. In general, computing the Jacobian
takes O

(
d3) to compute for a d × d matrix. However, this is not fast

enough. A way to achieve linear complexity is to design f such that
its Jacobian is a triangular matrix, which takes O(d) to compute.16 This 16 The determinant of a triangular matrix is the

product of its diagonal entries.requirement further reduces the number of modeling decisions we can
make.
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8.2 Coupling layers

x y

xA

xB

yA

yB

split merge

h

β

Figure 8.1. Diagram of a coupling layer. h is an
invertible element-wise operation and β is can be
arbitrarily complex and does not need to be invert-
ible.

A coupling layer [Dinh et al., 2014] is a type of network layer that effec-
tively meets the above requirements of a normalizing flow function. It
is invertible and offers efficient computation of the determinant. It con-
sists of two functions; β and h. β can be any neural network and does
not necessarily need to be invertible.17 h is an element-wise operation

17 This is very important, because requiring a neural
network to be invertible would significantly reduce
the number of available modeling decisions.

that is invertible w.r.t. its first argument, given the second. h(xA, β(xB))

produces the first half of the input and xB produces the second half.

This gives the following function,

f :

[
xA

xB

]
7→
[

h(xA, β(xB))

xB

]
.

The inverse of this function is given by

f−1 :

[
yA

yB

]
7→
[

h−1(yA, β(yB))

yB

]
.

The Jacobian matrix can be efficiently computed by

J f (x) =

[
∂yA
∂xA

∂yA
∂xB

∂yB
∂xA

∂yB
∂xB

]

=

[
h′(xA, β(xB))

∂xA
∂xA

h′(xA, β(xb))
∂β(xB)

∂xB
∂xB
∂xA

∂xB
∂xB

]

=

[
h′(xA, β(xB)) h′(xA, β(xB))β′(xB)

0 I

]
.

When implementing this, we notice that this layer leaves part of its in-
put unchanged. The role of the two subsets in the partition thus gets
exchanged in alternating layers, so that both subsets get updates. In prac-
tice, we often randomly choose the splits to ensure proper mixing.

8.3 Composing transformations

Often, a single non-linear transformation is insufficient to capture com-
plex patterns. Especially, because a single layer leaves part of the input
unchanged. Thus, to achieve more complex transformations, we can com-
pose multiple transformations together. We then get the following func-
tion

x = f (z) = ( fm ◦ · · · ◦ f1)(z).

Again using the change of variables, we can then compute the likelihood
by

pX(x) = pZ

(
f−1(x)

) m

∏
k=1
|det(J fk(x))|−1. det(AB) = det(A)det(B).



machine perception 26

8.4 Training and inference

At training time, we can learn the model by maximizing the exact log
likelihood over the dataset,

log pX(D) =
n

∑
i=1

log pZ

(
f−1(xi)

)
+

m

∑
k=1

log|det(J fk(xi))|−1.

At inference time, we generate a sample x by drawing a random z ∼
pZ and transform it via f , obtaining x = f (z). To evaluate the probability
of an observation, we use the inverse transform to get its latent variable
z = f−1(x), and compute its probability at pZ(z). Generally, pZ is chosen
to be a simple distribution, such as N (0, I).

8.5 Architectures

The main difference between flow architectures is the choice of h and the
way it splits the input into xA and xB.

NICE. NICE [Dinh et al., 2014] splits the data by dividing the input into
two parts xA = x1:d/2 and xB = xd/2+1:d, swapping the order randomly.
In the coupling layer, it uses an additive coupling law and the output is
computed as [

yA

yB

]
=

[
xA + β(xB)

xB

]
.

1

4 8

3 7

2 6

1 5

2 3 4

5 6 7 8

Figure 8.2. Masking used by RealNVP [Dinh et al.,
2016].

RealNVP. RealNVP [Dinh et al., 2016] employs a multi-scale architec-
ture that uses two types of partitioning: checkerboard and channel-wise
masking; see Figure 8.2. At each scale, the model alternates between
checkerboard patterns. Then, it does a squeezing operation to go from
C × H ×W dimensionality to 4C × H/2 × W/2. Lastly, it uses channel-
wise masking. This sequence of steps ensures that all data can interact
with each other. Instead of a simple additive h as in NICE, RealNVP
implements it as an affine mapping,[

yA

yB

]
=

[
xA ⊙ exp(s(xB)) + t(xB)

xB

]
.

Here, s and t can be arbitrarily complex.

GLOW. GLOW [Kingma and Dhariwal, 2018] is an architecture that
utilizes invertible 1× 1 convolutions, affine coupling layers, and multi-
scale architecture. It consists of L levels, each of which is composed of
K steps of flow. The L levels allow for effective processing of all parts
of the input, while the K steps are used to increase the flexibility of the
transformation f .

A step of flow consists of applying activation norm, an invertible
1× 1 convolution, and a coupling layer, in order. The activation norm
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is similar to batch norm, but it normalizes each input channel. As we
saw, a permutation of the input is needed in order to be able to process
the entire input. The 1× 1 convolution with C filters is a generalization
of a permutation in the channel dimension. This allows us to learn the
required permutation. The coupling layer is implemented as in RealNVP,
while the split is performed along the channel dimension only, because
the convolution is 1× 1.
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9 Generative adversarial networks

So far, we have only seen generative models that optimize the likelihood.
This has a nice interpretation and leads to nice theory, but there are cases
where optimizing the likelihood will not give good results [Theis et al.,
2016].

1. In the first case, we might have a good likelihood score, but poor sam-
ples. Let’s say we have a model p that generates high-quality samples
and a model q that generates noise. Now construct the mixture model
0.01p + 0.99q.18 The log-likelihood of this model is then 18 This means that 99% of the time, the generated

samples will be noise.

log(0.01p(x) + 0.99q(x)) ≥ log(0.01p(x)) = log(p(x))− log 100.

The term log p(x) will be proportional to the dimensionality d, while
log 100 remains constant. For high-dimensional data, this results in a
high log-likelihood for the mixture model;

2. In the second case, we might have a low likelihood score with high-
quality samples. This occurs when the model overfits on the train-
ing data, meaning that it only outputs data points from the training
dataset. This will result in low log-likelihood on the validation dataset,
despite the samples being high-quality.

Generate adversarial networks (GAN) [Goodfellow et al., 2014] aim to
solve this by introducing a discriminator (D), whose job it is to differentiate
between real and fake images. The objective of the generator (G) is then
to maximize the discriminator’s classification loss by generating images
similar to the dataset. By doing so, it implicitly induces a distribution
over data points pmodel.

Specifically, the generator G : Rd → Rn maps a simple d-dimensional
distribution to a sample from the data distribution. The discriminator
D : Rn → [0, 1] assigns a probability to samples. Its objective is to assign
probability 1 to samples from the dataset and probability 0 to samples
generated by the generator.

This leads us to the following value function,

V(D, G) = Ex∼pdata [D(x)] + Ez∼N (0,I)[log(1− D(G(z)))].

The discriminator aims to maximize it, while the generator aims to mini-
mize it, which gives the following optimization problem,

G⋆, D⋆ ∈ argmin
G

argmax
D

V(D, G).

9.1 Theoretical analysis

Optimal discriminator. Given access to pmodel and pdata, we can compute
a closed form solution for D⋆ by the following theorem.19 19 In practice, we do not have access to pmodel, since

we parametrize it implicitly.
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Theorem 9.1. For any generator G that induces pmodel, the optimal
discriminator is

D⋆(x) =
pdata(x)

pdata(x) + pmodel(x)
.

Proof. Let G be a generator, then D is computed by

D⋆ = argmax
D

V(G, D)

= argmax
D

Ex∼pdata [log D(x)] + Ez∼pprior [log(1− D(G(z)))]

= argmax
D

∫
pdata(x) log D(x)dx +

∫
p(z) log(1− D(G(z)))dz

= argmax
D

∫
pdata(x) log D(x)dx +

∫
pmodel(x) log(1− D(x))dx Law of unconscious statistician.

= argmax
D

∫
pdata(x) log D(x) + pmodel(x) log(1− D(x))dx.

Let a, b > 0 and consider f (y) = a log(y) + b log(1 − y), then f ’s
maximum is achieved at y = a

a+b , which we can easily prove by

f ′(y) =
a
y
− b

1− y
= 0 ⇐⇒ y =

a
a + b

Critical point.

f ′′(y) = − a
y2 −

b
(1− y)2 < 0, ∀a, b > 0. Maximum point.

Thus, we obtain

D⋆(x) =
pdata(x)

pdata(x) + pmodel(x)
, ∀x ∈ X .

■

Global optimality. Now that we have found the optimal theoretical value
for the discriminator, we want to know when we have found a global
optimum of the value function. I.e., when is G⋆ obtained.

Theorem 9.2. The generator is optimal if pmodel = pdata and at opti-
mum, we have

V(G⋆, D⋆) = − log 4.

Proof. Let p = pdata and q = pmodel. We have already found the optimal
D⋆,

D⋆(x) =
p(x)

p(x) + q(x)
.
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We substitute this into the value function,

V(G, D⋆) = Ep

[
log
(

p(x)
p(x) + q(x)

)]
+ Eq

[
log
(

1− p(x)
p(x) + q(x)

)]
= Ep

[
log
(

p(x)
p(x) + q(x)

)]
+ Eq

[
log
(

q(x)
p(x) + q(x)

)]
= Ep

[
log
(

2p(x)
2(p(x) + q(x))

)]
+ Eq

[
log
(

2q(x)
2(p(x) + q(x))

)]
= Ep

[
log
(

2p(x)
p(x) + q(x)

)]
− log 2 + Eq

[
log
(

2q(x)
p(x) + q(x)

)]
− log 2

= Ep

[
log
(

2p(x)
p(x) + q(x)

)]
+ Eq

[
log
(

2q(x)
p(x) + q(x)

)]
− log 4

= DKL

(
p
∥∥∥∥ p + q

2

)
+ DKL

(
q
∥∥∥∥ p + q

2

)
− log 4

= 2DJS(p∥q)− log 4,

where the Jensen-Shannon divergence is a symmetric and smoothed ver-
sion of the KL divergence, defined as

DJS(p∥q) .
=

1
2

DKL

(
p
∥∥∥∥ p + q

2

)
+

1
2

DKL

(
q
∥∥∥∥ p + q

2

)
.

This divergence is non-negative, and equals 0 if and only if p = q. Thus,
G⋆ ∈ argminG V(D⋆, G) must satisfy pdata = pmodel, and we obtain

V(G⋆, D⋆) = − log 4.

■

Convergence. Under very strong assumptions, we can guarantee that a
GAN converges.

Theorem 9.3. Assume that G and D have sufficient capacity, at each
update step D → D⋆, and pmodel is updated to improve

V(pmodel, D⋆) = Ex∼pdata [log D⋆(x)] + Ex∼pmodel [log(1− D⋆(x))] Notice that pmodel is updated directly here, rather
than indirectly by optimizing G, which is actually
what happens.∝ sup

D

∫
x

pmodel(x) log(1− D(x))dx.

Then, pmodel converges to pdata.

Proof. The argument of the supremum is convex in pmodel and the supre-
mum preserves convexity. Thus, V(pmodel, D⋆) is convex in pmodel with
global optimum as in Theorem 9.2. ■

However, Theorem 9.3 is a very weak result, because of how strong the
assumptions are. In practice, G and D have finite capacity, D is optimized
for only k steps and does not converge to D⋆, and due to the neural
network parametrization of G, the objective is no longer convex. However,
despite this, GANs work well in practice, because D does stay close to
D⋆, providing meaningful gradients for G to optimize its generations.
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9.2 Training

1: while not converged do
2: repeat k times
3: x1, . . . , xn ∼ pdata

4: z1, . . . , zn ∼ N (0, I)
5: LD = 1

n ∑n
i=1 log(D(xi)) + log(1− D(G(zi)))

6: perform a gradient ascent step on LD

7: end
8: z1, . . . , zn ∼ N (0, I)
9: LG = 1

n ∑n
i=1 log(1− D(G(zi)))

10: perform a gradient descent step on LG

11: end while

Algorithm 1. Generative adversarial network train-
ing algorithm.

0 0.2 0.4 0.6 0.8 1

−5

0

5 log(1− x)
− log(x)

Figure 9.1. Solution to that the GAN loss function
saturates for the generator.

A possible issue with this training algorithm is that, early in learn-
ing, G is poor, which means that D can easily reject samples with high
confidence. In this case, log(1− D(G(z))) saturates, meaning that it ap-
proaches −∞ as D(G(z)) → 1. Instead, we can train G to maximize
log D(G(z)), which does not have this problem; see Figure 9.1.

Mode collapse. We speak of mode collapse when the generator learns to
produce high-quality samples with very low variability, covering only
a fraction of the data distribution. A simple example that explains this
phenomenon is a generator that generates temperature values. The gener-
ator may learn to only output cold temperatures, which the discriminator
counters by predicting all cold temperatures as “fake” and all warm tem-
peratures as “real”. Then, the generator exploits this by only generating
warm temperatures. And, again the discriminator can counter this, which
the generator counters, repeating cyclically.

The most common solution to mode collapse is the unrolled GAN
[Metz et al., 2017]. The idea is to optimize the generator w.r.t. the last k
discriminators. This results in the above not being able to occur, since
the generator must not only fool the current discriminator, which might
be unstable, but also the previous k ones.

Training instability. Since we optimize GANs as a two-player game, we
need to find a Nash-Equilibrium, where, for both players, moving any-
where will only be worse than the equilibrium. However, this can lead
to training instabilities, since making progress for one player may mean
the other player being worse off.

Optimizing Jensen-Shannon divergence. It might be the case that the sup-
ports of pdata and pmodel are disjoint. In this case, it is always possible
to find a perfect discriminator with D(x) = 1, ∀x ∈ supp(pdata) and
D(x) = 0, ∀x ∈ supp(pmodel). Then, the loss function equals zero, mean-
ing that there will be no gradient to update the generator’s parameters.20 20 As we saw in the proof of Theorem 9.2, GANs

optimize the Jensen-Shannon divergence.



machine perception 32

Nowozin et al. [2016] showed that the GAN objective can be generalized
to an entire family of divergences. The Wasserstein GAN [Arjovsky et al.,
2017] optimizes the Wasserstein distance between pmodel and pdata. In
this case, the loss does not fall to zero for disjoint supports, because it
measures divergence by how different they are horizontally, rather than
vertically. Intuitively, it measures how much “work” it takes to turn one
distribution into the other.

Gradient penalty. To stabilize training, Mescheder et al. [2018] proposed
adding a gradient penalty,

V(G, D) = Ex∼pdata

[
log D(x) + λ∥∇D(x)∥2

]
+Ex∼pmodel [log(1−D(x))].
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10 Diffusion models

Unlike VAEs and GANs, diffusion models [Ho et al., 2020] do not generate
a sample in a single step. They do so in many small steps. They start from
pure noise and iteratively denoise it. At the end of all the denoising steps,
the goal is to obtain a sample from the data distribution. The diffusion
chain can be traversed in two directions: going from noise to sample
is called denoising and going from sample to noise is called diffusion. In
general, we have

x0 ∼ q, xT ∼ N (0, I),

where q is the data distribution and T is the total number of steps in
the diffusion chain. xt is then a noisy version of x0 at timestep t, where
higher t means more noise. The goal of diffusion models is to train a
model that can predict xt−1, given xt to reverse the diffusion process. It
then performs these small steps T times, starting from xT ∼ N (0, I).

10.1 Diffusion step

To generate the training data for a diffusion model, we need an efficient
way of computing xt and xt+1. The diffusion chain is governed by a
variance schedule (βt ∈ (0, 1))T

t=1, where βt < βt+1 for all t.21 A naive 21 There are two main ways of defining the sched-
uler; a linear schedule and a cosine schedule. It
was found that linear schedulers add too much
noise too quickly, making it hard for the model to
learn. Thus, a cosine scheduler is usually preferred
in practice.

way of computing the diffusion steps is sequentially,

q(xt | xt−1) = N (
√

1− βtxt−1, βt I).

However, this is very inefficient, since to compute xt, we need to perform
t diffusion steps. Luckily, there exists a closed-form solution for xt by
using the reparametrization trick,

xt =
√

1− βtxt−1 +
√

βtϵ, ϵ ∼ N (0, I).

Let αt = 1− βt and ᾱt = ∏t
i=1 αi. Using the new notation, we get

xt =
√

αtxt−1 +
√

1− αtϵ.

Using induction, we can find a closed-form solution,

xt =
√

αt(
√

αt−1xt−2 +
√

1− αt−1η) +
√

1− αtϵ, η ∼ N (0, I)

=
√

αtαt−1xt−2 +
√

αt(1− αt−1)η+
√

1− αtϵ

= ⊛

Using the properties of multivariate Gaussians, we get√
1− αtϵ ∼ N (0, (1− αt)I)√

αt(1− αt−1)η ∼ N (0, αt(1− αt−1)I)

=⇒
√

αt(1− αt−1)η+
√

1− αtϵ ∼ N (0, (αt(1− αt−1) + (1− αt))I)

= N (0, (1− αtαt−1)I).
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Thus, we have√
αt(1− αt−1)η+

√
1− αtϵ =

√
1− αtαt−1ϵ′, ϵ′ ∼ N (0, I).

Since ϵ and ϵ′ are samples from the same distribution, we can continue
using ϵ,

⊛ =
√

αtαt−1xt−2 +
√

1− αtαt−1ϵ

Continuing this pattern, we obtain

=
√

ᾱtx0 +
√

1− ᾱtϵ.

10.2 Denoising step

The reverse diffusion (denoising) process obviously has no closed-form
solution. Thus, we want to parametrize a model pθ(xt−1 | xt) that per-
forms the denoising from xt to xt−1. We defined q(xt | xt−1) to be a
Gaussian with known parameters. For small enough βt, we can also
model pθ(xt−1 | xt) as a Gaussian,

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)).

Similarly to VAEs, instead of predicting the full distribution (which
would be very hard), we only need to predict the parameters of the
Gaussian (which is not as hard). Using this model, we can compute the
probability of the full process,

pθ(x0:T) = p(xT)
T

∏
t=1

pθ(xt−1 | xt).

10.3 Training

Similarly to VAEs, we can derive an ELBO to optimize the log-likelihood,

log pθ(x0) = log
∫

pθ(x0:T)dx1:T

= log
∫

q(x1:T | x0)
pθ(x0:T)

q(x1:T | x0)
dx1:T

= log Ex1:T∼q(·|x0)

[
pθ(x0:T)

q(x1:T | x0)

]
≥ Ex1:T∼q(·|x0)

[
log

pθ(x0:T)

q(x1:T | x0)

]
Jensen’s inequality.

...

= Ex1:T∼q(·|x0)[log pθ(x0:T)]︸ ︷︷ ︸
reconstruction term

−DKL(q(xT | x0)∥p(xT))︸ ︷︷ ︸
prior matching term

−
T

∑
t=2

Ext∼q(·|x0)[DKL(q(xt−1 | xt, x0)∥pθ(xt−1 | xt))]︸ ︷︷ ︸
denoising matching term

.
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In practice, we assume that the covariance matrix Σt = σ2
t I of p and q

are the same. Then, we can simplify the denoising matching term,

argmin
θ

DKL(q(xt−1 | xt, x0)∥pθ(xt−1 | xt))

= argmin
θ

DKL
(
N (µq, Σt)∥N (µθ, Σt)

)
= argmin

θ

1
2

(
log

det(Σt)

det(Σ)
− d + tr

(
Σ−1

t Σt

)
+ (µθ− µq)

⊤Σ−1(µθ− µq)

)
= argmin

θ

1
2
(µθ− µq)

⊤(σ2
t I)−1(µθ− µq)

= argmin
θ

1
2σ2

t
∥µθ− µq∥2.

Thus, we want to minimize the difference between the means of the two
distributions. Assuming that we have a model that can predict the noise
at timestep t, we can compute the two means by

µq(xt, t) =
1√
αt

xt −
1− αt√

1− ᾱt
√

αt
ϵ

µq(xt, t) =
1√
αt

xt −
1− αt√

1− ᾱt
√

αt
ϵ̂θ(xt, t).

A further simplification can be made by formulating the loss directly as
the difference between the two actual and predicted noise,

∥ϵ− ϵ̂θ(xt, t)∥2 =
∥∥∥ϵ− ϵ̂θ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥∥2
.

We then get the following algorithms for training and sampling a diffu-
sion model.

Require: {βt}T
t=1

1: while not converged do
2: x0 ∼ q
3: t ∼ Unif([T])
4: ϵ ∼ N (0, I)
5: L =

∥∥ϵ− ϵ̂θ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2

6: perform a gradient descent step on L
7: end while

Algorithm 2. Diffusion model training algorithm.

Require: {βt}T
t=1, ϵ̂θ

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1 else z = 0
4: xt−1 = 1√

αt

(
xt − 1−αt√

1−ᾱt
ϵ̂θ(xt, t)

)
+ σtz

5: end for
6: return x0

Algorithm 3. Diffusion model sampling algorithm.

Typically, ϵθ is implemented as a U-net that is shared across timesteps.
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10.4 Guidance

In use-cases such as text-to-image, we want to condition the generated
image x on the input text y, meaning that we need to model a conditional
distribution,

pθ(x | y) = p(xT)
T

∏
t=1

pθ(xt−1 | xt, y).

Contrastive language-image pretraining (CLIP) [Radford et al., 2021] is a
large image-language model that has been trained on image-caption
pairs. It consists of an image encoder and a text encoder network. By
using a contrastive loss, CLIP is encouraged to encode the image and
caption into similar embeddings.22 22 A possible application of CLIP is zero-shot clas-

sification, which leverages the CLIP model to pre-
dict the class of an image without any training. It
achieves this by predicting the class that maximizes
the cosine similarity between the image and the
class name.

The idea of classifier guidance is to guide denoising in a “direction” fa-
voring images that are more reliably classified by a trained classifier. For
this we need a pretrained unconditional diffusion model and a classifier
trained on noisy images. Then, we guide the denoising in the “direction”
of the classifier by injecting gradients of the classifier model into the sam-
pling process. However, the problem is that this requires training a very
specific classifier on noisy data, because we want to guide the diffusion
model in all steps of the process. Furthermore, it is hard to interpret what
the classifier guidance is doing.

Classifier-free guidance [Ho and Salimans, 2022] address these issues by
jointly training a class-conditional and unconditional diffusion model. It
then guides the generation process in the generation of conditioning by

ϵ⋆θ(x, y; t) = (1 + ρ)ϵθ(x, y; t)− ρϵθ(x; t),

where y is the conditioning variable and is usually obtained by encoding
text using CLIP and ρ controls the strength of the guidance.23 However, 23 In practice, we usually train a single model and

just set the conditioning variable to all zero for the
unconditional generation.

the problem with this approach is that generation takes twice as long
when compared to classifier guidance. Overall, guidance improves the
quality of the outputs, but reduces the diversity of the generated images.

10.5 Latent diffusion models

Diffusion models for image generation typically operate on the original,
high-dimensional image size, which can result in slow training and sam-
pling. Latent diffusion models [Rombach et al., 2022] address this issue
by operating on the latent space of a VAE. The VAE is trained before-
hand and is frozen during training of the diffusion model. The diffusion
model then does the diffusion reversal on the latent space, rather than
the high-dimensional space of the data. This has the advantage that it
significantly improves the efficiency of sampling and training. Further-
more, in this approach, the diffusion model only needs to focus on the
“semantic” aspect of the image, because the VAE has already captured
the relevant information in the latent space.
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11 Reinforcement learning
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r0

a0

s1
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Figure 11.1. Diagram of an MDP.

Agent
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Figure 11.2. Reinforcement learning.

Definition 11.1 (Markov decision process). A Markov decision pro-
cess (MDP) is a 5-tuple ⟨S ,A, P, r, γ⟩, where

• S is the state space;

• A is the action space;

• P : S ×A → ∆(S) is the state transition model;

• r : S ×A → R is the expected reward function;

• γ ∈ [0, 1] is the discount factor. If γ = 1, all future rewards count
as much as current reward. If γ = 0, only immediate rewards
matter. Usually, we want a value between 0 and 1, because we
want a balance between the two extremes.

An MDP can be seen as a controlled Markov chain, because the next
state st+1 is independent of all states and actions before t if we know
(st, at),

P(st+1 = s′ | st = s, at = a, . . . , s0, a0) = P(s′ | s, a).

The performance objective is maximizing the expected discounted re-
ward.

Definition 11.2 (Policy). A policy π : S → ∆(A) expresses an
agent’s behavior by mapping states to a probability distribution
over actions. A policy can be made deterministic by outputting only
Dirac distributions.

With a fixed policy, we can then put the probability of the next action
as

P(at = a | st = s, . . . , s0, a0) = π(a | s).

At any point in the Markov chain, the objective of an agent is to maximize
the (discounted) return,

Gt =
∞

∑
k=0

γkr(st+k, at+k).

This can also be written in recursive form as

Gt = r(st, at) + γGt+1.

Definition 11.3 (Value function). The value function Vπ : S → R is
defined as the expected return under policy π, starting from state s,

Vπ(s) .
= Eπ [G0 | S0 = s] = Eπ

[
∞

∑
t=0

γtr(st, at)

∣∣∣∣∣ S0 = s

]
.



machine perception 38

From the definition of the value function, we can derive the Bellman
consistency equation,

Vπ(s) .
= Eπ [G0 | S0 = s]

= ∑
a∈A

π(a | s)Eπ [r(s, a) + γG1 | S0 = s, A0 = a] Recursive definition of return and condition on
action.

= ∑
a∈A

π(a | s)[r(s, a) + γEπ [G1 | S0 = s, A0 = a]] Linearity of expectation.

= ∑
a∈A

π(a | s)

[
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)Eπ [G1 | S1 = s′]

]
Condition on next state, which makes (s0, a0)
irrelevant for further return due to Markov
property.

= ∑
a∈A

π(a | s)

[
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)Eπ [G0 | S0 = s′]

]
Markov property.

= ∑
a∈A

π(a | s)

[
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)Vπ(s′)

]
.

Furthermore, we have the Bellman optimality equation,

V⋆(s) = max
a∈A

{
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)V⋆(s′)

}
.

This must always hold for the optimal policy, because the optimal policy
acts greedily w.r.t. the optimal value function. We can formalize this as
the Bellman optimality operator

(T v)(s) .
= max

a∈A

{
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)v(s′)

}
. v is the vector containing all state values, where

vs = Vπ(s).

This operator is a γ-contraction w.r.t. the ℓ∞-norm,

∥T v′ − T v∥∞ ≤ γ∥v′ − v∥∞,

and monotonic,
v ≤ v′ =⇒ T v ≤ T v′.

As we saw above, v⋆ is the fixed-point of the Bellman optimality operator,

v⋆ = T v⋆.

Thus, by applying T iteratively, we converge linearly in γ,

∥T vt − v⋆∥∞ = ∥T vt − T v⋆∥∞ ≤ γ∥vt − v⋆∥.

This telescopes, giving

∥vt − v⋆∥ ≤ γt∥v0 − v⋆∥.

As t→ ∞, γt → 0, showing convergence. This leads us to value iteration,
which does exactly that; see Algorithm 4. After computing the optimal
value function, we can get the optimal policy by acting greedily w.r.t. the
returned value function,

π⋆(s) ∈ argmax
a∈A

{
r(s, a) + γ ∑

s′∈S
P(s′ | s, a)V⋆(s′)

}
.
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1: v0 ← 0
2: while ∥vt − vt−1∥∞ > ϵ do
3: vt+1 = T vt

4: end while
5: return v

Algorithm 4. Value iteration, where T is the Bell-
man optimality operator.

The runtime complexity of a single iteration is O
(
|S|2|A|

)
.

Policy iteration is another algorithm that computes the optimal policy
given a known MDP. Instead of only operating in the space of the value
function, it alternates between computing the value function and the
greedy policy w.r.t. the value function; see Algorithm 5. This algorithm
converges in fewer iterations than value iteration, but has higher iteration
cost of O

(
|S|+ |S|2|A|

)
.

1: π0 ← random policy
2: while ∥vπt − vπt−1∥∞ > ϵ do
3: Vπt ← ValueFunction(πt) ▷ Policy evaluation
4: πt+1 ← GreedyPolicy(Vπt) ▷ Policy improvement
5: end while

Algorithm 5. Policy iteration.

Model-based

Policy-basedActor
Critic

Model-free

Value-based

Figure 11.3. Overview of the kinds of reinforcement
learning algorithms.

Reinforcement learning. Unlike in MDPs, in reinforcement learning (RL),
we do not have access to the transition model P and reward function r.
Thus, we cannot make use of value iteration or policy iteration. In some
way, we must learn to act optimally within an environment by interacting
with it. We can distinguish between two kinds of RL algorithms: model-
free and model-based. In model-based RL, we learn the underlying MDP
by approximating P and r. Then, we solve this learned MDP by value
or policy iteration. However, we do not need the underlying MDP to act
optimally. In model-free RL, we learn either the value function, which
induces a greedy policy, or directly learn the policy. Generally, model-
free algorithms are less expensive to run, while model-based algorithms
are more sample efficient.

Furthermore, we can distinguish between RL algorithms in how they
learn from data; on-policy and off-policy. On-policy algorithms must learn
from actions that result from its own actions, while off-policy algorithms
can learn from the trajectory data of any algorithm. Generally, off-policy
are preferred, since we can collect data more efficiently.

Lastly, a way that RL differs from supervised learning is that the data
depends on past actions, i.e., they are highly correlated, which violates the
independently and identically distributed assumption made by supervised
learning. RL algorithms learn from trajectory data,

τ = (s0, a0, r0, s1, a1, r1, s2, . . .).
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11.1 Monte Carlo methods

The most naive method is the Monte Carlo method, which is a value-based
on-policy algorithm that estimates the value function by the empirical
mean return,

Vπ(s) ≈ 1
n

n

∑
i=1

G(s)i,

where G(s)i is the return of episode i, starting from s. The problem with
this method is that we need to wait for a trajectory to finish before we
can use it for approximating the value function.

11.2 Temporal difference learning

Temporal difference (TD) learning makes it possible to learn from transi-
tions (s, a, r, s′), instead of full trajectories, by approximating the Bellman
equation by a single reward, action, and next-state sample,

V(s)← αV(s) + (1− α)(r + γV(s′)),

where α > 0 is the learning rate. We use bootstrapping here, which means
that we use “old” information V(s′) as labels. This can also be interpreted
as updating the value by the TD error,

δ = r + γV(s′)−V(s)

V(s)← V(s) + αδ.

However, to find the optimal value function, we must visit all states
sufficiently often. This means that we have to find a balance between
exploration and exploitation. A commonly used method is the ϵ-greedy
policy, which chooses a random action with small probability ϵ.

SARSA. SARSA [Rummery and Niranjan, 1994] is an on-policy algo-
rithm that learns the Q-values of a policy π. It updates Q-values given a
transition (s, a, r, s′) as follows,

Qπ(s, a)← αQπ(s, a) + (1− α)(r + γQπ(s′, a′)), a′ ∼ π(·, s′).

This is on-policy, because it requires the policy for the update.

Q-learning. An off-policy version of SARSA is Q-learning [Watkins and
Dayan, 1992]. Note that this learns the optimal Q-values, rather than the
Q-values of a certain policy. It updates the Q-values by

Q(s, a)← αQ(s, a) + (1− α)(r + γQ(s′, a′)), a′ ∈ argmax
a∈A

Q(s′, a).

Notice that this is an off-policy algorithm, because nowhere in the learn-
ing algorithm does it depend on the policy. Given optimal Q-values, it is
easy to compute the optimal policy by always acting greedily,

π(s) ∈ argmax
a∈A

Q(s, a).
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11.3 Deep reinforcement learning

Notice that the policy and the value are simply functions,

π : S → A, Vπ : S → R.

Thus, we can use neural networks to approximate them. This is espe-
cially useful for large state and action spaces, since these would not fit in
memory.

Replay buffer. The key component to training the following models is the
replay buffer. Since transitions are highly correlated and we want to use
supervised learning techniques, we cannot always use the latest transition
for training. Instead, the replay buffer stores the last n transitions and
randomly samples from them, making the data points independent and
identically distributed.

Deep Q-learning. Deep Q-networks (DQN) [Mnih et al., 2013] estimate
the value function of a large, potentially infinite, state space with a finite
number of parameters θ,

V(s) ≈ Vθ(s).

It does so in a very similar way to discrete Q-learning. However, instead
of updating the Q-values directly, the parameters of the network are
updated by the gradients of the following loss function given a transition
(s, a, r, s′),

ℓ(θ) =
(
Qθ(s, a)− (r + γQθ̄(s

′, a′))
)2, a′ ∈ argmax

a∈A
Qθ̄(s

′, a).

Notice that we use different parameters θ̄ for the target value. This is a
copy of the parameters θ that is only updated occasionally. This helps
with convergence, because the target is more stable than if we used θ.

Policy search methods. The problem with DQNs is that they do not ad-
dress potentially large action spaces. Policy search methods solve this by
directly parametrizing the policy πθ. However, it is not trivial to train
such a model, since there is no way of knowing what the target action
should be. Furthermore, we want the policy to be a probability distribu-
tion. Thus, instead we parameterize a Gaussian as the policy,

π(a | s) = N
(

a; µθ, σ2
θ

)
.

Recall that the probability of a trajectory τ is computed by

πθ(τ) = p(s0)
T

∏
t=0

πθ(at | st)p(st+1 | st, at).

And, ideally, we want our policy to make trajectories with high return
more likely and trajectories with low return unlikely. Thus, we have the
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following training objective that we want to maximize,

J(θ) .
= Eτ∼πθ

[
T

∑
t=0

γtr(st, at)

]
.

Then, we update the parameters by gradient ascent,

θ← θ+ η∇θ J(θ).

But, since we take the expectation w.r.t. the parameters θ, we need to
rederive it, such that we can compute its gradient. First, we can rewrite
the expectation as

J(θ) = Eτ∼πθ
[r(τ)] Let r(τ) .

= ∑T
t=0 γtr(st, at).

=
∫

πθ(τ)r(τ)dτ.

Now, we can rewrite the gradient,

∇θ J(θ) =
∫

∇θπθ(τ)r(τ)dτ

=
∫

πθ(τ)∇θ log πθ(τ)r(τ)dτ By chain rule, ∇ log f (x) = ∇ f (x)/ f (x).

= Eτ∼πθ [∇θ log πθ(τ)r(τ)].

We can evaluate log πθ as

log πθ(τ) = log

(
p(s0)

T

∏
t=0

πθ(at | st)p(st+1 | at, st)

)

= log p(s0) +
T

∑
t=0

log πθ(at | st) +
T

∑
t=0

log p(st+1 | at, st).

Thus, when we take the gradient, only the second term remains,

∇θ log πθ(τ) =
T

∑
t=0

∇θ log πθ(at | st).

So, we are able to update θ without knowing the MDP. Thus, we get the
following objective gradient,

∇θ J(θ) = Eτ∼πθ

[(
T

∑
t=0

∇θ log πθ(at | st)

)(
T

∑
t=0

γtr(st, at)

)]
.

Despite that this value is unbiased, it exhibits high variance. To reduce
the variance, we can introduce a baseline b(τ),

Eτ∼πθ

[(
T

∑
t=0

∇θ log πθ(at | st)

)
(r(τ)− b(τ))

]
,

which does not influence the unbiasedness.24 Thus, we are allowed to 24 Critically, the baseline may not depend on the
policy πθ.shift the reward up or down to reduce the variance. REINFORCE [Sutton

et al., 1999] sets this baseline to be

bt(τ) =
t−1

∑
t′=0

γt′r(st′ , at′).
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Thus, we get the following expectation,

Eτ∼πθ

[(
T

∑
t=0

∇θ log πθ(at | st)

)
Gt

]
.

I.e., instead of total discounted reward, we only consider the reward from
timestep t onward, which naturally has lower variance. Note that REIN-
FORCE is an on-policy algorithm, because it requires training on its own
trajectory data, since the expectation is w.r.t. trajectories from the policy
itself.

Actor-critic methods. A natural next question is how we can make this
off-policy. The key idea behind actor-critic methods is to introduce bias and
reduce variance by learning a value network next to the policy network.
We can then estimate Gt in the REINFORCE gradient by bootstrapping,

∇θ log πθ(at | st)(V(st)− (r(st, at) + γV(st+1))).

We can remove the expectation since nothing depends on τ anymore,
since we estimate Gt as V(st)− (r(st, at) + γV(st+1)). Note that if the TD
error is zero, it means that the value network has learned the optimal
value function and the policy network has learned the optimal policy,
leading to no update.
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12 Neural implicit representations

The most obvious way to represent 3D objects is by voxels, which are the
3D correspondent of pixels.25 However, this has O

(
n3) space complexity, 25 Essentially, the same as Minecraft blocks.

which means that the resolution will be very limited. A second approach
would be to model 3D objects as points, however this does not model
connectivity. Third, we could use meshes, which is used by many down-
stream tasks. This approach discretizes the object into vertices and faces.
However, the problem with this approach is that there will always be an
approximation error and may lead to self-intersections.

The approach that we will focus on is the implicit function repre-
sentation, where the analytic function that represents the 3D surface is
learned. This allows us to achieve zero approximation error and a smooth
continuous surface with a fixed memory requirement. By the universal
approximation theorem, we know that neural networks are able to learn
an approximation of any continuous function and since we represent ob-
jects as continuous functions, we will be using them for this use case. The
only problem with this approach is that a graphical visualization is not
directly possible unless we convert the function to one of the previous
approaches. Thus, it is still difficult to obtain high frequency details.

There are two kinds of functions that we can use:

• Occupancy networks [Mescheder et al., 2019] output the probability of
being inside the surface,

fθ : R3 ×Z → [0, 1]. Z is the set of conditioning variables.

The surface is then defined to be the set

S = {x ∈ R3 | fθ(x) = τ},

for some τ ∈ [0, 1];

• DeepSDF [Park et al., 2019] outputs the signed distance from the sur-
face (negative if inside, positive if outside),

fθ : R3 ×Z → R.

The surface is then defined to be the set

S = {x ∈ R3 | fθ(x) = 0}.

With these, we get a continuous representation with an arbitrary topology
and resolution, while achieving a low memory footprint of O(|θ|).

12.1 Training with watertight meshes

It is not obvious how to train these networks. We can have multiple kinds
of ground truth data, each requiring a different training regimen.
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The simplest case is when we have watertight meshes as ground
truth.26 In the case of occupancy networks, we uniformly sample n points 26 “Watertight” means that the meshes have no

holes, thus the space is divided into inside and out-
side.

(xi, yi) ∈ R3 × {0, 1} inside the surface and we train the model using bi-
nary cross entropy,

L(θ) = −
n

∑
i=1

yi log fθ(xi) + (1− yi) log(1− fθ(xi)).

To train a DeepSDF network, we can compute the distance to the mesh
and train it as a regression problem. The problem with this ground truth
is that it is very expensive.

12.2 Training with point clouds

It is possible to prove that if we parametrize a linear
model with random initialization and the points
are sampled from a plane, this method will be able
to solve the problem by optimizing with gradient
descent.

A cheaper alternative is to use point clouds. With this data, it would be
very hard to train an occupancy network, because we have no concept of
inside or outside. But, training DeepSDF would be possible by training
the model to output 0 at the points. However, in this case, a trivial optimal
solution with zero loss would be for the model to always output 0. Thus,
we introduce the Eikonal term [Gropp et al., 2020] to the loss function,
which pushes the gradient to be 1 everywhere,

L(θ) =
n

∑
i=1
| fθ(xi)|2︸ ︷︷ ︸
Vanish term

+λ Ex

[
(∥∇x fθ(x)∥ − 1)2

]
︸ ︷︷ ︸

Eikonal term

.

This makes sense from a “distance” perspective, since we want to increase
the distance by 1 when we move 1 unit away. Also, always outputting 0

is no longer optimal.

12.3 Training with 2D images

While point clouds are relatively inexpensive compared to watertight
meshes, we have an exponentially larger dataset if we only consider 2D
images. The idea is to render the model induced by fθ in the same angle
as the image and using a photometric reconstruction loss,

ℓ(Î, I) = ∑
u

∥∥Îu − Iu
∥∥.

In order to learn from this, the entire computational graph between fθ

and ℓ(Î, I), including the rendering, must be differentiable. In order to
render color images, we introduce a texture field,

tθ : R3 ×Z → C,

where C ⊂ R3 is the color space. Î

w

u

p̂

fθ = τ

fθ > τ

fθ < τ

r0

Figure 12.1. To render an object from the occupancy
network fθ and texture field tθ, we cast a ray with
direction w through a pixel u and determine the
intersection point p̂ with the isosurface fθ(p̂) = τ.
Afterward, we evaluate the texture field tθ(p̂) to
obtain the color prediction Îu.

For a camera located at r0, we can predict the color Îu at pixel location
u by casting a ray from r0 through u and determining the first point of
intersection p̂ with the isosurface {p ∈ R3 | fθ(p) = τ}; see Figure 12.1.
The color is then given by the texture field Îu = tθ(p̂) [Niemeyer et al.,
2020]. The point p̂ is found by the secant method.



machine perception 46

Secant method. In order to efficiently find points on the surface, we use
the secant method; see Algorithm 6. It involves iteratively approximating
fθ as the plane connecting (xt−2, fθ(xt−2)) and (xt−1, fθ(xt−1)), and com-
puting the zero-crossing of that plane. This approximation gets closer
and closer to the actual zero-crossing of fθ; see Figure 12.2.

Require: Initial points x0, x1

1: for t = 2, . . . , T do
2: Compute intersection of line connecting (xt−2, f (xt−2)) and

(xt−1, f (xt−1)), and the x-axis,

xt = xt−1 − f (xt−1)
xt−1 − xt−2

f (xt−1)− f (xt−2)
.

3: end for
4: return xT

Algorithm 6. Secant method for finding a zero-
crossing of f .

xt−2

xt−1

xt

Figure 12.2. Illustration of the secant method.

It is important that we get the first zero-crossing, since that is the point
that is seen.

Forward pass. The forward pass is done by querying the occupancy
network for all the pixels. This gives us three types of points:

• fθ(p) < τ: outside surface;

• fθ(p) > τ: inside surface;

• fθ(p) = τ: in the surface.

Thus, for all points p with fθ(p) = τ, we evaluate the texture field tθ(p)
and assign the pixel u that color.

Backward pass. To obtain gradients, we use the chain rule,

∂ℓ(θ)

∂θ
= ∑

u

∂ℓ(θ)

∂Îu

∂Îu
∂θ

= ∑
u

∂ℓ(θ)

∂Îu

(
∂+tθ(p̂)

∂θ
+

∂tθ(p̂)
∂p̂

∂p̂
∂θ

)
The + indicates that we compute the derivative
directly w.r.t. tθ and not p̂.

= ∑
u

∂ℓ(θ)

∂Îu

(
∂+tθ(p̂)

∂θ
+

∂tθ(p̂)
∂p̂

∂r(d̂)
∂θ

)
r(d) .

= r0 + dw is the ray through pixel u.

= ∑
u

∂ℓ(θ)

∂Îu

(
∂+tθ(p̂)

∂θ
+

∂tθ(p̂)
∂p̂

w
∂d̂
∂θ

)
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To compute ∂d̂
∂θ , we need to use implicit differentiation, meaning that we

take the derivative of fθ(p̂) = τ on both sides,

∂ fθ(p̂)
∂θ

= 0

∂+ fθ(p̂)
∂θ

+
∂ fθ(p̂)

∂p̂
∂p̂
∂θ

= 0

∂+ fθ(p̂)
∂θ

+
∂ fθ(p̂)

∂p̂
w

∂d̂
∂θ

= 0

∂d̂
∂θ

= −
(

∂ fθ(p̂)
∂p̂

w
)−1 ∂+ fθ(p̂)

∂θ
.

Thus, we get the following,

= ∑
u

∂ℓ(θ)

∂Îu

(
∂+tθ(p̂)

∂θ
− ∂tθ(p̂)

∂p̂
w
(

∂ fθ(p̂)
∂p̂

w
)−1 ∂+ fθ(p̂)

∂θ

)
.

Thus, we do not need to store intermediate results of p̂ to compute the
gradient.

12.4 Neural radiance field

Compared to implicit surfaces, the advantage of
NERF is that it can model transparency and thin
structure, but it generally leads to worse geometry.

The problem with the approach thus far is that it is not great at learning
very complex scenes. For example, representing thin structures by a sur-
face is very difficult. Also, transparency is not possible. To solve these
problems, neural radiance fields (NERF) [Mildenhall et al., 2021] were in-
troduced. It introduces a density σ that can be used to learn difficult
structures, such as hair and windows. In particular, our new function
takes a 3D position (x, y, z) and the camera parameters (θ, ϕ) as input,
and output the color (r, g, b) and density σ; see Figure 12.3. The camera
parameters are important to model view-dependent effects, such as glare.

256

(x, y, z)

(x, y, z)

256

256

256

256

256

256

256

128(θ, ϕ)

σ

(r, g, b)

Figure 12.3. NERF architecture. The location infor-
mation (x, y, z) is introduced twice to make sure
that the network does not “forget” it. Furthermore,
the view direction (θ, ϕ) is introduced after out-
putting the density σ, because density does not de-
pend on the view direction physically.

Rendering. Technically, we do not represent surfaces, but rather “volu-
metric clouds”. Instead of looking for the surface, we sample along the
whole ray and compute a weighted average to be the color. The density
models how much light is propagated to the next point on the ray. Let σi

be the density of point i along the ray, then we define the probability of
light stopping at this point as

αi = 1− exp(−σiδi), δi = ti+1 − ti.

Then, we can compute the probability of light reaching point i by

Ti =
i−1

∏
j=1

1− αj.

In order to compute the final color, we take the weighted average of the
colors along the ray, weighted by the probability Tiαi of light reaching
the point and stopping there,

c =
n

∑
i=1

Tiαici.
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We then do a simple backward pass by backpropagating from the loss
of this color, compared to the actual image. The fundamental difference
with differentiable rendering is that we backpropagate through multiple
points rather than a single point.

Since the sampling is quite expensive, we can try to sample more in
positions with higher weights. This can be done by initially sampling a
few points uniformly and then sampling more around points with high
weight.

Positional encoding. In general, neural networks perform poorly at rep-
resenting high-frequency variation in color and geometry. This happens
because they are biased toward learning lower frequency functions. Thus,
the reconstructions using the above architecture result in poor renderings.
The solution to this is to introduce positional encodings,27 mapping the 27 A similar mapping is used in the transformer ar-

chitecture, but for different reasons.inputs (x, y, z, θ, ϕ) to a higher dimensional space by

γ(p) =
[
sin
(

p · 20π
)

, cos
(

p · 20π
)

, . . . , sin
(

p · 2L−1π
)

, cos
(

p · 2L−1π
)]

.

This has the consequence that a low-frequency transformation w.r.t. γ(p)
is a high-frequency transformation w.r.t. p.

Limitations. The problems with NERF are that it requires many cali-
brated views, rendering is slow, and it can only model static scenes.

12.5 Gaussian splatting

SfM Points

Differentiable
Tile Rasterizer

Adaptive
Density Control

Projection

Initialization

Image

3D Gaussians Camera

Figure 12.4. Workflow of Gaussian splatting. The
dashed lines are gradient flow and solid lines are
operation flow.

The problem with NERF is that it is slow, because of the number of
samples needed for rendering. We can reduce the amount of samples
by estimating a set of primitives around the object boundary and only
training/sampling within these objects [Lombardi et al., 2021]. This paper
used cubes, but that is hard to optimize. Lassner and Zollhofer [2021]
parametrized with spheres, rather than cubes, which can be optimized
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from scratch from a randomly sampled initial sphere cloud. However,
this approach has the problem that it is very hard to model thin structures
with isotropic shapes, such as spheres and cubes. The solution is to model
the scene by many 3D Gaussians [Kerbl et al., 2023].

The scene is initialized by a point cloud, obtained through Structure
from Motion. Then, iteratively we project the Gaussians onto the cam-
era’s image plane and weight them similarly to NERF, compute the loss,
and backpropagate to update the Gaussians. Note that we do not have
to optimize a neural network, but only need to optimize the Gaussians
directly. Furthermore, the model adaptively adds more points as neces-
sary.28 The weight of each Gaussian at a point x can be computed by 28 It does so by densifying points every 100 itera-

tions and removing any Gaussians that are essen-
tially transparent, i.e., with α < ϵα. It densifies by
splitting Gaussians with large variance into two
smaller ones. Furthermore, to keep the amount of
Gaussians low, it sets all oi to zero every 300 itera-
tions. The model will then increase the opacity of
Gaussians that are needed and the rest are culled
by the deletion process.

αi(x) = oi · exp
(
−1

2
(x− µ′i)

⊤Σ′−1
i (x− µ′i)

)
,

where oi is the opacity, and µ′i and Σ′i are the parameters of the 2D
projection of the i-th 3D Gaussian.
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13 Parametric body models

Being able to represent and track a body is interesting for many applica-
tions, such as virtual reality and augmented reality. The easier problem
is to estimate the projected pose from 2D images, while the harder prob-
lem is to estimate 3D pose from images. For both problems, we need to
model the body and learn a feature representation for prediction.

13.1 2D poses

Body modeling. Body modeling entails finding a way to understand how
the different parts of the body are linked. The pictorial structure model
[Yang and Ramanan, 2011] models the body as a graph, where the joints
are vertices and they are connected by edges. For example, in a simplified
model, the foot vertex might be connected to the knee vertex.

In a 2D image, we indicate the position of vertex i by ℓi = [xi, yi]. Then,
given an image I and a configuration L = [ℓ1, . . . , ℓk], we can define the
score of that configuration by

S(I, L) = ∑
i∈V

αiϕ(I, ℓi) + ∑
i,j∈E

βijψ(ℓi, ℓj),

where the first term measures the score of placing vertex i at ℓi in image
I and the second term measures the deformation between connected
vertices. The best configuration is the one that minimizes the score.

We can further generalize this model to a mixture of non-oriented
pictorial structures. Let mi be the mixture component type of vertex i.
The mixture component expresses concepts as orientations of a part, such
as vertically vs horizontally oriented hand, front-view head vs side-view
head, or open versus closed hand. Formally, we compute the score by

S(I, L, M) = ∑
i∈V

α
mi
i ϕ(I, ℓi) + ∑

i,j∈E
β

mi ,mj
ij ψ(ℓi, ℓj) + S(M),

where α
mi
i is the “local appearance template” for part i with type mi,

β
mi ,mj
ij expresses the likelihood of having template mi for part i and tem-

plate mj for part j given the distance between ℓi and ℓj, and S(M) is the
co-occurrence bias defined by

S(M) = ∑
i,j∈E

b
mi ,mj
ij ,

where b
mi ,mj
ij is the pairwise co-occurrence prior. This allows us to model

things such that a vertical lower leg is more likely to be connected to a
vertical upper leg.

Feature learning. One architecture that does feature representation learn-
ing by direct regression is DeepPose [Toshev and Szegedy, 2014], which
uses CNNs to directly compute ℓi for all i. It does so in multiple stages,
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where in the first stage, it only gets the image as input. In the further
stages, it gets the image and the previous estimate and input and must
refine the estimate by taking only a patch around the previous estimate.

A different way of doing it is through heatmaps. Convolutional pose
machines [Wei et al., 2016] predicts heatmaps for each vertex. Like Deep-
Pose, it also uses a refinement process with intermediate losses. The key
is that the receptive field grows as stages are applied, which allows the
model to capture long-range dependencies.

Body modeling and feature learning. We can also combine the two methods
by first obtaining the heatmaps and then refining the predictions using
body modeling.

13.2 3D poses

Linear blend skinning. Linear blend skinning (LBS) is the simplest method
of transforming a rest pose into a specific pose. It does so by transforming
vertices as a weighted linear combination of global joint transformations,

t′i =

(
∑
k

wkiGk(θ, J)

)
ti.

Each bone-joint pair is given a weight wki, which determines the influence
of the transformation of a bone on the joint. Gk(θ) is the rigid bone
transformation for bone k, which transforms the original joint location ti,
which is linearly weighted by wki. Here, θ is the desired pose and J are
the joint locations.

The problem with this approach is that it does not account for any vari-
ation in the body shape. Also, often there are problems with unrealistic
deformations, caused by the pose.

SMPL. The skinned multi-person linear (SMPL) model [Loper et al., 2015]
solves the problems of linear blend skinning by allowing the model to
learn how to account for body shape variation and deformations caused
by the poses. First an overview of how these problems are solved is given,
then we will see how they are learned from data.

SMPL encodes human subjects by two parameters: a body shape pa-
rameter β ∈ R10 and a pose parameter θ ∈ R9K. The template mesh
T̄ is the starting pose, which transformations are relative to.29 In the 29 Usually, the template mesh is a T-pose. The ma-

trix T̄ ∈ RN×3 contains the location of all vertices.following, we assume access to BS(β) and BP(θ), which we learn from
data.

1. First, translate the template mesh to the identity mesh for the specific
body shape, parametrized by β,

T̄ + BS(β); BS(β) encodes the variation in the body shape
from the mean shape.
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2. Then, translate the identity mesh to correct for deformations caused
by linear blend skinning, which is a function of the pose,

TP(β, θ) = T̄ + BS(β) + BP(θ);

3. Lastly, perform linear blend skinning on the resulting base mesh,

t̄′i =

(
∑
k

wkiGk(θ, J(β))

)
(t̄i + bS,i(β) + bP,i(θ)).

Learning shape variation. To learn the variations in body shape, we need
a dataset of many body shapes. Each body shape is represented by its
joint locations. To be able to linearly represent any body shape with a
small amount of parameters, we perform PCA on this dataset, and only
take the top principal components. Each body shape can then be defined
by a linear combination of these components,

BS(β;S) =
|β|

∑
n=1

βnSn.

Specifically, the data must be relative to the template mesh joints, such
that BS(β) is also relative to these joints. Then, we can use them as a
measure of variation from the template.

Learning pose-dependent deformations. Let R : R|θ| → R9K be a function
that maps the pose vector θ to a vector of concatenated relative rotation
matrices.30 The used rig has K = 23 joints, thus R(θ) ∈ R207. Let θ⋆ be 30 Each rotation matrix has dimensionality 3× 3.

the rest pose, then the vertex deviations from the rest template are given
by

BP(θ;P) =
9K

∑
n=1

(Rn(θ)− Rn(θ
⋆))Pn,

where Pn ∈ R3N is a vector of vertex displacements.31 Thus, the pose- 31 There are N vertices, each having x, y, z compo-
nents.dependent translation is a linear combination of vertex displacements P ,

dependent on the difference in pose. This matrix P is learned from a
dataset of many poses.

13.3 Learned gradient descent

Learned gradient descent (LGD) [Song et al., 2020] is a method for fitting 3D
human shapes to images by combining gradient-based optimization and
neural networks. It leverages a neural network to predict the parameter
update rule for each optimization iteration. This allows the algorithm to
converge in few steps. See Algorithm 7 for the full algorithm.
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1: Sample θ, β from data
2: Sample R, t, s uniformly from feasible range
3: X ←W M(θ, β)

4: x← sΠ(RX) + t
5: Θ0 ← {θ0 = 0, β0 = 0, R0 = 0, t0 = 0, s0 = 0}
6: for n = 0, . . . , N − 1 do
7: Xn ←W M(θn, βn)

8: xn ← snΠ(RnXn) + tn

9: L(Θn)← Lreproj(xn, x)

10: ∆← Nw

(
∂L(Θn)

∂Θn
, Θn, x

)
11: Θn+1 ← Θn + ∆
12: end for

Algorithm 7. Learned gradient descent training
scheme. Nw is the neural network that predicts
the update rule. x is a 2D projection of the 3D
pose X onto the image. M(·, ·) computes the body
mesh using SMPL. W is a matrix that maps ver-
tices to k joints of interest. The camera model is
parametrized by the global rotation R ∈ R3×3.
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