
• σ(x) = 1/1+e−x, tanh(x) = ex−e−x
/ex+e−x, ReLU(x) = max{0, x}.

• Derivatives:
y = σ(x)⇒ ∂y/∂x = diag(y⊙ (1− y))

y = tanh(x)⇒ ∂y/∂x = diag(1− y2)

y = ReLU(x)⇒ ∂y/∂x = diag(1{x ≥ 0})
y = softmax(y)⇒ ∂y/∂x = diag(y)− yy⊤

|x|′ = x/|x|.
• When using I, specify dimensionality Id.
• Chain rule: y = g(x),z = f(y)⇒ ∂z

∂x = ∂z
∂y

∂y
∂x .

• Sparsity: diag(x)veci(y) = veci(xiy).
• If x ∈ Rm and y ∈ Rn, then ∂x/∂y ∈ Rm×n.
• Gradient computation: Look at effect of changing param. on output.
• Always type-check gradients.
• Quotient rule: (f/g)′(x) = f′(x)·g(x)−f(x)·g′(x)/g2(x).
• ∂Ax

∂x = A, ∂x⊙y
∂x = diag(y), ∂x⊙y

∂y = diag(x).

Neural networks

Perceptron: The original perceptron was a single-layer perceptron with
non-linearity 1{x > 0}. Classification is done by ŷ = 1{w⊤x+ b > 0}.
Learning: iteratively apply θ← θ+ η(yi − ŷi)xi. GD with Hinge loss. If
the data is linearly separable, the perceptron converges in finite time.

MLP: ŷ = σ(Wkσ(Wk−1 · · ·σ(W1x+ b1) · · ·+ bk−1) + bk).

Do not forget biases!

Loss functions: MLE (=NLL): aminθ−
∑n

i=1 log p(yi | θ). BCE (MLE
with Bern.): aminθ−

∑n
i=1 yi log ŷi + (1 − yi) log(1 − ŷi). MAP:

aminθ− log p(θ)−
∑n

i=1 log p(yi | θ).
Backpropagation: Linear-time algorithm to compute gradients using
chain rule. Intuitively, gradients work well for updating weights, because
it measures the direction in which the loss decreases at a point. Gra-
dient descent: If we have to increase the output value, we can (1)
increase the weight connected to a neuron with strong activation, or (2)
increase the activation that is connected to a strong weight by recursion.
The gradient tells us how to do this. Update: θ← θ− η∇θL(ŷ,y;θ).
Universal approximation theorem: Let g be any function on unit hy-
percube. Let ϵ > 0, then there exists a NN fθ with a single hidden layer
that can approximate this function with ϵ precision. In words: An MLP
with a single hidden layer and continuous non-linear activation function
can approximate any continuous function with arbitrary precision.

Early stopping: Stop training if the validation error has increased for
the last p checks. We check every n epochs. Batch norm: Solves inter-
nal covariate shift problem: The distribution of the input changes during
training, because the weights change. Problem because the gradient tells
us how to change parameters given that the other layers do not change.
Learnable parameters are running averages of mean and variance. Data
augmentation: Randomly transform data to enforce robustness. Pre-
training: First train on task with large dataset to initialize model for
task with small dataset. Regularization: Any technique that aims to
improve generalization, e.g., ℓ1 parameter norm penalty: λ∥w∥1. Resid-
ual layer: Use cases: Prevent vanishing gradient, Propagate high-freq.
information.

Convolutional neural networks

Convolution: (K ∗ I)[i, j] =
∑k

m=−k

∑k
n=−kK[m,n]I[i−m,j − n].

Cross-correlation uses + instead of −. Any linear, shift-equivariant trans-
form can be written as a convolution. Matrix operation:

K ∗ I =

k1 0 · · · 0
k2 k1 · · · 0
...

...
. . .

...
0 0 · · · km

I1
I2
...
In

 .
Convolution = Cross-correlation iff K[i, j] = K[−i,−j].
CNN: Sequence of alternating convolutional and pooling layers. Convo-
lutional layer from Cin to Cout channels:

Z
(ℓ)
j =

∑Cin

k=1
W

(ℓ)
kj ∗Z

(ℓ)
k + bj, j ∈ [Cout].

With Cin = Cout = 1, we have derivative:

δ(ℓ−1)[i, j]
.
=

∂L
∂z(ℓ−1)[i,j]

=
∑

i′

∑
j′
δ(ℓ)[i′, j′]w(ℓ)[i′ − i, j′ − j]

∆(ℓ−1) = ∆(ℓ) ∗Rot180(W (ℓ)),
∂L

∂W (ℓ)
= ∆(ℓ) ∗Z(ℓ−1).

Dout =
⌊
Din+2×p−d×(k−1)−1

s + 1
⌋
. Params: (Cin ×K ×K + 1)×Cout.

Max-pooling layer: Increase RF exponentially:
z(ℓ)[i, j] = max

{
z(ℓ−1)[i′, j′] | i′ ∈ [si : si+ k], j′ ∈ [sj : sj + k]

}
∂z(ℓ)[i,j]

∂z(ℓ−1)[i′,j′]
= 1{[i′, j′] = [i⋆, j⋆]}.

No learnable parameters, only propagation of the error.

Fully convolutional neural networks

Applications: Semantic segmentation, Image-to-image translation, Hu-
man pose estimation. Naive: Classifier on every pixel. Naive: No down-
sampling (expensive). FCNN: Downsample, then upsample.

Upsampling methods: Nearest neighbor : Put value into all corresponding
cells. Bed of nails: Only put value into the top-left cell. Max unpooling:
Remember original position from max-pooling. Transposed convolution:
Insert s− 1 zeros between pixels and k − p− 1 zeros as padding. Then,
convolve with kernel.

U-net: Add skip-connection between corresponding down- and up-
sampling layers. This facilitates the combination of global from skip-
connection with local information from previous layer.

Recurrent neural networks

Processes sequential data and is able to take variable-length input. At
each timestep, use the same network (behaves like a dynamical system):

ht = fθ(ht−1,xt).
ht represents the sequence until timestep t, which we can use as input
into an MLP for further processing.

Use-cases: 1 → 1: POS tagging. 1 → N : Image captioning. N → 1:
Sentiment classification. N → N : Machine translation.

Elman RNN: fθ(ht−1,xt) = tanh(Whht−1 +Wxxt).

Backpropagation through time (BPTT) to optimize by unrolling the
RNN and applying backpropagation on the computational graph:

∂ℓt
∂Wh

=
∑t

k=1

∂ℓt
∂ŷt

∂ŷt

∂ht

∂ht

∂hk

∂+hk

∂Wh
.

We have
∂ht

∂hk
=
∏t

i=k+1

∂hi

∂hi−1

Elman RNN
=

∏t

i=k+1
diag(1−h2

i)Wh.

Suffers from exploding or vanishing gradient because of the many
multiplications of Wh with itself in the gradient. If the largest eigen-
value of this matrix is greater than the upper bound of the non-linearity,
the gradient will explode. If it is smaller, it will vanish. Problems: (1)
Instability due to NaN/∞, (2) Hard to capture long-term dependencies,
(3) Jumps over local minima.

Leaky unit: Constant error flow to solve vanishing gradient:
ĥt = fθ(ht−1,xt)

ht = αht−1 + (1− α)ĥt.

LSTM: Take idea of leaky unit to the next level by introducing gates,
which protect the memory cell to make sure there is always error flow:

ft = σ(Wf [ht−1,xt])

it = σ(Wi[ht−1,xt])

ot = σ(Wo[ht−1,xt])

gt = tanh(Wg[ht−1,xt]).
Then, the memory cell and hidden state are computed by

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct).
The forget gate f decides what information to keep from previous cell state.
The gate gate g decides what to write to the cell state. The input gate
i decides what values of the cell state should be updated. The output gate
o decides what values of the cell state to put into the hidden state.

The gates form an “information highway” that can easily propagate er-
rors through the cell state due to the minimal modifications made to it.

Gradient clipping: Solve exploding gradient by limiting gradient norm:

θ←
{
θ− ηg, ∥g∥ ≤ k
θ− η k

∥g∥g, otherwise.

Autoencoders

Autoencoders are generative models, meaning that they model the un-
derlying distribution of the data, which makes it possible to sample from
it. It works by an encoder-decoder structure, where f maps data points
x ∈ Rn to latent variables z ∈ Rd, i.e., encodes the information com-
pactly in d ≪ n dimensions. The decoder g maps latent variables z

1

back to the input space for a reconstruction x̂. Thus, g ◦ f aims to
approximate the identity function. The assumption is that if the decoder
is able to reconstruct the original input from the latent representation,
this representation must be meaningful.

Linear autoencoder: PCA (+ Closed form solution. − Not powerful).

Non-linear: Parametrize f and g as NNs to gain performance.

VAE: Autoencoders have bad sampling quality, because the latent space
is not well-structured, meaning that there is no continuity or interpo-
lation. The reason for this is that there are large regions in the latent
space where there are no observations.

The solution is to make the generator output a distribution over latents.
Specifically, it outputs a Gaussian distribution N (µϕ(x),diag(σ

2
ϕ(x)))

over latent vectors. However, naively using this method will result in
very different µ with very low σ2 for the different data points, which is
essentially the same as outputting points.

To solve this, we must minimize the KL-divergence between the output
distribution and the standard Gaussian. This encourages the encoder to
distribute the encodings evenly around the center of the latent space.

We want to maximize the likelihood p(x) =
∫
pθ(x | z)p(z)dz. How-

ever, this is intractable. The best we can do is optimize the ELBO:
log p(x) ≥ Eqϕ(z|x)[log pθ(x | z)]−KL(qϕ(z | x)∥p(z)).

We need to use the reparametrization trick to take the gradient of the
expectation, which means that instead of sampling z ∼ N (µ,diag(σ2)),
we sample ϵ ∼ N (0,I) and compute z = µ+σ ⊙ ϵ. After training, we
can sample from the distribution by sampling z ∼ N (0,I) and giving
this to the decoder.

β-VAE: The VAE still has problems with its latent space: It is entangled. A
latent space is disentangled if each dimensions changes a single feature
of the output. We solve this by introducing a hyperparameter β which
gives more weight to the KL term. The intuition behind this is that if
factors are in practice independent from each other, the model should
benefit from disentangling them. This can be derived as a Lagrangian:
maxϕ,θ Epd[Ez|x] s.t. KL < δ ⇒ L = Ez|x−β(KL− δ) ≥ Ez|x−βKL.

Autoregressive models

Autoregressive models can compute the likelihood p(x) in a tractable
way by the chain rule:

p(x) =
∏n

i=1
p(xi | x1:i−1).

The hard part of this approach is that we must parametrize all possible
conditional distributions p(xk+1|x1:k).

FVSBN: Fully visible sigmoid belief networks parametrize each timestep
by its own function (O(n2) parameters):

fi(x1:i−1) = σ
(
α
(i)
0 + α

(i)
1 x1 + · · ·+ α

(i)
i−1xi−1

)
.

NADE: Problem with FVSBN is that they only have a single hidden
layer, making them not expressive. NADE uses MLPs:

hi = σ(W:,1:i−1x1:i−1 + b), x̂i = σ(Vi,:hi + ci).
This model shares the parameters of W between timesteps, which
means that it has O(nd) parameters and evaluated in O(nd) by recur-
sion. Teacher forcing: Condition on ground truth when training.

MADE: Constructs an autoencoder which fulfills the autoregressive
property. For this, we must ensure that there is no computational path
between output unit x̂k+1 and any of xk+1, . . . , xn, relative to an ar-
bitrary ordering. This is done by uniformly assigning integers 1 to n to
each input unit and integer 1 to n− 1 to each hidden unit. Then, we only
allow values to propagate from units in layer ℓ to units in layer ℓ+ 1 with
equal or higher value. Finally, we allow connections between the last hid-
den layer and the output only to units with value that is strictly greater.

Problem: Requires very large networks. And, while it is possible to train
efficiently, sampling still requires n passes through the network.

Pixel-RNN: The idea is to generate image pixels starting from the cor-
ner and modeling the dependency on previous pixels using an RNN. This
is slow, because of its sequential nature.

Pixel-CNN: We can solve the efficiency issue of Pixel-RNN by assuming
that pixels only depend on a context region around them. This allows
for parallelization during training. During training we need to make sure
only previous pixels are used, thus we use a masked convolution. Blind
spot⇒ Horizontal and vertical stacks of convolutions. To enforce the
autoregressive property, we need to go over the color channels autore-
gressively. Problem: Still slow during inference.

WaveNet: Pixel-CNN (audio) with dilated convs for an exponential RF.

VRNN: RNNs are deterministic ⇒ Add stoch. by sampling ht from
VAE: zt ∼ pθ(· | ht−1),xt ∼ qϕ(· | zt,ht−1),ht ∼ pθ(· | ht−1,zt,xt).
This is for generation. For encoding, zt depends on xt.

Transformers: Stack normalization, MLPs, and self-attention:
Y = softmax

(
XWQW⊤

KX⊤
/
√
d+M

)
XWV ,

where M is a mask that masks out future timesteps with −∞. Intu-
itively, the softmax computes how much attention should be given to
certain values. Computational complexity is O(n2d) with a maximum
path length between input and output of O(1). This allows for easy er-
ror propagation during training.

Normalizing flow

log |det(A−1)| = log |det(A)|−1 = − log |det(A)|
det
(
I +uh′w⊤) = 1+ h′u⊤w

x⊙ y = diag(x)y = diag(y)x.
The determinant of a triangular matrix is the product of its diagonal.

Change of variables: Best of both worlds: latent space and a tractable
likelihood by leveraging change of variables:

pX(x) = pZ(f
−1(x))

∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣ = pZ(z)

∣∣∣∣det(∂f(z)∂z

)∣∣∣∣−1

.

Downside is that f must be invertible, which means that we must pre-
serve dimensionality between latent space and data space. Furthermore
the determinant of the Jacobian must be efficiently computed, thus we
must design f such that its Jacobian is triangular.

Volume-preserving means det
(
∂f−1(x)

∂x

)
= det

(
∂f(x)
∂x

)−1

= 1.

Coupling layer:

f :

[
xA
xB

]
7→
[
h(xA, β(xB))

xB

]
,

where β can be any NN and h is invertible w.r.t. its first argument,
given the second. The inverse is:

f−1 :

[
yA
yB

]
7→
[
h−1(yA, β(yB))

yB

]
.

∂f(x)

∂x
=

[
∂yA

∂xA

∂yA

∂xB
∂yB

∂xA

∂yB

∂xB

]
=

[
h′(xA, β(xB)) h′(xA, β(xB))β

′(xB)
0 I

]
.

To compute the determinant, we need only ∂yA

∂xA
and ∂yB

∂xB
.

This layer leaves part of its input unchanged, thus we must make sure to
alternate what parts of the input get transformed.

Composing transformations: Chaining many layers:
x = f(z) = (fm ◦ · · · ◦ f1)(z).

Using change of variables:

pX(x) = pZ(f
−1(x))

∏m

k=1

∣∣∣∣det(∂fk(x)∂x

)∣∣∣∣−1

.

Training: Maximize the log-likelihood:

log pX(X) =
∑n

i=1
log pZ(f

−1(xi))−
∑m

k=1
log

∣∣∣∣det(∂fk(xi)

∂xi

)∣∣∣∣.
NICE: Split data by partitioning into two subsets and randomly alternat-
ing which is given to the NN. Additive coupling network:[

yA
yB

]
=

[
xA + β(xB)

xB

]
.

RealNVP: Splits data by partitioning using a checkerboard and a
channel-wise masking. The channel-wise masking is used after a squeez-
ing operation to go from C ×H ×W to 4C × H/2×W/2. This ensures
all data can interact with each other. Affine mapping:[

yA
yB

]
=

[
xA ⊙ exp(s(xB)) + t(xB)

xB

]
,

where s and t can be arbitrarily complex.

GLOW: Uses invertible 1×1 convolutions to split the data, meaning that it
learns how to split. It consists of L levels, consisting of K steps of flow,
which apply activation norm, invertible 1× 1 convolution, and a coupling
layer as in RealNVP, in that order.

Generative adversarial network

• KL div: KL(p∥q) = Ex∼p[log p(x)/q(x)] = −Ex∼p[log q(x)/p(x)].
• JS div: JS(p∥q) = 1/2 ·KL(p∥(p+q)/2) + 1/2 ·KL(q∥(p+q)/2).

Problem with optimizing likelihood: Optimizing likelihood does not
necessarily give good results. Two possible cases:

2

• Good likelihood with bad sample quality : Let p be a good model and
q a model that only outputs noise. 0.01p+ 0.99q has log-likelihood:

log(0.01p(x) + 0.99q(x)) ≥ log(p(x))− log 100.
The log p(x) is proportional to the dimensionality of the input. Thus,
will be high for high-dimensional data.

• Bad likelihood with high sample quality: Occurs when he model
overfits on the training data. Results in bad likelihood on test set.

GAN: Solve the above problem by introducing a discriminator. The
objective of the generator is then to maximize the discriminator’s classi-
fication loss by generating images similar to the training set, implicitly
inducing pmodel. Value function (derived from BCE):
aminG amaxD V (D,G) := Epdata[logD(x)]+Epprior[log(1−D(G(z)))].

Optimal discriminator: D⋆(x) = pdata(x)/pdata(x)+pmodel(x).
■ : amaxD V (D,G)⇒ E →

∫
⇒ pprior → pmodel ⇒ Combine

∫
⇒

maxy a log(y) + b log(1− y) = a/a+b for a, b > 0.

Global optimality: The generator is optimal if pmodel = pdata and at
optimum, we have V (D⋆,G⋆) = − log 4. G implicitly optimizes JS div.
■ : V (D⋆,G)⇒ ×2/2 in Es⇒ Take out − log 2 of Es⇒
2JS(p∥q)− log 4.

Convergence guarantee: Assuming that D and G have sufficient ca-
pacity, at each update step D→ D⋆, and pmodel is updated to improve

V (D⋆, pmodel) = Ex∼pd[logD
⋆(x)] +Ex∼pm[log(1−D⋆(x))]

∝ sup
D

∫
pmodel(x) log(1−D(x))dx.

Then, pmodel converges to pdata, because V (D⋆, pmodel) is convex in
pmodel and supremum preserves convexity.

Weak result: G and D have finite capacity, D does not necessarily
converge to D⋆, and due to G being NN, the obj is no longer convex.

Saturation: Early in training, G is poor (D(G(z)) ≈ 0), which results
in log(1−D(G(z))) saturating (small gradient) ⇒ amaxG logD(G(z)).

Mode collapse: The generator learns to produce high-quality sam-
ples with low variability. Solution: Unrolled GAN, which optimizes the
generator w.r.t. the last k discriminators.

Training instability: Optimizing two-player games lead to training insta-
bilities, since making progress for one player may mean that the other
player is worse off. Finding Nash-Equilibria is hard.

Optimizing JS divergence: If the supports of pmodel and pdata are
disjoint, it is always possible to find a perfect discriminator. This results
in the loss function equaling zero, meaning that there will be no gradient
to update the generator’s parameters. The solution is the Wasserstein
GAN, which optimizes the Wasserstein distance. In this case, the loss
does not fall to zero for disjoint supports, because it measures diver-
gence by how different they are horizontally, rather than vertically. In-
tuitively, it measures how much “work” it takes to turn one distribution
into the other.

Gradient penalty: To stabilize training, add a gradient penalty:
Ex∼pd

[
logD(x) + λ∥∇D(x)∥2

]
+Ex∼pm[log(1−D(x))].

Diffusion models

Compared to GANs, DMs offer high quality generations with better
diversity and a more stable training process.

Diffusion: Governed by a noise schedule {βt}Tt=1: q(xt | xt−1) =
N (
√
1− βtxt−1, βtI). Closed-form solution: xt =

√
ᾱtx0 +√

1− ᾱtϵ,ϵ ∼ N (0,I), where αt = 1− βt and ᾱt =
∏t

i=1 αi.
Denoising: q(xt−1 | xt) intractable ⇒ Learn pθ(xt−1 | xt) ≈ q(xt−1 |
xt,x0). For small steps, q(xt−1 | xt) is Gaussian:

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), σ
2
t I).

In practice, parametrize network to predict noise ϵθ(xt, t). Iteratively:
z ∼ N (0,I) if t > 1, else z = 0

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz.

Training: ELBO: Eq(x1|x0)[log pθ(x0 | x1)] − KL(q(xT |
x0)∥p(xT)) −

∑T
t=2Eq(xt|x0)[KL(q(xt−1 | xt,x0)∥pθ(xt−1 | xt))]

(reconstruction term, prior matching term, denoising matching term).
■: log p(x0)⇒

∫
dx1:T ⇒ ×q(x1:T |x0)/q(x1:T |x0) ⇒ Eq(x1:T |x0) ⇒

Jensen ⇒ Prob. CR:
∑T

t=2 log
p(xt−1|xt)/q(xt|xt−1,x0) ⇒ Bayes in

∑
:

log q(x1|x0)/q(xT |x0) out⇒ Lin. and marginalize E⇒ In
∑

: 2 nested E.

Closed-form denoising matching term: aminθ KL(q(xt−1 |
xt,x0)∥pθ(xt−1 | xt)) = aminθ 1/2σ2

q(t)∥µθ −µq∥22, with

µq(xt,x0) =
1
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ

µθ(xt, t) =
1
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵθ(xt, t).

Cosine theorem: ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x,y⟩.
Loss function:

∥∥ϵ− ϵθ
(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2,ϵ ∼ N (0,I).

CLIP: Image-language model that has been trained on image-caption
pairs. By using a contrastive loss, CLIP is encouraged to encode the
image and caption into similar embeddings.

Classifier guidance: Pretrain a classifier and guide the denoising in a
direction favoring images that are more reliably classified by the classi-
fier. This is done by injecting gradients of the classifier model into the
sampling process. Bad: Requires training a classifier on noisy data.

Classifier-free guidance: Jointly train a class-conditional and uncondi-
tional diffusion model. It then guides the generation process by

ϵ⋆(x, y; t) = (1 + ρ)ϵθ(x, y; t)− ρϵθ(x; t)
In practice, we usually train a single model and just set the conditioning
variable to all zero for the unconditional generation. Guidance improves
the quality, but reduces the diversity of outputs (ρ ↑: more guidance).

Latent diffusion models: Train VAE and perform diffusion on latent
space for efficiency. The diffusion model then only needs to focus on the
“semantic” aspect of generation.

Reinforcement learning

MDP: (S,A, P, r, γ). Policy: π : S → ∆(A). At every point, the goal
of the agent is to maximize:

Gt =
∑∞

k=0
γkr(st+k, at+k) = r(st, at) + γGt+1.

Value function and Bellman equation:
V π(s) = Eπ[G0 | S0 = s]

=
∑

a∈A
π(a | s)

[
r(s, a) + γ

∑
s′∈S

P(s′ | s, a)V π(s′)
]
.

Bellman optimality operator:
(T V)(s) .= maxa∈A

{
r(s, a) + γ

∑
s′∈S

P(s′ | s, a)V (s′)
}
.

This function is a γ-contraction and monotonic:
maxs∈S |(T V ′)(s)− (T V)(s)| ≤ γmaxs∈S |V ′(s)− V (s)|

V (s) ≤ V ′(s) =⇒ (T V)(s) ≤ (T V ′)(s).
The optimal value function V ⋆ is the fixed-point of T .

Value iteration: Iteratively apply T . Linear convergence:
maxs∈S |Vt(s)− V ⋆(s)| ≤ γtmaxs∈S |V0(s)− V ⋆(s)|.

After convergence, we can get the optimal policy by acting greedily:
π⋆(s) ∈ amaxa∈A

{
r(s, a) + γ

∑
s′∈S

P(s′ | s, a)V ⋆(s′)
}
.

Policy iteration: Alternates between computing the greedy policy and
the value function of the policy.

Model-based and model-free: MB: Learn the underlying MDP and
solve it. MF: Learn the policy or value function directly.

On-policy and off-policy: On-policy: Must learn from policy’s own
data. Off-policy: Can learn from any data.

Monte Carlo: On-policy method that learns from full trajectory and
estimates the value function empirically:

V π(s) ≈ 1

n

∑n

i=1
G(s)i,

where G(s)i is the return of episode i, starting from s.

TD-learning: Learn from transitions (s, a, r, s′) using bootstrapping:
V (s)← αV (s) + (1− α)(r+ γV (s′)).

To find the optimal value function, we must visit all states sufficiently
often. For this, we can use ϵ-greedy with Robbins-Monro conditions.

SARSA: Learns Q-values of a policy π (on-policy):
Qπ(s, a)← αQπ(s, a) + (1− α)(r+ γQπ(s′, a′)), a′ ∼ π(s′).

Q-learning: Learns optimal Q-values (off-policy):
Q(s, a)← (1−α)Q(s, a)+α(r+ γQ(s′, a′)), a′ ∈ amaxa∈AQ(s

′, a).

DQN: Large state spaces⇒ Function approximation with loss:
ℓ(θ) = (Qθ(s, a)− (r+ γQθ̄(s

′, a′)))2, a′ ∈ amaxa∈AQθ̄(s
′, a).

We train as in supervised learning. Data is not i.i.d. ⇒ Replay buffer.

Sample inefficiency of deep RL: As the policy improves, we can col-
lect better data. So, we have to keep training on new better data.

3

Policy search: Large or infinite action spaces⇒ Parametrize
πθ(· | s) = N (µθ(s),diag(σ

2
θ(s))). Probability of trajectory τ can

be computed by πθ(τ) = P(s0)
∏T

t=0 πθ(at | st)P(st+1 | st, at). Want
trajectories with high return more likely⇒ Training objective:

J(θ) = Eτ∼πθ

[∑T

t=0
γtr(st, at)

]
= Eτ∼πθ

[(r(τ)− b(τ))∇θ logπθ(τ)],
using chain rule ∇ log f(x) = ∇f(x)/f(x). We have

∇θ logπθ(τ) =
∑T

t=0
∇θ logπθ(at | st).

Thus, the gradient does not depend on the MDP. This is on-policy.

REINFORCE: The above is unbiased, but has high variance. We can
reduce variance by introducing a baseline bt(τ) =

∑t−1
t′=0 γ

t′r(st′, at′),
which turns r(τ)− bt(τ) into Gt. This is on-policy.

Actor-critic: We can make it off-policy by estimating Gt by bootstrap-
ping using a value network. This introduces bias, but reduces variance:
∇θJ(θ) = ∇θ logπθ(at | st)(V (st, at)− (r(st, at) + γV (st+1))).

Implicit surfaces and neural radiance fields

Voxels are bad because of O(n3) memory cost. 3D points are bad
because they do not model connectivity. Meshes are bad because of
approximation error. We use learned implicit functions:

• Occupancy network: fθ : R3 × Z → [0,1] outputting probability of
being inside mesh.

• DeepSDF : fθ : R3 ×Z → R outputting distance to surface.

(Dis)Advantages: + Non-rigid transformation, Normal vectors defined
both continuously and correctly, Easily derive from point clouds, Infi-
nite precision, Learnable, Less storage. − Computing intersections is
expensive, Requires root-finding algos, UV space is ill-defined.

Training with watertight meshes: Simplest case. Sample n points
that are inside/outside the mesh. Train occupancy network by BCE.
Train DeepSDF by regression of dist. to mesh of the sampled points.

Training with point clouds: Train to make sure distance is 0 at points.
Problem: Model that always outputs 0 is optimal⇒ Eikonal term:

L(θ) =
∑n

i=1
|fθ(xi)|2 + λEx

[
(∥∇xfθ(x)∥ − 1)2

]
.

This makes sense from a “distance” perspective, since we want to in-
crease the distance by 1 when we move 1 unit away.

Training with images: Exponentially more data. High-level idea: Ren-
der model in same view as image and use photometric loss (e.g. ℓ1):

ℓ(̂I, I) =
∑

u
∥̂Iu − Iu∥.

For this, we need a texture network tθ : R3 ×Z → R3 that outputs color.
This requires the rendering pipeline to be differentiable.

Forward pass: For every pixel u, determine the first intersection with
surface p̂ using the secant method, which iteratively finds the linear in-
tersection of the line connecting the points and the x-axis. Îu = tθ(p̂).

Backward pass: Compute gradients (using implicit differentiation)
∂ℓ(θ)

∂θ
=
∑

u

∂ℓ(θ)

∂Îu

(
∂+tθ(p̂)

∂θ
− ∂tθ(p̂)

∂p̂
w

(
∂fθ(p̂)

∂p̂
w

)−1
∂+fθ(p̂)

∂θ

)
,

where r(d) = r0 + dw is the ray connecting camera origin to u.
■ :

∑
u ⇒ Îu = tθ(p̂) through θ and p̂⇒ θ through p̂⇒ p̂ = r0 +

d̂w =: r(d̂)⇒ CR: w∂d̂/∂θ ⇒ Implicit diff. on fθ(p̂) = τ to get ∂d̂/∂θ.

NERF: Problem: Implicit surfaces are not good at complex scenes,
especially with transparency or thin structures. NERF takes as input
(x, y, z, θ, ϕ) and outputs (r, g, b, σ), where (θ,ϕ) are the view direction
and σ is the density, allowing the modeling of transparency.

In the architecture, we must make sure that σ does not depend on
(θ,ϕ). If σ depends on (θ,ϕ), it will overfit on the images and learn to
remember images, rather than reconstruct the geometry. This is because
the loss is based on the images.

Rendering : We render “volumetric clouds”. Instead of only sampling at
the surface, we sample along the whole ray and compute a weighted
average. Let αi = 1− exp(−σiδi) with δi = ti+1− ti be the prob. of light
stopping at point i. Then, we can compute the prob. of light reaching i
by Ti =

∏i−1
j=1 1− αj. Then, we compute the final color:

c =
∑n

i=1
Tiαici.

The fundamental difference with differentiable rendering is that we
backpropagate through multiple points rather than a single point.

In general, NNs are biased toward low frequency functions, while we
need high frequency functions. The solution is positional encodings.
The low frequency function w.r.t. the encoding is then a high frequency
function w.r.t. (x, y, z, θ, ϕ). γ(t) = [sin(t · 20π), . . . , cos(t · 2L−1π)].

Gaussian splatting: Problem with NERF: Slow, because of the high
number of samples. We can reduce by estimating a set of primitives
around the object boundary and only sampling within these shapes.
Cubes are hard to optimize. Spheres are bad at modeling thin structures.
Solution: Model by many 3D Gaussians. The scene is initialized by a
point cloud. Then, iteratively, we project the Gaussians onto the image
plane and weight them similarly to NERF, compute the loss, and back-
propagate to update the Gaussians. Note that there are no NNs. The
weight of a Gaussian at a pixel u is computed by
αi(u) = oi · exp(−1/2(x−µ′

i)
⊤Σ′−1

i (x−µ′
i)), Σ′ = JWΣW⊤J⊤,

where oi is the opacity, and µ′
i,Σ

′ are the parameters of the 2D projec-
tion of the i-th 3D Gaussian. Simple covariance matrix:

Σ = RSS⊤R⊤, R as quaternion (4 numbers),S ∈ R3.

Parametric human body models

2D poses: Body modeling: Use the pictorial structure model, which
models the body as a graph. Given an image I and vertex locations
L = [ℓ1, . . . , ℓk], we want to minimize score:

S(I,L) =
∑

i∈V
αi · ϕ(I, ℓi) +

∑
i,j∈E

βijψ(ℓi, ℓj).

Generalize by assigning mixture components mi:
S(I,L,M) =

∑
i∈V

αmi
i ϕ(I, ℓi) +

∑
i,j∈E

β
mimj

ij ψ(ℓi, ℓj) +
∑
i,j∈E

b
mimj

ij .

where αmi
i is the “local appearance template” for part i with type mi,

β
mimj

ij expresses the likelihood of having template mi for part i and
template mj for part j given the distance between ℓi and ℓj, and bmimj

ij

is the pairwise co-occurrence prior.

Feature learning: Use deep learning to either regress the locations (Deep-
Pose) or output heatmaps for each vertex (Convolutional Pose Machine).
They both use architectures with a refinement process.

The two can also be combined by first using feature learning and then
refining with body modeling.

Linear-blend skinning: Simplest method that transforms vertices as a
weighted linear combination of global joint transformations:

t̄′i =
(∑

k
wkiG

′
k(θ,J)

)
t̄i, G′

k(θ,J) = Gk(θ,J)Gk(θ0,J)
−1,

where k are bones and i are vertices, Gk(θ) is the rigid bone transfor-
mation for bone k.

Skinned multi-person linear model: Problem with LBS: Does not
account for variation in body shape and poses often result in unwanted
deformations. SMPL solves this by encoding a body shape parameter
β ∈ R10 and pose parameter θ ∈ R9K.

1. Translate template to identity mesh: T̄ +BS(β).
2. Correct for future deformations: T̄ +BS(β) +BP (θ).
3. Linear-blend skinning:

t̄′i =
(∑

k
wkiG

′
k(θ,J(β))

)
(̄ti + bS,i(β) + bP,i(θ)).

We learn BS(β) by PCA on a body shape dataset. β are the linear
weights of the largest principal components:

BS(β;S) =
∑|β|

n=1
βnSn.

We learn BP (θ) from a body pose dataset:

BP (θ;P) =
∑9K

n=1
(Rn(θ)−Rn(θ0))Pn,

where θ0 is the template pose, R(θ) maps pose vectors to vectors of
rotation matrices, and Pn ∈ R3N is a vector of vertex displacements

Learned gradient descent: Method for fitting 3D human shapes to im-
ages by combining gradient-based optimization with NNs. It leverages a
NN to predict the parameter update rule for each optimization iteration.

L(Θn) = Lreproj(x̂n,xGT)

∆ = Nw

(
∂L(Θn)

∂Θn
,Θn,xGT

)
Θn+1 = Θn +∆,

where Nw is a NN that predicts the update.

4

