
Deep Learning
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes


deep learning ii

Contents

1 Connectionism 1

1.1 McCulloch-Pitts neuron 1

1.2 Perceptron 1

1.3 Parallel distributed processing 5

1.4 Hopfield networks 6

2 Feedforward networks 8

2.1 Regression models 8

2.2 Layers and units 8

2.3 Linear and residual networks 10

2.4 Sigmoid networks 10

2.5 ReLU networks 12

3 Gradient-based learning 14

3.1 Backpropagation 14

3.2 Gradient descent 14

3.3 Acceleration and adaptivity 16

3.4 Stochastic gradient descent 16

4 Convolutional networks 17

4.1 Convolutions 17

4.2 Convolutional layers 19

5 Recurrent neural networks 20

5.1 Gated memory 21

5.2 Linear recurrent models 22

5.3 Sequence learning 23

6 Transformers 25

6.1 Self-attention 25

6.2 Cross-attention 25

6.3 Positional encoding 26

6.4 Machine translation 26

6.5 BERT 26

6.6 Vision transformer 27

7 Geometric deep learning 29

7.1 Invariance and equivariance in neural networks 29

7.2 Deep sets 30

7.3 PointNet 30

7.4 Graph neural networks 31

7.5 Spectral graph theory 33

8 Tricks of the trade 35

8.1 Parameter initialization 35

8.2 Weight decay 36

8.3 Early stopping 37



deep learning iii

8.4 Dropout 37

8.5 Normalization 37

8.6 Weight normalization 39

8.7 Data augmentation 39

8.8 Label smoothing 39

8.9 Distillation 40

9 Neural tangent kernel 41

9.1 Linearized models 41

9.2 Training dynamics 41

9.3 Infinite width 42

9.4 NTK of an infinite-width MLP 42

10 Bayesian learning 44

10.1 Markov chain Monte Carlo 45

10.2 Metropolis-Hastings 45

10.3 Hamiltonian Monte Carlo 46

10.4 Langevin dynamics 46

10.5 Gaussian processes 47

11 Statistical learning theory 49

11.1 Vapnik-Chervonenkis theory of machine learning 49

11.2 PAC Bayesian 50

12 Generative models 52

12.1 Autoencoders 52

12.2 Generative adversarial networks 53

12.3 Diffusion models 55

13 Adversarial attacks 58



deep learning iv

List of symbols

.
= Equality by definition

!
= Conditional equality

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A→ B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn
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1 Connectionism

1.1 McCulloch-Pitts neuron

One of the first approaches to modeling functions of nervous functions
with an abstract mathematical model is the McCulloch-Pitts neuron [Mc-
Culloch and Pitts, 1943]. It treats neurons as linear threshold elements,
which receive and integrate a large number of inputs and produce a
Boolean output. More specifically, it receives x ∈ {0, 1}n as input and has
σ ∈ {−1, 1}n, θ ∈ R as parameters. Its transfer function is formalized as

f [σ, θ](x) = 1{σ⊤x ≥ θ}.

The synapses σ are inhibitory if −1 and excitatory if +1. However, the
problem with this model is that it does not specify how to set or adjust
its parameters.

1.2 Perceptron

The perceptron [Rosenblatt, 1958] is the first model to perform super-
vised learning, where patterns are represented as feature vectors x ∈ Rd

and have binary class memberships y ∈ {−1,+1}. Rosenblatt [1958] pro-
posed to use a linear threshold unit with synaptic weights w ∈ Rd and
threshold b ∈ R,

f [w, b](x) = sgn
(

w⊤x + b
)

,

where

sgn(z) .
=


+1 z > 0

0 z = 0

−1 z < 0.

This model implicitly induces a decision boundary, where

w⊤x + b !
= 0 ⇐⇒ w⊤x

∥w∥ +
b
∥w∥

!
= 0.

The perceptron thus models the decision boundary as a hyperplane in
Rn with normal vector w/∥w∥ and −b/∥w∥ is the signed distance of the
hyperplane to the origin.1 Furthermore, we can formalize how bad/good 1 In Hesse normal form, a hyperplane is formulated

by
n⊤x− d = 0,

where n is a unit vector and d is the shortest dis-
tance of the hyperplane to the origin.

the model is for a data point by the signed distance function,

γ[w, b](x, y) =
y
(
w⊤x + b

)
∥w∥ .

The sign of γ(·, ·) encodes the correctness of the classification. The fol-
lowing is a short proof of this fact,

f [w, b](x) = y ⇐⇒ sgn
(

w⊤x + b
)
= y

⇐⇒ sgn
(

y
(

w⊤x + b
))

= 1

⇐⇒ sgn(γ[w, b](x, y)) = 1

⇐⇒ γ[w, b](x, y) > 0.
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We define the margin of a classifier on training data S as the minimum
signed distance,

γ[w, b](S) = min
(x,y)∈S

γ[w, b](x, y).

If γ[w, b](S) > 0, then the dataset has been linearly separated by a
hyperplane, formed by the parameters, i.e., all classifications are correct.
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Figure 1.1. Linear separability of negative and pos-
itive data points.

The version space—see Figure 1.2—is defined as the set of all model
parametrizations that correctly classify the data,

V(S) .
= {(w, b) | γ[w, b](S) > 0} ⊆ Rn+1.

Hence, S is linearly separable if and only if V(S) ̸= ∅. Adding data
points to the dataset can only shrink the version space.

V(S)w

b

Figure 1.2. In this version space, every line repre-
sents a data point’s halfspace in which it is correctly
classified. As can be seen, adding data points can
only shrink the version space.

The perceptron algorithm. The groundbreaking aspect of [Rosenblatt, 1958]
is that it specified how to iteratively adjust the weights to provably
find a solution for a linearly separable dataset.2 Given a dataset S =

2 A solution is defined as any parameters that cor-
rectly classify all data points.

{(xi, yi)}s
i=1, the perceptron algorithms aims to find some solution (w, b) ∈

V(S). Note that this means that it does not aim to find classifiers with
small error if V(S) = ∅.

The perceptron algorithm is a mistake-driven algorithm, meaning that
it will only consider data points that are misclassified by the current pa-
rameters. Given a misclassified data point (x, y) ∈ S , it has the following
update rule,

w← w + yx

b← b + y.

We keep going through the dataset until every data point is correctly
classified—see Algorithm 1. Note that this algorithm will never converge
if S is not linearly separable.

Proof of convergence. In order to prove convergence of the perceptron
algorithm for linearly separable data, we will assume that there is no
bias. We denote the weights after t updates of the perceptron algorithm
(ignoring correctly classified samples) as wt.

We will first need the following two lemmas,

Lemma 1.1. Let w ∈ Rn with ∥w∥ = 1 and γ
.
= γ[w](S) > 0. (I.e.,

S is γ-separable.) Then,

w⊤wt ≥ tγ.
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w← 0
b← 0
mistake← true

while mistake = true do
mistake← false

for (x, y) ∈ S do
if f [w, b](x) ̸= y then

w← w + yx
b← b + y
mistake← true

end if
end for

end while
return (w, b)

Algorithm 1. The perceptron algorithm.

Proof. This can easily be shown by a recursion,

w⊤wt+1 = w⊤(wt + yx) Perceptron update.

= w⊤wt + yw⊤x Linearity.

= w⊤wt + γ[w](x) ∥w∥ = 1.

≥ w⊤wt + γ. γ = minx,y γ[w](x, y) ≤ γ[w](x, y), ∀x, y.

Now, it is easy to show the result by induction, starting from w0 = 0. ■

Lemma 1.2. Let R .
= maxx∈S ∥x∥, then

∥wt∥ ≤ R
√

t.

Proof. This can easily be shown by a recursion,

∥wt+1∥2 = ∥wt + yx∥2 Perceptron update.

= ∥wt∥2 + ∥yx∥2 + 2yw⊤t x Cosine theorem.

≤ ∥wt∥2 + ∥x∥2 The perceptron update condition is γ[w](x, y) ≤ 0.

≤ ∥wt∥2 + R2.

The claim follows by induction, starting from w0 = 0, and taking the
square root. ■

Theorem 1.3 ([Novikoff, 1962]). Let S be γ-separable and R .
= maxx∈S ∥x∥,

then the perceptron algorithm converges in less than ⌊R2/γ2⌋ steps.

Proof. By Lemmas 1.1 and 1.2, we have the following inequality,

1 ≥ cos∠(w, wt) =
w⊤wt

∥wt∥
≥ tγ

R
√

t
=
√

t
γ

R
,
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where w ∈ V(S). Hence,

t ≤ R2

γ2 .

Thus, the number of updates is upper bounded. When there are no more
updates, there are no more mistakes—we only make updates when we
find a mistake. Hence, wt will have converged. Since t is integer, this
bound is ⌊R2/γ2⌋. ■

This theorem does not only guarantee convergence of the perceptron
algorithm, but also relates the separation margin γ to the number of
steps necessary for convergence. If γ is large, it should be easier to find
parameters that classify all data points correctly than if γ is small, because
then you have to be very precise; see Figure 1.1.

However, the problem with this approach is that it requires linear
separability of the data, which is not fulfilled for simple problems like
the XOR,

S =

{([
0
0

]
, 1

)
,

([
1
1

]
, 1

)
,

([
0
1

]
,−1

)
,

([
1
0

]
,−1

)}
.

Number of unique linear classifications. Assume that we are given a dataset
S ⊂ Rn of s points, then we define the set of possible linear classifications
of this dataset as,

C(S , n) .
=
∣∣∣{y ∈ {−1,+1}s

∣∣∣ ∃w∈Rn∀i∈[s]

[
yi

(
w⊤xi

)
> 0

]}∣∣∣.
We assume points to be in general position, which means that any subset
Ξ ⊆ S with |Ξ| ≤ n is linearly independent.3 3 This is a very weak condition.

Theorem 1.4 ([Cover, 1965]). Given s n-dimensional points in general
position,

C(s + 1, n) = 2
n−1

∑
i=0

(
s
i

)
.

Proof. It is easy to show that the initial values are

C(1, n) = 2, C(s, 1) = 2.

Consider a realizable classification of s points. I.e., any classification of
all x ∈ S that is linearly separable. This classification has a non-empty
version space V . Let xs+1 be a pattern that we add to S . This gives us
two new version spaces,

V+ .
= V ∩

{
w
∣∣∣ w⊤xs+1 > 0

}
, V− .

= V ∩
{

w
∣∣∣ −w⊤xs+1 > 0

}
,

There are two situations,
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1. V+ and V− are non-empty. Hence, xs+1 can be classified as either
+1 or −1. This is the case if and only if there is a w ∈ V such that
w⊤xs+1 = 0.4 Recall that we want to know the number of classifica- 4 Because then we would be able to shift the hyper-

plane, formed by w, infinitesimally to allow arbi-
trary classification of xs+1 while keeping all other
classifications the same.

tions of this new dataset S ∪ {xs+1}. For any classification of S that
is in this situation, we can make two new classifications; one where
xs+1 is classified +1 or −1. There are C(s, n − 1) such that classifi-
cations, because the constraint on w makes the problem effectively
(n − 1)-dimensional with s data points. Hence, we gain 2C(s, n − 1)
classifications;

2. V+ is non-empty and V− is empty or V+ is empty and V− is non-
empty. In this case, we would only be able to create one new classifica-
tion for each existing classification, and there are C(s, n)− C(s, n− 1)
such original classifications. Hence, we gain C(s, n)− C(s, n− 1) clas-
sifications.

In conclusion, in total we can create

C(s + 1, n) = C(s, n)− C(s, n− 1) + 2 · C(s, n− 1)

= C(s, n) + C(s, n− 1)

classifications of s + 1 data points. The claim follows by induction using
Pascal’s identity. ■

It turns out that after s = 2n, there is a steep decrease in number of
linear classifications, quickly moving toward 0.

1.3 Parallel distributed processing

The philosophy behind modern machine learning comes from PDP (Parallel
Distributed Processing) [Rumelhart et al., 1986]. The elements of PDP are
the following,

1. A set of processing units with states of activation, which are the basic
building blocks that models consist of;

2. Output functions for each unit, which define how the output of the
units is computed;

3. A pattern of connectivity between units, which defines how the units
interact with each other;

4. Propagation rules for propagating patterns of activity, which makes
the dependence of the units explicit;

5. Activation functions for units, which make the model more expressive;

6. A learning rule to modify connectivity based on experience, which the
training data is used for;

7. An environment within which the system must operate, which is for-
malized by a loss function.
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All of these elements are design choices that can be changed and experi-
mented with. The fact that we still use this wording says much about the
impact of PDP.

1.4 Hopfield networks

The Hopfield model [Hopfield, 1982] defines a parameterized energy
function via second-order interactions between n binary neurons,

H(X)
.
= −1

2

n

∑
i=1

n

∑
j=1

wi jXiXj +
n

∑
i=1

biXi, X ∈ {−1,+1}n.

The couplings wij quantify the interaction strength between neurons and
the biases bi act as thresholds. We constrain the weights such that

wii = 0, wij = wji, ∀i, j ∈ [n].

Hopfield networks follow a simple dynamic,

Xi ←

+1 H([. . . , Xi−1,+1, Xi+1, . . .]) ≤ H([. . . , Xi−1,−1, Xi+1, . . .])

−1 otherwise.

Hence, Xi becomes the value that minimizes the energy function, given
the rest of the state. In practice, we do not need to evaluate the full energy
function for the update—we only need the effective field per neuron,

Hi
.
=

n

∑
j=1

wijXj − bi.

Then, updates can equivalently be expressed as

Xi ← sgn(Hi), sgn(z) =

+1 z ≥ 0

−1 z < 0.

The goal of Hopfield networks is to use the update dynamics to evolve
noisy stimulus toward a target pattern. For example, we might want noisy
greyscale images to converge to images of numbers 0–9. Given a set of
patterns that we wish to memorize,

S ⊆ {−1,+1}n,

Hebbian learning involves setting the weights as outer products,

wij =
1
n

s

∑
t=1

xt,ixt,j =⇒ W =
1
n

s

∑
t=1

xtx⊤t .

Intuitively, neurons that are frequently in the same state reinforce each
other (positive coupling), whereas neurons that are frequently in opposite
states repel each other (negative coupling).
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The minimal requirement of considering a pattern as memorized is
that it is meta-stable, i.e., when in the state of a pattern, the update rule
will not make any updates,

xt,i
!
= sgn

(
n

∑
j=1

wijxt,j

)
.

Expanding this with the couplings from Hebbian learning, we get

xt,i
!
= sgn

(
1
n

n

∑
j=1

s

∑
r=1

xr,ixr,jxt,j

)

= sgn

xt,i +
1
n

n

∑
j=1

s

∑
r ̸=t

xr,ixr,jxt,j︸ ︷︷ ︸.
=Ct,i

.

Ct,i is the cross-talk between patterns, and ideally |Ct,i| < 1, for all pat-
terns t ∈ [s] and indices i ∈ [n], because then the minimal requirement
is fulfilled.

If we assume that the patterns have i.i.d. random signs and we look
at the limit n→ ∞, then we have

Ct,i ∼ N
(

0,
s
n

)
.

The probability of a single sign being flipped is then

P[−xt,iCt,i ≥ 1] ≈
∫ ∞

1
exp

(
−nz2

2s

)
dz =

1
2

(
1− erf

(√
n/2s

))
.

Hence, the ratio s/n controls the asymptotic error rate. At s/n ≈ 0.138,
a phase transition occurs, beyond which an avalanche of errors occur.
Requiring a pattern to be retrieved with high probability, one gets a
sublinear capacity bound of

s ≤ n
2 log2 n

.

Recently, research has been done on increasing the capacity of Hop-
field networks by making use of higher-order energy functions [Krotov
and Hopfield, 2016, Demircigil et al., 2017]. The increased capacity is the
consequence of increased number of local minima in complex cost func-
tions. Furthermore, Ramsauer et al. [2020] have investigated a connection
between Hopfield networks and transformers.
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2 Feedforward networks

2.1 Regression models

In least squares, we attempt to fit a linear model,

f [w](x) = w⊤x,

to data points with a MSE (Mean Squared Error) loss,

ℓ[w](S) = 1
2

s

∑
i=1

(
w⊤xi − yi

)2
.

Summarizing the patterns into a design matrix X ∈ Rd×s and output
vector y ∈ Rs, we get the following loss,

ℓ[w](S) = 1
2
∥X⊤w− y∥2.

This loss function is convex, so we can find the minimizer by setting the
gradient to zero,

∇wℓ[w](S) = X⊤Xw− X⊤y !
= 0.

This gives the OLSE (Ordinary Least Squares Estimator),

w⋆ = (X⊤X)−1X⊤y.

In logistic regression, the outputs are binary. Hence, we make use of
the sigmoid function σ : R→ (0, 1),

σ(z) .
=

1
1 + exp(−z)

.

Hence, the model has the following form,

f [w](x) = σ
(

w⊤x
)

.

This outputs the probability of the label of x being 1. We train this model
to optimize the cross-entropy loss,

ℓ[w](S) = 1
s

s

∑
i=1
− log σ

(
(2yi − 1)w⊤xi

)
.

This problem does not have a closed-form solution, but we can opti-
mize the weights by SGD (Stochastic Gradient Decent) with the following
gradient,

∇wℓ[w](⟨xi, yi⟩) =
(

σ
(

w⊤xi

)
− yi

)
xi.

2.2 Layers and units

A mapping is a function with vectors as input and output. The following
function is an example of a mapping,

f [W , b](x) = ϕ(Wx + b), W ∈ Rm×n, b ∈ Rn,
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where ϕ is a pointwise activation function and m is the width of the layer.

Deep neural networks compose maps in sequence,

G = FL
[
θL
]
◦ · · · ◦ F1

[
θ1
]
,

where θℓ are the (adjustable) weights of layer ℓ. Intuitively, models with
higher depth are able to extract features with increasing complexity. Such
networks induce intermediate results (or layer activations),

xℓ .
=
(

Fℓ ◦ · · · ◦ F1
)
(x) = Fℓ

(
xℓ−1

)
.

The intermediate layers are permutation symmetric, meaning that the
units within a hidden layer are interchangeable if we change the order
of the weights accordingly,

F[W , b](x) = P−1ϕ(PWx + Pb) = P−1F[PW , Pb](x),

where P is a permutation matrix.5 Hence, the parameters are not unique 5 A permutation matrix P ∈ Rn×n satisfies the fol-
lowing condition,

n

∑
i=1

pij =
n

∑
j=1

pij = 1, ∀i, j ∈ [n].

in feedforward networks.

The layers—as presented—differ only in their choice of activation func-
tion,

• Linear activation,
ϕ = Id;

• Sigmoid activation,
ϕ = σ;

• ReLU (Rectifier Linear Unit) activation,

ϕ = (z)+ = max{0, z}.

An essential part of training neural networks is constructing the loss
function. For a regression problem, a simple—and popular—choice is
the squared error loss,

ℓ[θ](x, y) =
1
2
∥y− f [θ](x)∥2.

For a multi-class classification problem, the final layer must be the soft-
max, which outputs a categorical probability distribution over classes,

softmaxi(z) =
exp(zi)

∑n
j=1 exp(zj)

.

Usually, this type of model optimizes the cross-entropy loss.

In a perfect world, we would want to minimize the expected risk,

E[ℓ(y, f [θ](x))].
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However, since we do not have access to the underlying probability distri-
bution of the data, this is intractable. Hence, we minimize the empirical
risk,

1
s

s

∑
i=1

ℓ(yi, f [θ](xi)).

In practice, we partition the dataset into training and validation sets.
Then, we directly minimize the empirical risk of the training set, and
approximate the expected risk with the validation set.

2.3 Linear and residual networks

Linear layers are closed under composition, meaning that we do not gain
any representational power by increasing the depth. However, linear
analysis are nice to work with for theoretical analysis.

Residual layers are formalized as follows,

F[W , b](x) = x + (ϕ(Wx + b)− ϕ(0)).

They have the following property,

F[0, 0] = Id.

In most architectures, learning the identity map is non-trivial. However,
it is desirable to incrementally learn a better representation, rather than
having to learn it at every layer. Intuitively, the residual layer learns how
to change its input representation.

A problem with the above formalization is that the input and output
must have the same dimensionality. This is solved by a projection,

F[V , W , b](x) = V x + (ϕ(Wx + b)− ϕ(0)), V , W ∈ Rm×n.

He et al. [2016] showed that increasing model depth with residual
layers leads to better performance than when using normal layers. This
small change allows model depths of up to 100—200 layers. DenseNet
Zhu and Newsam [2017] makes use of a similar idea of shortcutting
information by feeding the output of all upstream layer activations to
every layer,

xℓ+1 = Fℓ+1
(

xℓ, . . . , x1, x
)

.

2.4 Sigmoid networks The sigmoid function and hyperbolic tangent,

σ(z) .
=

1
1 + exp(−z)

, tanh(z) .
=

exp(z)− exp(−z)
exp(z) + exp(−z)

,

are representationally equivalent, because you can
always obtain the one from the other by the follow-
ing identity,

tanh(z) = 2σ(2z)− 1.

We will now look at which functions an MLP (Multi-Layer Perceptron)
with sigmoid activation function,

g[v, W , b](x) .
= v⊤σ(Wx + b), v, b ∈ Rm, W ∈ Rm×n,
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are able to express. The function class of MLPs is formalized by

Gn
.
=

∞⋃
m=1

Gn,m

Gn,m
.
=
{

g
∣∣∣ g(x) = v⊤σ(Wx + b), v, b ∈ Rm, W ∈ Rm×n

}
.

An alternative way of expressing this is as a linear span of units,

Gn = span
{

σ
(

w⊤x + b
) ∣∣∣ w ∈ Rn, b ∈ R

}
.

Definition 2.1 (Function distance metric). dK is a distance metric
over a compact set K induced by the uniform norm,

dK( f , g) .
= ∥ f − g∥∞,K, ∥ f ∥∞,K

.
= sup

x∈K
| f (x)|.

Definition 2.2 (Function class distance metric). Let f be a function
and G a function class, then their distance is computed as

dK( f ,G) .
= inf

g∈G
dK( f , g).

Definition 2.3 (Universal function approximator). A function class
F is approximated by function class G on K if, and only if,

dK( f ,G) = 0, ∀ f ∈ F .

If this holds for all compact sets K, then G is a universal approxima-
tor of F .

Theorem 2.4 (Weierstrass theorem). Polynomials are universal ap-
proximators of C(R), where C(R) is the set of all continuous func-
tions over R.

Theorem 2.5 ([Leshno et al., 1993]). Let ϕ ∈ C∞(R), but not a poly-
nomial, then

span({ϕ(ax + b) | a, b ∈ R})

universally approximates C(R).

Hence, an MLP with 1-dimensional input and output is a universal
function approximator, if the activation function is not a polynomial.
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Lemma 2.6 (Lifting lemma [Pinkus, 1999]). Let ϕ be such that

span({ϕ(ax + b) | a, b ∈ R})

universally approximates C(R), then

span
({

ϕ
(

w⊤x + b
)
| w ∈ Rn, b ∈ R

})
universally approximates C(Rn).

Thus, we can lift the previous result into n dimensions, making MLPs
universal approximators of continuous functions of any dimensionality.
Moreover, this does not only hold for the sigmoid function, but for any
smooth activation function that is not a polynomial.

However, this does not give us any insights into how depth affects
performance, because the theorem assumes a single hidden layer of ar-
bitrary width. Also, it does not provide a bound on the width of the
hidden layer in order to achieve some desired error.

Theorem 2.7 ([Barron, 1993]). For every f : Rn → R with finite
C f and any r > 0, there is a sequence of one hidden layer MLPs
(gm)m∈N such that∫

rB
( f (x)− gm(x))2µ(dx) ≤ O

(
1
m

)
,

where rB
.
= {x ∈ Rn | ∥x∥ ≤ r} and µ is any probability measure

on rB.

Hence, if we relax the notion of approximation to squared error over
a ball with radius r, we gain a decay of 1/m for the approximation error.
Further, the approximation error bound does not depend on the input
dimensionality n.

2.5 ReLU networks

The ReLU activation function is defined as

(z)+
.
= max{0, z}.

Consider a layer of m ReLU units on a fixed input x. In this situation,
each unit is either active or inactive, where active means that its input is
positive,

1{Wx + b > 0} ∈ {0, 1}m.

In this way, we can partition the input space into cells that have the same
activation pattern,

Xκ
.
= {x | 1{Wx + b > 0} = κ}.
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We can measure the complexity of a network as the amount of these cells
it has. Firstly, we have the trivial upper bound |{1{Wx + b > 0} | x ∈
Rn}| ≤ 2m. However, we would like to obtain a stricter bound. We can
represent each hidden unit as a hyperplane w⊤i x + bi. On one side the
unit would be active and inactive on the other. Geometrically, we can thus
think of it as a space, where each hidden unit represents a hyperplane.
The connected regions of these hyperplanes are the activation patterns.

[1, 1, 1]

[1, 0, 1]

[0, 0, 1]

[0, 0, 0]

[0, 1, 0]

[0, 1, 1]

[1, 1, 0]

Figure 2.1. Connected regions, partitioned accord-
ing to activation pattern. Each hyperplane repre-
sents a hidden unit. This shows an MLP with 2-
dimensional input and 3-dimensional hidden layer.

Theorem 2.8 ([Zaslavsky, 1975]). Let H be a set of m hyperplanes
in Rn. Denote by R(H) the number of connected regions of Rn\H,
then

R(H) ≤
min{n,m}

∑
i=0

(
m
i

)
.
= R(m).

This upper bound is attained by hyperplanes in general position.

This gives us a tighter bound on the number of activation patterns.

Theorem 2.9 ([Montufar et al., 2014]). Consider a ReLU network
with L layers of width m > n. The number of linear regions is lower
bounded by

R(m, L) ≥ R(m)
⌊m

n

⌋n(L−1)
.

Finally we have a result that relates model complexity to layer depth.
By letting the amount of possible activation patterns represent complex-
ity, this is a good argument for why deep networks tend to perform
well.

Theorem 2.10 ([Shekhtman, 1982]). Piecewise linear functions are
dense in C([0, 1]).

Theorem 2.11 (Lebesgue). A piecewise linear function with m pieces
can be written as

g(x) = ax + b +
m−1

∑
i=1

ci(x− xi)+.

Figure 2.2. Piecewise linear approximation of a con-
tinuous function.

Hence, we can rewrite any piecewise linear function with m pieces as
a sum of m− 1 ReLUs. In 1 dimension, we can approximate any function
by uniformly spacing out points on the function and connecting them as
a piecewise linear function—see Figure 2.2. We can lower approximation
error by increasing the number of units, approaching 0 as m→ ∞. Using
the lifting lemma, we get the following result.

Theorem 2.12 (ReLU universality). Networks with one hidden layer
of ReLU units are universal function approximators.
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3 Gradient-based learning

3.1 Backpropagation

In order to make use of gradient-based learning, we first need to compute
the gradient. Backpropagation is an algorithm that allows the computa-
tion of any function, if we know the gradient of all basic blocks of the
function.

We assume that we are differentiating the following function,

F[θ](x) .
=
(

FL ◦ · · · ◦ F1
)
(x),

with the following hidden layer,

hℓ .
= Fℓ

[
θℓ
](

hℓ−1
)

, h0 = x.

The following intermediate gradient is essential for computing the gradi-
ents of the parameters,

δℓ =
∂ℓ(y, F[θ](x))

∂hℓ
.

It has the following recurrence relationship (and base case),

δL =
∂ℓ(y, ŷ)

∂ŷ
, ŷ = F[θ](x)

δℓ =

[
hℓ+1

hℓ

]⊤
δℓ+1.

These can thus be computed efficiently in linear time with dynamic
programming. Then, to compute the parameter gradient of the ℓ-th layer,
we use the chain rule,

∂ℓ(y, F[θ](x))
∂θℓ

= δℓ ∂hℓ

∂θℓ
.

3.2 Gradient descent

Gradient descent is a gradient-based learning algorithm with the follow-
ing update rule,

θt+1 = θt − η∇h
(
θt), η > 0 h .

= ℓ ◦ F.

A key insight of analysis into the behavior of gradient descent is that it
can only be successful if the gradients change slowly. This is formalized
by smoothness.

Definition 3.1 (Smoothness). h is L-smooth if there exists L > 0 such
that

∥∇h(θ1)−∇h(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2 ∈ Θ.

This is equivalent to the following condition,

∥∇2h(θ)∥2 ≤ L, ∀θ ∈ Θ.
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From the Taylor series expansion, we have

h(θ2)− h(θ1) = ∇h(θ1)
⊤(θ2 − θ1) +

1
2
(θ2 − θ1)

⊤∇2h(θ1)(θ2 − θ1)

= −η∥∇h(θ1)∥2 +
1
2
(θ2 − θ1)

⊤∇2h(θ1)(θ2 − θ1) Gradient descent update rule.

≤ −η∥∇h(θ1)∥2 +
L
2
∥θ2 − θ1∥2 Spectral norm condition of smoothness.

= −η∥∇h(θ)1∥2 +
Lη2

2
∥h(θ)1∥2 Update rule of gradient descent.

= −η

(
1− Lη

2

)
∥∇h(θ1)∥2.

A strict decrease in h is guaranteed if η < 2/L, hence we choose η = 1/L,

= − 1
2L
∥∇h(θ1)∥2.

As a result, we obtain sufficient decrease,

h(θ2) = h(θ1)−
1

2L
∥∇h(θ1)∥2.

Lemma 3.2 (Convergence of gradient descent on smooth functions).
Let h be L-smooth, then gradient descent with stepsize η = 1/L will
reach an ϵ-critical point (∥∇h(θ)∥ ≤ ϵ) in at most

T =
2L
ϵ2

(
h
(

θ0
)
− h(θ⋆)

)
.

Proof. TODO ■

Definition 3.3 (PL-inequality). h satisfies the PL-inequality with µ >

0 if
1
2
∥∇h(θ)∥2 ≥ µ(h(θ)− h(θ⋆)), ∀θ ∈ Θ.

Lemma 3.4. Let h be differentiable, L-smooth, and µ-PL. Then, gra-
dient descent with stepsize η = 1/L converges at a geometric rate,

h
(

θT
)
− h(θ⋆) ≤

(
1− µ

L

)T(
h
(

θ0
)
− h(θ⋆)

)
.

Proof.

h
(

θT
)
− h
(

θT−1
)
≤ − 1

2L

∥∥∥∇h
(

θT
)∥∥∥2

Sufficient decrease.

≤ −µ

L

(
h
(

θT
)
− h(θ⋆)

)
PL-inequality.
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Subtracting h(θ⋆) from both sides yields

h
(

θT
)
− h(θ⋆) ≤

(
1− µ

L

)(
h
(

θT
)
− h(θ⋆)

)
.

The result follows from a trivial induction. ■

3.3 Acceleration and adaptivity

Nesterov acceleration is a method that achieves better theoretical guar-
antees than vanilla gradient descent,

χt+1 = θt + β
(

θt − θt−1
)

Extrapolation step.

θt+1 = χt+1 − η∇h
(

χt+1
)

. Gradient descent step.

The intuition behind momentum is that if the gradient is stable, gradi-
ent descent can make bolder steps. A simple method making use of this
is the Heavy Ball method,

θt+1 = θt − η∇h
(
θt)+ β

(
θt − θt−1

)
, β ∈ [0, 1].

Assuming a constant gradient δ, we have the following update,

θt+1 = θt − η

(
t−1

∑
τ=1

βτ

)
δ.

Thus, we see that that the learning rate increases in the case of a constant
gradient.

In adaptivity, we realize that we want parameter-specific learning rates,
since different parameters behave differently. It defines the following,

γt
i = γt−1

i +
[
∂ih
(
θt)]2.

We then have a parameter-specific update rule,

θt+1
i = θt

i − ηt
i ∂ih

(
θt), ηt

i
.
=

η√
γt

i + δ
.

Adam (Adaptive Moment Estimation) [Kingma, 2014] combines these
two,

gt = βgt−1 + (1− β)∇h(θt), β ∈ [0, 1] Moving average (smooth gradient estimator).

γt = αγt−1 + (1− α)∇h(θt)
⊙2, α ∈ [0, 1]. Exponential averaging (measure of stability in the

optimization landscape).
The update rule is then

θt+1 = θt − ηt ⊙ gt, ηt =
1

√
γt + δ

.

3.4 Stochastic gradient descent

When the dataset is too large, computing the full gradient is infeasible.
Stochastic gradient descent solves this by computing the gradient only
w.r.t. a single data point at each timestep.
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4 Convolutional networks

4.1 Convolutions

Definition 4.1 (Integral operator).

(T f )(u) .
=
∫ t2

t1

H(u, t) f (t)dt, −∞ ≤ t1 < t2 ≤ ∞.

Definition 4.2 (Fourier transform).

(F f )(u) .
=
∫ ∞

−∞
e−2πitu f (t)dt. Special case of integral operator with

H(u, t) = e−2πitu, t1 = −∞, t2 = ∞.

Definition 4.3 (Convolution).

( f ∗ h)(u) .
=
∫ ∞

−∞
h(u− t) f (t)dt. Special case of integral operator with

H(u, t) = h(u− t), t1 = −∞, t2 = ∞.

Lemma 4.4 (Convolution is commutative).

f ∗ h = h ∗ f , ∀ f , h.

Proof. Let u ∈ R, then

(h ∗ f )(u) .
=
∫ ∞

−∞
h(u− t) f (t)dt

=
∫ −∞

∞
h(v) f (u− v)(−dv) v .

= u− t.

=
∫ ∞

−∞
h(v) f (u− v)dv.

■

Lemma 4.5 (Convolution is shift-equivariant). Let fδ denote a shifted
function,

fδ(t)
.
= f (t + δ).

The convolution is shift-equivariant,

fδ ∗ h = ( f ∗ h)δ.

Proof. Let u, δ ∈ R, then

( fδ ∗ h)(u) =
∫ ∞

−∞
h(u− t) f (t− δ)dt

=
∫ ∞

−∞
h(u + δ− v) f (v)dv v = t− δ.

= ( f ∗ h)(u + δ)

= ( f ∗ h)δ(u).
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■

The convolutional operator can be computed via the Fourier trans-
form,

F ( f ∗ h) = F f · Fh.

In the discrete case, this allows computing the convolution with the
Fast Fourier Transform algorithm—however, this is not very useful for
machine learning.

Theorem 4.6. Any linear shift-equivariant transformation can be
written as a convolution with a suitable kernel.

Proof. TODO ■

Definition 4.7 (Discrete convolution). Let f , h : Z→ R, then

( f ∗ h)[u] .
=

∞

∑
t=−∞

h[t] f [u− t].

Typically, the kernel h has support over a finite window, such that
h[t] = 0, ∀t ̸∈ [tmin, tmax]. Then, the sum can be truncated,

( f ∗ h)[u] .
=

tmax

∑
t=tmin

h[t] f [u− t].

Definition 4.8 (Cross-correlation). Let f , h : Z→ R, then

(h ⋆ f )[u] .
=

∞

∑
t=−∞

h[t] f [u + t].

Remark. This is equivalent to convolution with a flipped kernel,

(h ⋆ f ) = (h̄ ∗ f ), h̄[t] .
= h[−t].

Toeplitz matrix Hh
n ∈ R(n+m−1)×n is a matrix, where hi is on the i-th

diagonal,

Hh
n

.
=



h1 0 0 0 · · · 0 0
h2 h1 0 0 · · · 0 0
h3 h2 h1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · hm hm−1

0 0 0 0 · · · 0 hm


.

Convolution is equivalent to applying this matrix to a vectorized f ∈ Rn,

f ∗ h = Hh
n


f1
...
fn

 .
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This is effectively a proof that the convolutional operator is linear.

4.2 Convolutional layers

The goal of convolutional layers is to exploit translational equivariance of
data, such as images. Furthermore, convolutional layers have higher sta-
tistical efficiency than fully connected layers, because of weight sharing.
In order to achieve this, we can learn the parameters of the kernel.

In order to apply convolutions to images, we need to define the oper-
ation on 2-dimensional data,

(I ∗W)[i, j] =
∞

∑
k=−∞

∞

∑
ℓ=−∞

I[i− k, j− ℓ]W [k, ℓ].

In general, the data has channels. So, in practice, we learn multiple con-
volutional filters—one for every pair of input-output channel. The output
channel is then computed as the sum over its corresponding kernels with
all input channels.

We interleave convolutional layers with non-linearities and pooling
layers, which downsample the input,

I′[i, j] = max{I[i + k, j + ℓ] | k, ℓ ∈ [0, r)},

where r is the window size. In general, convolutional networks have a
pyramid structure, where the data gets iteratively downsampled.

TODO: Gradients.
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5 Recurrent neural networks

Typically, networks cannot process variable-sized data, such as sequences.
Further, convolutional networks constrain the range of the dependencies
between timesteps of a sequence, and linear layers would explode in
the number of parameters. RNNs (Recurrent Neural Networks) process
the data sequentially, where each timestep depends on its entire history.
Let x1, . . . , xT denote the observed input sequence, RNNs compute the
sequence of activations recursively,

zt
.
= F[θ](zt−1, xt), z0 = 0.

Dependent on the application, we can compute output variables from
these activations,

yt
.
= G[φ](zt).

For example, in same length sequence-to-sequence prediction, yt will
denote the output token at the t-th timestep; in autoregressive modeling,
yt predicts the next input token xt+1; and in sequence classification, the
final output yT predicts the classification of the entire sequence. RNNs can be extended by bidirectional RNNs

[Schuster and Paliwal, 1997], which apply two
RNNs—forward and backward. The outputs of the
two RNNs are concatenated, such that every hid-
den state captures the full sequence.

Furthermore, stacked RNNs [Joulin and Mikolov,
2015] increases modeling power by connecting lay-
ers horizontally,

zt,ℓ = ϕ(Uℓzt−1,ℓ + Vℓzt,ℓ−1), zt,0 = xt.

Alternatively, the recurrence function F can be re-
placed by a deep MLP.

The simplest RNN architecture is the Elman RNN [Elman, 1990],

F[U, V ](z, x) = ϕ(Uz + V x), U ∈ Rm×m, V ∈ Rm×n

G[W ](z) = ψ(Wz), W ∈ Rq×m.

However, this model has difficulties modeling large-range dependencies,
as will become apparent from the gradients. Let

L .
=

T

∑
t=1

ℓ(ŷt, yt).

Then, we have the following gradients w.r.t. the recurrence weights,

∂L
∂U

=
T

∑
t=1

∂L
∂zt

∂zt

∂U

∂L
∂V

=
T

∑
t=1

∂L
∂zt

∂zt

∂V
.
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We can compute the gradients w.r.t. the hidden states as follows,

∂L
∂zt

=
T

∑
i=1

∂ℓ(ŷi, yi)

∂zt

=
T

∑
i=t

∂ℓ(ŷi, yi)

∂ŷi

∂ŷi
∂zt

=
T

∑
i=t

∂ℓ(ŷi, yi)

∂ŷi

∂ŷi
∂zi

∂zi
∂zt

=
T

∑
i=t

∂ℓ(ŷi, yi)

∂ŷi

∂ŷi
∂zi

i

∏
j=t+1

∂zj

∂zj−1

=
T

∑
i=t

∂ℓ(ŷi, yi)

∂ŷi

∂ŷi
∂zi

i

∏
j=t+1

Φ̇jU,

where
Φ̇j = diag

(
ϕ′(Uzj−1 + V xj)

)
.

This gradient is only stable if∥∥∥∥∥ ∂zj

∂zj−1

∥∥∥∥∥
2

=
∥∥Φ̇jU

∥∥
2 = 1,

which is almost never the case. Assuming bounded gradient norm ∥Φ̇j∥ ≤
α—which holds for most activation functions,6 6 E.g., σ′(z) ≤ 1/4.∥∥∥∥ ∂zi

∂zt

∥∥∥∥
2
≤ (α∥U∥2)

i−t = (ασ1(U))i−t.

So, the gradient will vanish if σ1(U) ≥ 1/α. An analogous argument can
be made for exploding gradients.

5.1 Gated memory

Long-range dependencies are hard to memorize for the Elman RNN
due to the instability of the gradient. LSTM (Long Short-Term Memory)
[Schmidhuber et al., 1997] and GRU (Gated Recurrent Unit) [Cho et al.,
2014] avoid short-term fluctuations by more directly controlling when
memory is kept and when it is overwritten. It does so by making use of
gating,

z = σ ⊙ z, σ ∈ (0, 1)m, z ∈ Rm.

When σi → 0, zi is forgotten and when σi → 1, zi is preserved. By com-
bining gates in smart ways, learning involves understanding what new
information is relevant and trading off its relevance with store informa-
tion. The LSTM works as follows,

zt = σ(Fx̃t)⊙ zt−1 + σ(Gx̃t)⊙ tanh(V x̃t), x̃t = [ζt−1, xt]

ζt = σ(Hx̃t)⊙ tanh(Uzt).

Here, zt is called the cell state and ζt is the hidden state. This mechanism
has the following components,
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• σ(Fx̃t) is the forget gate and computes what information should be
discarded from the previous cell state;

• tanh(V x̃t) is the input gate and computes new information;

• σ(Gx̃t) is the gate gate and computes what of the new information
should be stored;

• σ(Hx̃t) is the output gate and has the role of determining what infor-
mation from the cell state should be put in the hidden state;

• tanh(Uzt) computes what information should be given to the hidden
state.

The GRU combines the forget and input gates as a convex combina-
tion,

zt = σ ⊙ zt−1 + (1− σ)⊙ ζt, σ = σ(Gx̃t), x̃t = [zt−1, xt]

However, the computation of new storage remains complex,

z̃t = tanh(V [ζt ⊙ zt−1, xt])

ζt = σ(H[zt−1, xt]).

ζt can be computed implicitly without any additional recursion. The
advantage of this over LSTM is that it only has 3 weight matrices, instead
of 5.

5.2 Linear recurrent models

The LRU (Linear Recurrent Model) [Feng et al., 2024] simplifies the LSTM
and GRU recurrence functions to be linear, such that it can exploit fast
parallel sequence processing for training,

zt = σ ⊙ zt−1 + (1− σ)⊙ V xt, σ = σ(Gxt).

This allows for prefix scan parallelism, which allows for O(log n) run-
time during training, instead of O(n). This might bridge the gap to the
performance of transformers.7 7 In general, transformers perform better than

RNNs because the training of transformers can
be parallelized. On the other hand, RNNs could
be preferable, because transformers have runtime
quadratic in the context length at every step,
whereas RNNs have already encoded the full his-
tory in the hidden state. As a result, RNNs are
faster during inference.

We will now look at how we can ensure that gradients do not vanish
in linear systems [Orvieto et al., 2023]. The LRU hidden state evolution
is a discrete time linear system,

zt+1 = Azt + Bxt, A ∈ Rm×m, B ∈ Rm×n.

Let the following be the diagonalization of A over the complex numbers,8 8 Most matrices can be diagonalized over the com-
plex numbers.

A = PΛP−1, Λ = diag(λ1, . . . , λm), λi ∈ C.

We can then perform a change of basis,

ζt+1 = Λζt + Cxt, ζt = P−1zt, C = P−1B.
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The stability of this linear system requires the modulus of the eigenvalues
to be bounded,

max
j
|λj| ≤ 1, |a + bi| .

=
√

a2 + b2. One can represent any complex number in polar
coordinates form via modulus r and phase ϕ,

z = r(cos(ϕ) + sin(ϕ)i), r = |z| ≥ 0, ϕ ∈ [0, 2π).Thus, we want to parametrize λi, such that their moduli can only exist
within (0, 1). We can do this by parametrizing λi with two numbers
νi, ϕi ∈ R in the following way,

λi = exp(− exp(νi) + ϕii)

= exp(− exp(νi)) exp(ϕii)

= exp(− exp(νi))(cos(ϕi) + sin(ϕi)i). exp(θi) = cos(θ) + sin(θ)i.

So, we have ri = exp(− exp(νi)) ∈ (0, 1). At initialization, we can then
sample

ϕi ∼ Unif([0, 2π]), ri ∼ Unif(I), I ⊆ [0, 1].

We can compute νi = log(− log ri).

The advantage of such a simple recurrence unit is that it provides a
clean understanding of long range and short range dependencies, there is
no requirement for mixing of channels, and parallelization during train-
ing. Furthermore, we do not lose any representational power, because we
can move all power to the output map. The resulting model is provably
universal as a sequence-to-sequence map [Feng et al., 2024].

5.3 Sequence learning

In sequence learning, we want to generate a sequence step-by-step, given
another sequence. This induces the following probability distribution,

p(y1:n | x1:m) =
n

∏
i=1

p(yi | x1:m, y1:i−1).

Sequence-to-sequence mapping [Sutskever, 2014] is generally done by
mapping the input sequence to a latent representation,

x1, . . . , xm 7→ ζ,

which can be computed by an encoder RNN. Then, at every timestep,
we compute a latent representation of everything generated until now,
which can be computed by a decoder RNN with z0 = ζ,

ζ, y1, . . . , yt−1 7→ zt−1.

These are then combined to compute a distribution over next tokens,

zt−1 7→ µt, yt ∼ p(µt). Usually, µt is a categorical distribution over tokens,
computed by a softmax.

The problem with this approach is that ζ will be a lossily compressed
version of the input sequence. We would want the decoder to be able to
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look back at the input sequence while generating the output sequence.
Bahdanau [2014] solved this by introducing the attention mechanism into
this framework, where attention is used on top of the RNN encoder,

aij = softmaxj(MLP(zi−1, ζ j)).

This mechanism makes intuitive sense, because it allows for alignment
between source and target sequence.
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6 Transformers

6.1 Self-attention

Let X ∈ RT×d denote the input embeddings and Ξ ∈ RT×dv the out-
put embeddings. The problem with X is that the embeddings are non-
contextual—each embedding has no information about its neighbors.
Self-attention aims to contextualize the embeddings in Ξ.

It does so by computing queries, keys, and values by linear projections
of the input,

Q = XWQ, K = XWK, V = XWV ,

where WQ, WK ∈ Rd×dk and WV ∈ Rd×dv . Intuitively, for each timestep,
the queries represent what information is missing, the keys represent the
information that is offered, and the values are the actual information.

The attention mechanism is computed as follows,

A = softmax

(
QK⊤√

dk

)
, Ξ = AV . Softmax is performed row-wise. The division by

√
dk is necessary because Var[x · y] = d, where

x, y ∼ N (0, Id). We want to recover unit variance.Here, A ∈ RT×T is the attention matrix—ai is a convex combination that
tells us how much attention the i-th timestep pays to each other timestep.

The contextualized outputs are convex combinations of values,

ξ i =
T

∑
t=1

softmaxt(ωi)vi, ωit ∝ q⊤i kt.

This makes intuitive sense, because the weight of the t-th timestep for
timestep i depends on the alignment between qi and kt. Furthermore, ξ i

depends only on its corresponding query and all other key-value pairs.
In a sense, the attention mechanism is a soft-dictionary lookup.

Figure 6.1. Multi-headed self-attention [Vaswani,
2017].

MHSA (Multi-Headed Self-Attention) computes multiple attention mech-
anism in parallel—see Figure 6.1. Let h be the number of heads, then we
first compute h queries, keys, and values for each input token.9 Then, we

9 In practice, we use three—not 3 · h—linear layers
for the query, key, and value representations, where
the output is h · dk-dimensional. We can chunk this
output to get the corresponding representations
for each head. This makes PyTorch—or any other
library—compute the heads in parallel.

apply attention h times using these representations and concatenate the
outputs into a single vector. Lastly, we perform a linear layer to combine
the outputs of the heads.

6.2 Cross-attention

A cross-attention layer takes two sequences as inputs,

A ∈ RTa×da , B ∈ RTb×db .

Then, it computes the queries from A and the keys and values from B,

Q = AWQ, K = BWK, V = BWV ,

where WQ ∈ Rda×dk , WK ∈ Rdb×dk , and WV ∈ Rdb×dv . Then, we can ap-
ply (multi-headed) attention to these representations. This is an effective
way of giving additional sequence data B to a sequence A.



deep learning 26

6.3 Positional encoding

The attention mechanism is permutation equivariant, which means that
the order of input tokens does not influence the output. So, we need a
way of reintroducing the sequence structure to this mechanism. We do
this by defining a positional encoding matrix P ∈ RT×d and adding it to
the input sequence, X + P. One way of defining this matrix is as follows,

ptk =

sin(tωk) k mod 2 = 0

cos(tωk) k mod 2 = 1.
, ωk

.
= Ck/d. C = 104.

A heatmap representation of this matrix can be seen in Figure 6.2.

Figure 6.2. Positional encoding matrix, represented
as a heatmap.

6.4 Machine translation

The transformer [Vaswani, 2017] was the first architecture to show that
attention can be used effectively in machine learning. Vaswani [2017] de-
signed an encoder and an autoregressive decoder for machine translation—
see Figure 6.3. The encoder works by applying an MHSA layer and a
pointwise MLP layer N times in an alternating fashion. In addition, it also
employs residual connections [He et al., 2016] and layer normalization
[Lei Ba et al., 2016]. These are essential for effectively backpropagating
gradients and ensuring stability. Furthermore, it also makes use of posi-
tional encoding to preserve order information. Let X ∈ RT×d denote the
input of the encoder and Ξ ∈ RT×d its output.

Figure 6.3. Architecture of the transformer
[Vaswani, 2017]. The left side is called the encoder,
which encodes the input sentence. The right side
is called the decoder, which uses cross-attention to
incorporate information from the source sequence
in the prediction of the target sequence. The model
works in an autoregressive manner, which means
that the next token is predicted from the history
until an end-of-sentence token is predicted.

Furthermore, the decoder works in an autoregressive manner, which
means that it computes the output tokens one-by-one. The decoder first
receives the history of previously generated tokens Y1:t−1 and contextu-
alizes it using an MHSA layer. Let Υ1:t−1 denote the output of the MHSA
layer. Then, a multi-headed cross-attention layer receives Ξ as input and
aligns Υ1:t−1 with it. Lastly, a pointwise MLP is applied. It performs these
steps N times. Again, the decoder makes use of residual connections and
layer normalization to ensure stability of the gradient and output.

The advantage of this architecture is that—unlike RNNs—we do not
need to memorize tokens in the hidden state, because we can look back
at the full sequence at every step. However, this has the disadvantage
that we need to look at the full sequence at every step, instead of having
all information encoded in a precomputed hidden state. Furthermore,
transformers allow for easy scaling up by simply increasing the number
of heads, hidden dimensionality, or the number of encoders/decoders.

6.5 BERT

BERT (Bidirectional Encoder Representations from Transformers) [Devlin,
2018] is a transformer-based pretrained LM that can be used for fine-
tuning on downstream natural language processing tasks. BERT first
tokenizes its input sequence using WordPiece tokenization [Wu, 2016]
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and prepends it with a [CLS] token. Further, it makes use of the encoder
blocks from the transformer architecture to contextualize its input to-
kens. When the weights of these encoders are pretrained, we can place
additional layers on top of the encoders that operate on BERT’s contex-
tualized tokens. We then finetune the weights of the full model on the
specific task we are interested in.

BERT’s pre-training consists of two stages:

1. Predicting masked out tokens using its left and right context as in-
put.10,11 The task is performed by passing the representation of the 10 This is also known as the Cloze test [Taylor, 1953].

Cloze tests require the ability to understand the
context and vocabulary in order to identify the cor-
rect language or part of speech that belongs in the
deleted passages.
11 BERT masks 15% of tokens, of which 80% is re-
placed by [MASK], 10% is replaced by a random to-
ken, and 10% is left unchanged.

masked token to a model that predicts which token was originally
there. This was previously not easy to do with RNNs, because they
can only process sequences left-to-right or right-to-left;

2. Binary next sentence classification, where the model must classify two
sentences as being consecutive or not, where the two sentences are
separated by a [SEP]-token as input to the encoders. In order to make
classification possible, the [CLS]-token is appended to the input tokens
and its representation is used for the final prediction network.

The first stage trains BERT’s understanding of language, whereas the sec-
ond stage enables BERT to infer relationships between sentences, which
is important for tasks like question-answering.

Lastly, we can finetune the parameters of BERT with a small ground
truth dataset to a large variety of tasks. E.g.,

• Question answering, where a question and a context passage is pro-
vided with a [SEP]-token separating them. Each token is passed to
start and end token classifiers, which predict how likely each token is
to be the start and end of the answer. Using these classifiers, we can
extract the answer from the passage;

• Part-of-speech tagging, where each token embedding is passed to a
classification model, which outputs a distribution over part-of-speech
tags;

• Sentiment classification, where the representation of the [CLS]-token
is passed to a binary classification model that predicts whether the
sentence is positive or negative.

6.6 Vision transformer

ViT (Vision Transformer) [Dosovitskiy, 2020] adapts the transformer ar-
chitecture to images by treating patches of an input image as its tokens.
Dosovitskiy [2020] showed the effectiveness of this approach by adapting
the transformer architecture to an image classification task. ViT com-
putes the input tokens by vectorizing 16× 16 patches of the input image
and linearly projecting them to a token space. Further, a [CLS]-token is
prepended to the sequence of tokens. Then, ViT employs the encoder
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Figure 6.4. Architecture of the vision transformer
[Dosovitskiy, 2020].

architecture of the transformer to contextualize its input representations.
Finally, the contextualized embedding of the [CLS]-token is passed to a
classification network that predicts the class of the input image.

A possible reason for this model’s effectiveness is that this architecture
carries less inductive bias than CNN-based models. In general, this seems
to be beneficial for very large datasets.
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7 Geometric deep learning

GDL (Geometric Deep Learning) is involved with modeling neural net-
works that satisfy invariances by design. Assume we have a set of fea-
ture vectors {x1, . . . , xM} ⊂ R over which we want to realize a function
f : P(R)→ Y . Naively, we could concatenate the set into a single feature
vector and apply a standard multi-layer perceptron,

{x1, . . . , xM} 7→ [x1, . . . , xM].

However, this has two problems—(1) M is not fixed, so the inputs have
variable length and (2) the order in which we concatenate the feature
vectors is arbitrary. We need to model an architecture that can take a
variable-length input and does not depend on the ordering of the feature
vectors.

7.1 Invariance and equivariance in neural networks

In order to formally design such functions, we need the following two
definitions.

Definition 7.1 (Order-invariance). f : P(R) → Y is order-invariant
if and only if

f (x1, . . . , xM) = f (xπ1 , . . . , xπM ), ∀π ∈ Π(M),

where π is a permutation. Or, in matrix notation,

f (X) = f (PX),

where X ∈ RM×d contains the feature vectors and P ∈ RM×M is a
permutation matrix.

Definition 7.2 (Equivariance). f : RM → YM is equivariant if and
only if

f (x1, . . . , xM) = (y1, . . . , yM)

=⇒ f (xπ1 , . . . , xπM ) = (yπ1 , . . . , yπM ), ∀π ∈ Π(M).

Or, in matrix notation,

f (X) = P f (PX),

where X ∈ RM×d contains the feature vectors and P ∈ RM×M is a
permutation matrix.

The question thus becomes how we can design model architectures
that are order-invariant or equivariant.
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Figure 7.1. Model structure of Deep Sets [Zaheer
et al., 2017].

7.2 Deep sets

Let ϕ : R → Rd be a pointwise feature extractor neural network, the
Deep Sets architecture [Zaheer et al., 2017] obtains an order-invariant
representation of the input set by summing them up, because the sum
operation enforces order-invariant,

M

∑
m=1

ϕ(xm).

We can then use this representation with any type of neural network
ρ : Rd → Y to get an order-invariant model,

f (x1, . . . , xM) = ρ

(
M

∑
m=1

ϕ(xm)

)
.

Once we have an order-invariant feature extractor, we can easily turn it
into an equivariant map by additionally providing xm to ρ : R×Rd → Y
and applying ρ pointwise,

f (x1, . . . , xM) =

(
ρ

(
x1,

M

∑
m=1

ϕ(xm)

)
, . . . , ρ

(
xM,

M

∑
m=1

ϕ(xm)

))
.

This architecture is universal for a fixed d, but it requires mappings that
are highly discontinuous as M→ ∞, which makes its usefulness limited
in practice [Wagstaff et al., 2019]. More realistic mappings require d ≥ M.

7.3 PointNet

The PointNet model [Qi et al., 2017] is a specific use case of the Deep
Sets architecture. The model receives a set of three-dimensional points
as input—a point cloud—and must classify the object or segment its
parts. The former use case requires an order-invariant model, while the
latter requires an equivariant model, because the order that the points
are presented in does not carry meaning.

This model employs T-net blocks, which apply rigid transformations
to the input point cloud, which is permutation invariant. These are ap-
plied alternatingly with multi-layer perceptrons to form a permutation
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Figure 7.2. Model architecture of PointNet [Qi et al.,
2017].

invariant feature extractor ϕ. ϕ applies two stages of this, which result
in a 64-dimensional intermediate feature vector and a 1024-dimensional
final feature vector. The features are aggregated by a max-pool operator
to obtain an order-invariant 1024-dimensional global feature vector.

For object classification, ρ is implemented as a multi-layer perceptron
with a softmax head that takes the global feature vector as input. For ob-
ject segmentation, ρ concatenates the intermediate local 64-dimensional
feature vector with the global 1024-dimensional vector, which is given to
a multi-layer perceptron with a softmax head.

7.4 Graph neural networks

Definition 7.3 (Graph). An undirected graph G = (V, E) consists of
vertices V = {v1, . . . , vM} and edges E = {e1, . . . , eK} ⊆ {{v, v′} |
v, v′ ∈ V}.

In GNNs (Graph Neural Networks), we associate a feature vector xm ∈
Rd with each node vm ∈ V. Let X ∈ RM×d contain all vertex feature
vectors and A ∈ RM×M be the adjacency matrix, where

aij =

1 {vi, vj} ∈ E

0 {vi, vj} ̸∈ E.

Definition 7.4. A function f on a graph with adjacency matrix A is
order-invariant if and only if

f (X, A) = f (PX, PAP⊤), P ∈ Π(M).

Definition 7.5. A function f on a graph with adjacency matrix A is
equivariant if and only if

f (X, A) = P f (PX, PAP⊤), P ∈ Π(M).

We now want to design a model on graphs that is in- or equivariant. A
common way to achieve this is by parametrizing a local function that only
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depends on the neighbors of each vertex. Let Xm
.
= {{xn | {vn, vm} ∈ E}},

which denotes the multiset of feature vectors of the neighbors of vm. We
then parametrize a feature function ϕ that takes xm and Xm as input.
(As a consequence, any pair of isomorphic graphs result in the same
feature representations.) This function must also be order-invariant to
the neighbors, so we need to additionally aggregate the neighbor feature
vectors, which are processed by a separate network ψ,

ϕ(xm, Xm) = ϕ

(
xm,

⊕
x∈Xm

ψ(x)

)
,

where
⊕

is an invariant aggregation function. This is sometimes called
a message-passing scheme in the sense that a vertex receives messages
from its neighbors via a messaging function ψ and uses an update func-
tion ϕ to update its representation.

Coupling matrix. In GCNs (Graph Convolutional Networks), the aggrega-
tion over local neighborhoods is performed with a fixed set of weights,
known as the coupling matrix,

Ā .
= D−1/2(A + I)D−1/2, D = diag(d), dm = 1 +

M

∑
n=1

anm.

Here, D is the degree matrix and Ā is a normalized version of A with
self-loops as a result.

Furthermore, we introduce learnable parameters W that linearly trans-
forms the vertex feature vectors. Let σ be an activation function, then the
following is one step of propagation in GCNs,

Ξ = σ(ĀXW), W ∈ Rd×d′ .

Note that Ā operates on the node-edge structure and W operates in the
feature space. This layer can be stacked as in normal neural networks to
introduce depth. A simple two-layer GCN for node classification looks
as follows,

Y = softmax
(

Ā(ĀXW0)+W1
)
.

As the depth increases, it is important to note that ∥Ā∥2 ≤ 1, which
ensures that activations do not grow out out of control.

A limitation of GCNs is that it requires a depth equal to the diameter
of the graph to exchange information between all nodes. However, the
problem with very deep GCNs is that feature vectors between nodes
become indistinguishable due to the smoothing that Ā introduces [Chen
et al., 2020]. Further, there is a bottleneck effect of how much information
can be stored in fixed-size representations [Alon and Yahav, 2020]. There
are no general solutions to these problems.
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Attention. As we have already seen in transformers, the attention mecha-
nism is permutation equivariant w.r.t. the sequence order.12 GATs (Graph 12 This is due to the softmax operator being equiv-

ariant.Attention Networks) [Veličković et al., 2017] define the coupling matrix Q
using attention,

qij = softmaxj

(
ρ
(

u⊤[V xi, V xj, xij]
))

,

where V projects the node features and xij is a feature vector represent-
ing the edge between vi and vj. These are concatenated and projected to
a learnable direction u. The advantage of this method is that the aggre-
gation coefficients are now learnable, instead of fixed equal weights.

Despite having a higher degree of adaptivity, a GAT is still a message-
passing algorithm. Such models have inherent limitations in the type of
graphs that they can distinguish. The Weisfeiler-Lehman graph isomor-
phism test computes whether there exists an isomorphism between two
graphs. Morris et al. [2019] show that many message-passing algorithms—
such as GCNs and GATs—cannot distinguish graphs beyond the WL-test.
Hence, there is a clear need for higher order GNNs.

7.5 Spectral graph theory

Definition 7.6 (Laplacian operator). The Laplacian is defined as

∆ f .
=

d

∑
i=1

∂2 f
∂x2

i
, f : Rd → R.

Intuitively, the Laplacian measures the local deviation from the mean
of f in vanishingly small neighborhoods.

Definition 7.7 (Graph Laplacian). The graph Laplacian is defined as

L = D− A,

where D is the degree matrix and A is the adjacency matrix. Alter-
natively, the symmetric degree-normalized Laplacian can be used,

L̃ = I − D−1/2 AD−1/2 = D−1/2(D− A)D−1/2.

One can generalize the Fourier transform to graphs by making use of
the diagonalization of the Laplacian,

L = UΛU⊤.

The columns of the orthogonal matrix U can be seen as the graph Fourier
basis and the eigenvalues as frequencies. The convolution can then be
defined as pointwise multiplication in the Fourier domain,

x ∗ y = U(U⊤x⊙Uy⊤).



deep learning 34

The learned convolution operation from one-dimensional signals is gen-
eralized as follows,

Gθ(L)x = UGθ(Λ)U⊤x.

The problem with this approach is that computing the eigendecomposi-
tion of L is done in O

(
M3). A trick to circumvent this problem is to use

polynomial kernels,

U

(
K

∑
k=0

αkΛk

)
U⊤ =

K

∑
k=0

αkLk.

Here, the polynomial order K defines the size of the neighborhood, i.e.,
the kernel size. The parameters of this model are αk, so the number of
parameters—and hence the expressivity—of this layer is much smaller
than in traditional one-, two-, or three-dimensional convolutions.

Motivated by spectral graph theory, we can define a graph-convolutional
layer as

ξm =
M

∑
n=1

pmn(L)xn + bn, pmn(L) .
=

K

∑
k=0

αmnkLk.

As before, K defines the “kernel size” and α are the parameters, which
is used to compute the coefficients of the neighbors. As in traditional
convolutions, this can be expressed as an affine transformation.
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8 Tricks of the trade

8.1 Parameter initialization

After defining a model, we have to choose how to initialize the param-
eters of that model. We could initialize it by a Gaussian or a uniform
distribution with a fixed variance,

θ ∼ N (0, σ2), θ ∼ Unif
([
−
√

3σ,
√

3σ
])

.

There are many initialization schemes that aim to set the weights in a
smarter way—they turn out to be crucial to the convergence of the model.
Consider a linear layer with parameters W ∈ Rm×n,

f (x) = Wx.

The following schemes depend on the number of in- and output elements
to initialize W , generally assume that the elements of x are uncorrelated
and have standard deviation γ, and take the form above with a set σ,

• LeCun initialization [LeCun et al., 2002] aims to preserve the input
variance,

σ =
1√
n

.

Then,

Var[(Wx)i] = E

[(
w⊤i x

)2
]

= E
[
w⊤i xx⊤wi

]
= γE

[
∥wi∥2

]
= γ

n

∑
j=1

E
[
w2

ij

]
= γ.

Thus, input variance is preserved;

• Xavier—or Glorot—initialization [Glorot and Bengio, 2010] aims to
normalize the magnitude of the gradient,

σ =

√
2

n + m
.

Intuitively, the reason for the definition of σ is that backpropagation
combines an upstream n-dimensional input vector and backpropa-
gated downstream m-dimensional output vector;

• Kaiming—or He—initialization [He et al., 2015] is designed to be used
together with the ReLU activation function by observing that only half
of the units are activated in expectation,

σ =

√
2
n

;
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• Orthogonal initialization [Saxe et al., 2013, Hu et al., 2020] does not
assume the weights to be i.i.d., but instead considers the weights holis-
tically per layer. It initializes W to be an orthogonal matrix. This offers
benefits to forward and backpropagation, because the eigenvalues are
equal to ±1.

8.2 Weight decay

Weight decay introduces a term to gradient descent that moves θ toward
the origin,

θt+1 = θt − η(∇ℓ(θt)− µθt)

= (1− ηµ)θt −∇ℓ(θt).

This is equivalent to traditional gradient descent with ℓ2-regularization,

ℓµ(θ) = ℓ(θ) +
µ

2
∥θ∥2, ∥θ∥2 =

L

∑
l=1
∥Wl∥2

F.

From a Bayesian perspective, this introduces a prior for the weights to
have a small absolute value and helps combat overfitting.13 It can also 13 In combination with linear regression, this is

called Ridge regression.be viewed as the Lagrangian of a convex program minimizing ℓ(θ) with
constraint ∥θ∥ ≤ µ.

θ⋆

θ⋆µ

µ∥θ∥2

ℓ

Figure 8.1. Loss landscape of an ℓ2-regularized
function.

Let θ⋆ ∈ argminθ ℓ(θ), it is interesting to look at how the optimum
changes when we instead optimize ℓ(θ) + µ

2 ∥θ∥2. To answer this, we first
make a second-order Taylor approximation around the optimum,

ℓ(θ) ≈ ℓ(θ⋆) + (θ− θ⋆)⊤∇2ℓ(θ⋆)(θ− θ⋆). The first-order term disappears because the
gradient at an optimum is zero.

The gradient of the ℓ2-regularized ℓµ—using the above approximation—
is written as

∇ℓµ(θ) = ∇ℓ(θ) + µθ

≈ ∇2ℓ(θ⋆)(θ− θ⋆) + µθ

=
(
∇2ℓ(θ⋆) + µI

)
θ−∇2ℓ(θ⋆)θ⋆.

A necessary property of the optimum of ℓµ is ∇ℓµ(θ⋆µ)
!
= 0,(

∇2ℓ(θ⋆) + µI
)

θ⋆µ = ∇2ℓ(θ⋆)θ⋆.

Hence,

θ⋆µ =
(
∇2ℓ(θ⋆) + µI

)−1
∇2ℓ(θ⋆)θ⋆.

Let ∇2ℓ(θ⋆) = Q⊤ΛQ, then

θ⋆µ =
(

Q⊤ΛQ + µQ⊤Q
)−1

Q⊤ΛQθ⋆

= Q⊤(Λ + µI)−1QQ⊤ΛQθ⋆

= Q⊤(Λ + µI)−1Λ(Qθ⋆)

Qθ⋆µ = (Λ + µI)−1Λ(Qθ⋆).
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So, under basis Q, the optimum of ℓµ is

θ⋆µ = diag
(

λi
λi + µ

)
θ⋆.

I.e., the new solution scales each axis based on its sensitivity. If λi is
large, then λi/λi+µ ≈ 1, so the solution does not change much in that
direction—this matches the intuition that if the loss function is sensitive
in a direction, the new solution will not change much in that direction.

8.3 Early stopping

In early stopping, we hold out a validation dataset, which is used for
assessing generalization during training. If the validation error has not
decreased for the past p checks, we stop training. Generally, the valida-
tion error is computed after every training epoch. This helps combat
overfitting, because it does not allow the model to fit on the noise in the
training data. Here, we make the assumption that the signal in the data
is learned first and then the noise, because the signal contributes more
to decreasing the loss function than the noise.

With a crude analysis, one can show that this is theoretically equivalent
to weight decay if we stop at t ≈ η/µ.

8.4 Dropout

Dropout [Srivastava et al., 2014] randomly disables a subset of the model’s
weights during training—as a result, units become less dependent on one
another. Instead of units being specialized and the model being highly
dependent on specific units, the units stabilize to being generally useful
to the task.

There are two views in which one can see dropout—(1) a regulariza-
tion method and (2) an ensemble of networks defined by a binary mask
b ∈ {0, 1}n of whether a weight is activated or not,

p[w](y | x) = ∑
b∈{0,1}n

p(b)p[w⊙ b](y | x), p(b) =
n

∏
i=1

π
bi
i (1− π)1−bi ,

where πi is the probability of weight i being activated. In order to pre-
vent having to evaluate hundreds of sampled networks, we can use the
heuristic of scaling the weights by their dropout probability,

θ̃i ← πiθi.

8.5 Normalization

The goal of normalization is to make all units more similar, such that
optimization is easier. Let f : Rd → R be some layer in a model. This
layer can be normalized by

f̄ =
f −E[ f (x)]√

Var[ f (x)]
.
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As a result, E[ f̄ (x)] = 0 and Var[ f̄ (x)] = 1. However, this removes 2

degrees of freedom—bias and variance—which might be important to
the model. To introduce bias and variance back, we explicitly parametrize
them,

f̄ [µ, γ](x) = µ + γ f̄ (x).

In general, E[ f ] and Var[ f ] are expensive to compute due to a large
amount of data. Let B be a mini-batch, then a BN (Batch Normalization)
layer estimates them by

E[ f (x)] ≈ 1
|B| ∑

x∈B
f (x)

Var[ f (x)] ≈ 1
|B| ∑

x∈B
( f (x)−E[ f (x)])2.

Then, we re-introduce bias and variance by adding µ and γ parameters
as above.

Normalization is very effective and even essential in some model
types—the question is why it is so effective. Historically, many believed
that it helps to combat covariance shift, however, this is no longer be-
lieved to be true. The modern motivation for normalization is as follows.
Let g[µ, γ] be a BN layer, h[w] a linear layer, and ϕ a non-linearity and
compose a block as f = ϕ ◦ g[µ, γ] ◦ h[w]. Then,

f (x) = ϕ

µ + γ
w⊤x−E

[
w⊤x

]√
Var
[
w⊤x

]


= ϕ

(
µ + γ

w⊤(x−E[x])
∥w∥Σ

)
, Σ = E

[
xx⊤

]
.

Assume E[x] = 0,

= ϕ

(
µ + γ

w⊤x
∥w∥2

∥w∥2

∥w∥Σ

)

= ϕ

(
µ + γ

(
w
∥w∥2

)⊤
x
∥w∥I

∥w∥Σ

)
.

Effectively, the weight vector is normalized and the result is scaled by
the discrepancy between ∥w∥I and ∥w∥Σ. Practically, it has been found
that µ is not as important as γ.

LN (Layer Normalization) [Lei Ba et al., 2016] differs from BN in the
way that it estimates the mean and variance. Instead of computing them
over the batch dimension, it does so over the feature dimension,

E[x] ≈ 1
d

d

∑
j=1

xj, Var[x] ≈ 1
d

d

∑
j=1

(xj −E[x])2.

Each sample is thus normalized with different means and variances. The
advantage is that the normalization is defined independently from the
mini-batch size. Generally, BN is used in computer vision, whereas LN
is used in natural language processing.
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8.6 Weight normalization

In weight normalization, the weights are normalized before applying
them,

f [v, γ](x) = ϕ
(

w⊤x
)

, w =
γ

∥v∥2
v.

As we have seen before, this is equivalent to applying normalization if
∥w∥I
∥w∥Σ

= 1.

wt

γ

∇wℓ

∇vℓ

wt+1

Figure 8.2. When using weight normalization, the
direction of w is projected out at every update step.

The gradients of the parameters are computed as follows,

∂ℓ

∂γ
=

∂ℓ

∂w
∂w
∂γ

=
∂ℓ

∂w
v
∥v∥ .

∂ℓ

∂v
=

∂ℓ

∂w
∂w
∂v

= γ
∂ℓ

∂w

(
1
∥v∥ I +

(
∂

∂v
1
∥v∥

)
v⊤
)

= γ
∂ℓ

∂w

(
1
∥v∥ I − vv⊤

∥v∥3

)

=
γ

∥v∥
∂ℓ

∂w

(
I − ww⊤

γ2

)
v
∥v∥ =

w
γ .

=
γ

∥v∥
∂ℓ

∂w

(
I − ww⊤

∥w∥2

)
. ∥w∥ = γ.

Here, I − ww⊤
∥w∥2

2
is a projection matrix onto the complement of w—the di-

rection of w is projected out at every update step, as shown in Figure 8.2.

8.7 Data augmentation

Transform the data with transformations that the model should be in-
variant to and pass it to the model during training—the model learns the
invariances of the data rather than that we have to design the architecture
as such. Let {τk}K

k=1 be transformations, then the dataset is extended in
the following way,

{(xi, yi)}n
i=1 7→

K⋃
k=1

{(τk(xi), yi)}n
i=1.

In practice during training, the transformations are done on the fly, be-
cause they are usually cheap.

8.8 Label smoothing

Classifiers are generally not good at dealing with mislabeled data, so we
smooth the labels out by replacing them with noisy probability distribu-
tions,

y 7→ Πey ∈ ∆k−1,
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where k is the number of output classes. Here, Π is a confusion matrix
that defines how the “smoothed” distribution of each label is defined.
This distribution is then used in the cross-entropy loss. This concept can
be generalized to any type of label by simply adding noise.

8.9 Distillation

In model distillation [Hinton, 2015], we have a teacher and a student
model, where the student attempts to match the teacher’s outputs. The
idea is that a teacher’s knowledge lies in its outputs, so we should be
able to condense this information into a shallower model if we make
use of its outputs. In practice, we generate a lot of data with the teacher
model and train the student on it.

In a classification setting, we train the student to match the probability
distribution of the teacher. Let F be the teacher, G its student and denote
by Fy the logit of the teacher of class y, then we use the cross-entropy
loss between the teacher’s and student’s output logits,

ℓ(x) = ∑
y∈Y

exp(Fy(x)/T)

∑y′∈Y exp(Fy′ (x)/T)
log

(
exp(Gy(x)/T)

∑y′∈Y exp(Gy′ (x)/T)

)
.

Hinton [2015] suggested using a “tempered” cross-entropy loss,

ℓ(x) = ∑
y∈Y

exp(Fy(x)/T)

∑y′∈Y exp(Fy′ (x)/T)

 1
T

Gy(x)− log ∑
y′∈Y

exp(Gy′ (x)/T)

.

Here, the distillation loss is “tempered” by a temperature parameter
T > 0. Typically, the teacher is trained with T = 1. However, often the
teacher gets overconfident in its predictions, so we can set T > 1 to soften
its outputs. Deriving the gradient is trivial,

∂ℓ

∂Gy
=

1
T

(
exp(Fy(x)/T)

∑y′∈Y exp(Fy′ (x)/T)
− exp(Gy(x)/T)

∑y′∈Y exp(Gy′ (x)/T)

)
.

Notice that the gradient is a difference of tempered logits.
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9 Neural tangent kernel

9.1 Linearized models

We can linearize a model f [θ] by a first-order Taylor approximation over
the parameters θ0,

f [θ] ≈ f [θ0] + ⟨∇f [θ0], θ− θ0⟩, θ ∈ RP.

In this way, we can define a linear model with parameters β,

h[β](x) .
= f [θ0](x) + β⊤∇f [θ0](x).

Here, ∇f [θ] : Rd × Rp can be seen as constructing a p-dimensional
feature vector and h[β] a linear model over those features—we have a
kernel method with the following kernel,

k(x, x′) .
= ∇f [θ0](x)⊤∇f [θ0](x′).

Assuming that we want to minimize the mean-squared error,

ℓ(β)
.
=

1
2
∥ f + Φβ− y∥2, Φ

.
= [∇f [θ0](x1), . . . ,∇f [θ0](xn)] ∈ Rn×p,

we get the following unique solution,

β⋆ = Φ⊤K−1(y− f ), K .
= ΦΦ⊤.

And, we make predictions by

h⋆(x) = k(x)⊤K−1(y− f ), k(x) .
= [k(x, x1), . . . , k(x, xn)] ∈ Rn.

We now have a linearized network—along with a way of evaluating it—
which is simply an approximation of a model with parameters θ0.

9.2 Training dynamics

Consider the case where we wish to minimize the mean-squared error,

ℓ(θ) =
1
2
∥ f [θ]− y∥2, f [θ] .

= [ f [θ](x1), . . . , f [θ](xn)].

We optimize the model parameters by gradient descent,

θt+1 = θt − η∇ℓ(θt).

We can derive the ordinary differential equation of this process by rear-
ranging the above,

θt+1 − θt

η
= −∇ℓ(θt)

dθt

dt
= −∇ℓ(θt) η is the stepsize and we turn it into continuous

time.

=
n

∑
i=1

(yi − f [θt](xi))∇f [θt](xi)

.
= θ̇t.
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We can also consider the functional gradient flow for a data point xj,

ḟ (xj)
.
= ∇f [θ̇t](xj)

= θ̇⊤t ∇f [θt](xj)

=

(
n

∑
i=1

(yi − f [θ](xi))∇f [θt](xi)

)⊤
∇f [θt](xj)

=
n

∑
i=1

(yi − f [θt](xi))∇f [θt](xi)
⊤∇f [θt](xj)

=
n

∑
i=1

(yi − f [θt](xi))k[θt](xi, xj).

This can also be written in matrix form as

ḟ = K[θt](y− f ).

This shows that the kernel governs the evolution of the joint sample
predictions.

Now we can analyze how gradient descent behaves—it is entirely
dependent on the kernel. However, it only works if the Taylor approxi-
mation is accurate—this is only the case for θ close to θ0. Whereas the
linearized model treats θ0 as fixed in this sense, this approximation does
not necessarily need to remain valid during the training dynamics of
gradient descent.

9.3 Infinite width

In practice, it has been found that as the width of a model is scaled, the
parameters stay close to their initialization during gradient descent. One
can prove that if the model is scaled to infinite width—i.e., p→ ∞—-then
the parameters stay close to initialization. As a result, the feature func-
tion ∇f [θ](x) does not change significantly with θ. Since the gradient is
essentially static, the effective kernel also remains fixed,

k(x, x′) = ∇f [θ](x)⊤∇f [θ](x′).

This is called the NTK (Neural Tangent Kernel) [Jacot et al., 2018]. Under
these training dynamics, minimizing the mean-squared error equates
to solving a kernel regression problem with k as we saw above. This
provides analytical insight into why overparametrization works so well
in practice and why such models generalize, despite having the obvious
ability to overfit.

9.4 NTK of an infinite-width MLP

Consider an MLP with L layers and ml denoting the number of parame-
ters in layer l ∈ [L], where we initialize the parameters by

wl
ij ∼ N

(
0,

σw√
ml

)
, bl

i ∼ N
(

0,
σb√
ml

)
. LeCun initialization.
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Now consider the case where ml → ∞ for all l ∈ [L]. Under suitable
conditions, it can be shown that with the above scaling, the initial NTK
converges to a deterministic limit k∞. The kernel limit depends only on
the law of initialization and not the actual initialized values. Effectively,
there is only one possible initial infinite-width network. With a few ad-
ditional assumptions, it can also be shown that θt converges uniformly
to k∞.

In other words, the NTK remains constant under gradient flow—NTK
constancy,

∂k[θt]

∂t
= 0.

When NTK constancy holds, learning in the infinite width limit is equiv-
alent to the linearized model. As a result, the solution to NTK learning
can be expressed as

f∞(x) = k∞(x)⊤K−1
∞ (y− f ).

Bietti and Mairal [2019] showed that the NTK of a two-layer MLP with
a ReLU activation function can analytically be written as

k∞(x, x′) = ∥x∥∥x′∥κ
(

x⊤x′

∥x∥∥x′∥

)
,

where

κ(u) .
=

2u
π
(π − arccos(u)) +

√
1− u2

π
.
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10 Bayesian learning

Starting from a prior p(θ), we want to compute or approximate the pos-
terior p(θ | D). The ultimate goal is the Bayesian predictive distribution,

f (x) =
∫

p(θ | D) f [θ](x)dθ,

where the posterior can be defined via Bayes’ rule,

p(θ | D) = p(D | θ)p(θ)
p(D) , p(D) =

∫
p(θ)p(D | θ)dθ.

The evidence p(D) is often intractable, but we often do not need it when
unnormalized probabilities are sufficient.

The isotropic Gaussian is a common prior,

p(θ) = N (θ, σ2 I).

Optimizing this prior leads to a weight decay term as we have seen
before,

θ⋆ = argmax
θ∈Θ

p(θ | D)

= argmax
θ∈Θ

p(D | θ)p(θ) p(D) is a constant w.r.t. θ.

= argmin
θ∈Θ

− log p(D | θ)− log p(θ) The logarithm is increasing.

= argmin
θ∈Θ

− log p(D | θ)− log p(θ)

= argmin
θ∈Θ

− log p(D | θ) +
1

2σ2 ∥θ∥
2 Plug in the definition of the Gaussian and remove

all terms which are constant w.r.t. θ.
= ⊛

Further assume that we have data that is described by a function
f ⋆ : X → Y with normal noise,

yi = f ⋆(xi) + ϵi, ϵi ∼ N (0, γ2).

We get the following negative log likelihood,

− log p(D | θ) = −
n

∑
i=1

log p(yi | xi, θ)

∝ −
n

∑
i=1

1
2γ2 (yi − f [θ](xi))

2 We modeled yi ∼ N ( f ⋆(xi), γ2) and f [θ] must
approximate f ⋆.

= − 1
2γ2 ∥y− f [θ]∥2.

So, the final optimization problem becomes

⊛ = argmin
θ∈Θ

− 1
2γ2 ∥y− f [θ]∥2 +

1
2σ2 ∥θ∥

2.
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Finally, the question becomes how we sample parameters from the
posterior p(θ | D) to approximate the predictive distribution,

f (x) ≈
m

∑
i=1

p
(

θ(i)
∣∣∣ D)

∑m
j=1 p

(
θ(j)

∣∣ D) f
[
θ(i)
]
(x)

10.1 Markov chain Monte Carlo

MCMC (Markov Chain Monte Carlo) is the standard method of sampling
from a high-dimensional posterior distribution. It does so by defining a
Markov chain in the parameter space, where the stationary distribution
is equal to the posterior—when sampling a random sequence of parame-
ters, we converge that we are at any parameter pair with the probability
of its posterior. If we can construct such a Markov chain, we can sample
the posterior by running the Markov chain for long enough—this period
is known as the burn-in period. Further note that close parameters in the
Markov chain are highly correlated, so we cannot take nearby samples
as independent draws from the posterior.

10.2 Metropolis-Hastings

Lemma 10.1. If a Markov chain, described by its kernel Π : Θ →
∆(Θ), satisfies the DBE (Detailed Balance Equation),

q(θ)Π(θ′ | θ) = q(θ′)Π(θ | θ′), ∀θ, θ′ ∈ Θ,

then the Markov chain is time reversible and has the posterior dis-
tribution q.

Using Lemma 10.1, we can thus guarantee that the stationary distribu-
tion of the Markov chain is the posterior if we have

p(θ | D)Π(θ′ | θ) = p(θ′ | D)Π(θ | θ′), ∀θ, θ′ ∈ Θ.

MH (Metropolis-Hastings) starts with sampling from an arbitrary Markov
kernel Π̃ and modifies the transition probability with an acceptance (or
rejection) step to achieve an effective kernel Π that satisfies the DBE. Let
α(· | ·) be the acceptance function, and construct Π as

Π(θ′ | θ) = Π̃(θ′ | θ)α(θ′ | θ).

Intuitively, Π̃ makes a suggestion and α accepts or rejects it, probabilisti-
cally. Then, we need to construct α such that it satisfies the DBE,

p(θ | D)Π̃(θ′ | θ)α(θ′ | θ) = p(θ′ | D)Π̃(θ | θ′)α(θ | θ′)

The acceptance function must satisfy a one-sided structure,

α(θ′ | θ) = 1∨ α(θ | θ′) = 1.
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Thus, the following is the only choice of α,

α(θ | θ′) = min
{

1,
p(θ | D)Π̃(θ′ | θ)

p(θ′ | D)Π̃(θ | θ′)

}
.

If Π̃ is symmetric, then the acceptance probability is simply the ratio of
posteriors.

A potential problem with this approach is that while the Markov chain
is guaranteed to converge to the posterior as its stationary distribution,
this might take arbitrarily long—the burn-in period can be impractically
costly. This is due to poor initial kernels Π̃ leading to very high rejection
probabilities.

10.3 Hamiltonian Monte Carlo

HMC (Hamiltonian Monte Carlo) is an MCMC method for obtaining pos-
terior averages. Consider an energy function—or loss function—equal to
the negative log posterior,

E(θ) .
= −∑

x,y
log p[θ](y | x)− log p(θ).

The Hamiltonian is defined as the energy function, augmented with a
momentum vector v and a corresponding energy term,

H(θ, v) .
= E(θ) +

1
2

v⊤M−1v.

The joint probability of θ and v is given by a Gibbs distribution,

p(θ, v) ∝ exp(−H(θ, v)).

We get the following two coupled differential equations—Hamiltonian
dynamics,

v̇ = −∇E(θ), θ̇ = v.

HMC discretizes this dynamic with a stepsize η,

θt+1 = θt + ηvt

vt+1 = vt − η∇E(θt).

Although very slowly, HMC samples from the posterior by following
these dynamics. Note that it is very similar to gradient descent with
momentum—we essentially sample the posterior by following momentum-
based gradient descent dynamics.14 However, this approach requires the 14 As a result, optimization with momentum gradi-

ent descent results in a single sample approxima-
tion of the predictive distribution.

full gradient, which is often intractable in practice.

10.4 Langevin dynamics See the following video for a visualization of the
sampling process with Langevin dynamics—https:

//www.youtube.com/watch?v=cVn0kru3hL8.Langevin dynamics extends HMC by introducing friction,

θ̇ = v

dv = −∇E(θ)dt− Bvdt +N (0, 2Bdt).

https://www.youtube.com/watch?v=cVn0kru3hL8
https://www.youtube.com/watch?v=cVn0kru3hL8
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Intuitively, the friction reduces the momentum and “dissipates” kinetic
energy and the Wiener noise process injects stochasticity. As with HMC,
we can discretize the above process,

θt+1 = θt + ηvt

vt+1 = (1− ηγ)vt − ηs∇Ẽ(θ) +
√

2γηN (0, I).

Here, Ẽ is a stochastic potential function, which includes an empirical
loss over a random mini-batch of the data. The first term introduces
friction, which leads to an exponential damping with time.

10.5 Gaussian processes

GPs (Gaussian Processes) are one of the few fully tractable Bayesian meth-
ods. It starts from a continuous stochastic process over the input domain
X ,

{ f (x) | x ∈ X},

where each f (x) is a real random variable. f is a GP if for every finite
subset {x1, . . . xn} ⊂ X , the resulting finite marginal is jointly normally
distributed, 

f (x1)
...

f (xn)

 ∼ N (µ, Σ).

The mean µ can be computed by a deterministic regression, whereas
the covariance matrix Σ introduces stochasticity to the prediction. When
given a finite dataset, the covariance matrix can be fully evaluated using
a kernel function,

σij = k(xi, xj), k : X ×X → R.

The kernel function can be seen as a prior over function space that de-
scribes how related the output values corresponding to two input values
should be. E.g., we might want to encode that close input values should
result in close output values—then you might want to use the RBF kernel,

k(x, x′) = exp
(
−γ∥x− x′∥2

)
.

Linear networks. Assume we have n d-dimensional inputs. Consider a
single linear unit w ∈ Rd with a random Gaussian weight vector,

w ∼ N
(

0,
σ2

d
Id

)
.

The outputs can be written as yi = w⊤xi for all i ∈ [n], or in a vectorized
form,

y = Xw, X ∈ Rn×d.

Note that this is a Gaussian vector,

y ∼ N
(

0,
σ2

d
X⊤X

)
.
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Hence, this is a Gaussian process with the following kernel,

k(x, x′) =
σ2

n
x⊤x′.

We can do this for multiple units, because the preactivations of units in
the same layer are independent, conditioned on the input.

If we increase the depth of this network, we do not get the same effect
in general. However, a deep preactivation process is “near normal” for
high-dimensional inputs. This can be made rigorous with a multivariate
version of the central limit theorem.

Non-linear networks. By introducing non-linear activation functions into
the network, the activations are no longer Gaussian. However, due to
the central limit theorem, they get are effectively turned back into Gaus-
sians when they propagate to the next layer. The mean function can be
computed by

µ
(

xℓ+1
)
= E

[
ϕ
(

W ℓxℓ
)]

.

This might need to be computed using numerical integration. The kernel
can be defined recursively,

kℓij = E
[
ϕ
(

xℓ−1
i

)
ϕ
(

xℓ−1
j

)]
.

We can now use kernel regression,

f ⋆(x) = k(x)⊤K−1y, K = KL.

In conclusion, deep neural networks can be thought of as GPs in the
infinite-width limit. The advantage is that we can use wide random layers
without the need for training, we can quantify uncertainty, and we can
leverage techniques from kernel machines. However, in general, it is not
feasible to compute f ⋆ and store Kℓ. Furthermore, the expectations need
to be computed, which is much less efficient than optimizing weights
with gradient descent.
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11 Statistical learning theory

11.1 Vapnik-Chervonenkis theory of machine learning

Let F be a function class and consider its functions f ∈ F to be binary
classifiers. Then, the following denotes the set of possible classification
outcomes over a dataset D ⊆ X ×Y with n datapoints,

F (D) .
= {[ f (x1), . . . , f (xn)] | f ∈ F}, f : X → {0, 1}.

Furthermore, the following denotes the maximal number of different
classifications of a dataset of size n that can be realized by functions in
F ,

F (n) .
= sup
|D|=n

|F (D)|.

One says that F shatters D if |F (D)| = 2n, i.e., every possible labeling is
realized by some function f ∈ F . The VC dimensionality of a function
class F is the maximum number of data points such that a dataset of
that size is shattered by F ,

VCdim(F ) .
= max

n∈N
sup
|D|=n

1{F (n) = 2n}.

Let ℓ̂ : F → R be the empirical loss function and ℓ : F → R the
expected loss function. Under uniform convergence, one can prove the
VC inequality,

P
(

sup
f∈F
|ℓ̂( f )− ℓ( f )| > ϵ

)
≤ 8|F (n)| exp

(
−nϵ2

32

)
.

Here, |ℓ̂− ℓ| is the generalization error. Note that if the VC dimensional-
ity of F is bounded, then in the large sample size limit, the generalization
error is bounded. In words, using this theorem, no generalization guar-
antees can be given if F can be fit to any labeling.

Randomization experiments. Zhang et al. [2021] experimented with the
CIFAR-10 dataset, which is a classification dataset that labels images as
one-of-ten classes. They observed the following

1. Deep neural networks can perfectly fit the training data and obtain a
competitive test error;

2. When randomly replacing training labels, the models can still perfectly
fit the data. This shows that the training data has been memorized
perfectly;

3. The training time does not increase much when the labels are random-
ized, so it is not hard to find memorization solutions;

4. When randomly shuffling pixels, the models can also perfectly fit the
data. Hence, the inductive bias of convolutional networks does not
provide much benefit in this regard.
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These findings are unexplainable by learning theory. Since perfect clas-
sification is possible on random labelings, the model must have infinite
capacity and hence the VC dimensionality is unbounded. As a result, the
VC inequality cannot be applied to explain the generalization of the first
observation.

Test risk

Training risk

Overfit

Underfit

Capacity of F

R
is

k

Figure 11.1. Double descent curves.

Double descent. In recent years, the double descent phenomenon has
been observed in overparameterized models. At first, the model will
overfit at some point when it memorizes the training data. However,
beyond that point, large models will eventually start getting even better
test results than before the model overfit—see Figure 11.1.

Test error

Train error

Figure 11.2. Flat minima lead to better generaliza-
tion than sharp minima.

Flat minima. The flatness of local minima are linked to their general-
ization ability [Hochreiter and Schmidhuber, 1997]. If a minima is flat,
small perturbations in the parameters will only have a small effect on
performance—see Figure 11.2. Keskar et al. [2016] showed that small-
batch stochastic gradient descent leads to flatter minima, because of
the introduced stochasticity. Similarly, weight averaging also improves
flatness of found optima [Izmailov et al., 2018]. Furthermore, entropy
stochastic gradient descent is specifically designed to find flat minima
by introducing Langevin dynamics to favor optima with high entropy
[Chaudhari et al., 2019].

11.2 PAC Bayesian

Consider the 0/1 loss of a function f on a sample x with binary label
y ∈ {−1, 1},

1{ f (x) ̸= y} = 1− y f (x)
2

.

Lemma 11.1. For any p ≥ q and p-measurable X,

Eq[X] ≤ DKL(q∥p) + log Ep[exp(X)].

Proof.

log Ep[exp(X)] ≥ log Eq

[
exp(X)

p(X)

q(X)

]
p ≥ q.

≥ Eq

[
log
(

exp(X)
p(X)

q(X)

)]
Jensen’s inequality

= Eq[X]−Eq[log
p(X)

q(X)
]

= Eq[X]− DKL(q∥p).

■
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Theorem 11.2. For a fixed p, any q, and ϵ ∈ (0, 1), we have the
following with probability greater than or equal to ϵ,

Eq[ℓ( f )]−Eq[ℓ̂( f )] ≤

√
2
n

(
DKL(q∥p) + log

2
√

n
ϵ

)
.

Here, p is a prior over the parameters, q is the posterior computed
from n datapoints, and we bound the expected generalization gap over
stochastic classifiers. This ensures a rate of O(1/√n) on the generalization
error without any hidden constants. However, this bound only applies
to stochastic classifiers, not single classifiers.

PAC Bayesian learning. Let the prior be a Gaussian over parameters,

p = N (0, λ2 I).

Then, parameterize a Gaussian model distribution,

q = N (θ, σ2).

Since the prior and posterior are Gaussian, we can compute their KL
divergence in closed form,

DKL(q∥p) =
p

∑
i=1

log
λ

σi
+

σ2
i + θ2

i
2λ2 − 1

2
.

We can then optimize the PAC Bayes bound to optimize the expected
risk,

ℓPAC(q)
.
= Eq[ℓ̂] +

√
2
n

(
DKL(q∥p) + log

2
√

n
ϵ

)
.

A good choice of q involves one that achieves small empirical error ℓ̂

in expectation and is close to the prior. So, the PAC Bayes loss func-
tion effectively adds a regularization term. Generally, the prior has large
variance, so q must balance good empirical performance and retaining
high variance such that small parameter perturbations do not influence
performance.

Dziugaite and Roy [2017] proposed applying stochastic gradient de-
scent to the posterior distribution q over parameters,

θ = θ− η∇θℓ̂(θ̃), σ = σ − η∇σ ℓ̂(θ̃), θ̃ ∼ N (θ, σ2).

Backpropagation can be done by making use of the reparameterization
trick,

θ̃ = θ+ σ ⊙ ϵ, ϵ ∼ N (0, I).
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12 Generative models

12.1 Autoencoders

Autoencoders map datapoints to latents with an encoder E and latents
to their respective datapoint with a decoder D,

E : X → Z , D : Z → X .

Generally, the latent space is smaller than the data space. As a result,
new data points can be sampled by sampling the latent space and using
the decoder.

Linear autoencoder. The simplest autoencoder is linear,

E(x) = Ex, D(z) = Dz, E ∈ Rm×d, D ∈ Rd×m,

where generally m≪ d. Reconstruction loss,

ℓ[E, D](x) =
1
2
∥x− x̂∥2 =

1
2
∥(I − DE)x∥2.

The solution to this loss is performing PCA (Principal Component Analysis)
on the covariance matrix 1

n X⊤X ∈ Rd×d and taking the m principal
eigenvectors.

Variational autoencoder. VAEs (Variational Autoencoders) [Kingma, 2013]
perform inference by sampling a latent from a prior and decoding it,

x = D[θ](z), z ∼ N (0, Im).

However, the question is how to optimize the decoder. In generative
modeling, we want to optimize the likelihood of the data. However, this
is not possible for the VAE, so we must bound it using the ELBO (Evidence
Lower Bound),

log p[θ](x) = log
∫

p[θ](x, z)dz Sum rule.

= log
∫

p[θ](x | z)p(z)dz Product rule. The conditional distribution is
induced by the decoder with parameters θ.

= log
∫

q(z)
(

p[θ](x | z)
p(z)
q(z)

)
dz q can be any distribution over z, which we will

make use of later.

= log Eq

[
p[θ](x | z)

p(z)
q(z)

]
≥ Eq

[
log
(

p[θ](x | z)
p(z)
q(z)

)]
Jensen’s inequality.

= Eq[log p[θ](x | z)]−Eq

[
log

q(z)
p(z)

]
= Eq[log p[θ](x | z)]− DKL(q∥p)

= Ep[ϑ](z|x)[log p[θ](x | z)]− DKL(p(z | x)∥p(z)). Since this holds for any distribution over z, we can
replace q by p[ϑ](z | x)—this distribution is
induced by the encoder with parameters ϑ.



deep learning 53

Thus, to maximize the log-likelihood of the data, we maximize the ELBO.
The ELBO can be seen as a reconstruction loss with a regularization
term—the KL divergence makes sure that the predicted distributions
over the latent variables stays close to the prior. The advantage of this
is that we get a well-behaving latent space, where the distribution over
latents for x is an area rather than a single point. Then, the decoder will
see a greater variety of latents during training, making it perform well
on all latents around the prior. As a result, when we want to sample
from the autoencoder, we can sample z from the prior and get a good
reconstruction x = D(z). If every training data point instead only had
to cover a single point in the latent space, the latent z would likely not
have been seen before by the decoder and thus give a bad sample.

In general, the posterior p[ϑ](z | x) is intractable, so we restrict it to
the Gaussian family of distributions,

z | x ∼ N (µ[ϑ](x), Σ[ϑ](x))

Generally, the prior is given as

z ∼ N (0, I).

Consequently, the KL divergence can be computed in closed form,

DKL(p[ϑ](z | x)∥p) =
1
2

(
∥µ[ϑ](x)∥2 + tr(Σ[ϑ](x))− log det(Σ[ϑ](x))−m

)
.

The parameters of the encoder ϑ can be optimized by making use of the
reparameterization trick.

12.2 Generative adversarial networks

Generator

Discriminator

“Nature”

x ∼ p[θ]x ∼ p

1 0

Figure 12.1. The loss function of the generator
is adversarial in GANs—the generator wants the
discriminator to “think” that its generations come
from “nature”.

Optimizing the likelihood of the data is not the only way to train a
generative model—there are many ways to provide a training signal to a
generative model. In GANs (Generative Adversarial Networks) [Goodfellow
et al., 2020], we introduce a classifier that distinguishes between samples
from “nature” and the generator—see Figure 12.1. The high-level goal
of the generator is to “fool” the discriminator into “thinking” that its
generations come from “nature”. The training signal thus comes from an
adversarial model.

Formally, the discriminator is a binary classifier where 1 means that
the sample is real and 0 that it is not. We have the following augmented
distribution over samples and their label,

p̃(x, y) =
1
2
(yp(x) + (1− y)p[θ](x)), y ∈ {0, 1},

where p is the true probability distribution and p[θ] denotes the model’s
implicit distribution over samples. The theoretical Bayes-optimal classi-
fier is

P(y = 1 | x) =
P(x | y = 1)P(y = 1)

P(x)
=

p(x)
p(x) + p[θ](x)

. Assume a 1-to-1 ratio of samples, so the prior is
1/2.
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We can then train the generator to minimize the logistic log-likelihood of
the Bayes-optimal discriminator,

ℓ⋆(θ) = Ex,y∼ p̃[y log P(y = 1 | x) + (1− y) log(1−P(y = 1 | x))]

= Ex,y∼ p̃

[
y log

p(x)
p(x) + p[θ](x)

+ (1− y) log
p[θ](x)

p(x) + p[θ](x)

]
= Ep

[
log

p(x)
p(x) + p[θ](x)

]
+ Ep[θ]

[
log

p[θ](x)
p(x) + p[θ](x)

]
= Ep[log p(x)]−Ep[log(p(x) + p[θ](x))]

+ Ep[θ][log p[θ](x)]−Ep[θ][log(p(x) + p[θ](x))]

= −1
2

H(p)− 1
2

H(p[θ]) + H
(

1
2
(p + p[θ])

)
− log 4 Combine the two negative terms into an

expectation w.r.t. p̃. Then, get the argument of the
logarithm to be p̃ to get the entropy term of
p̃ = 1

2 (p + p[θ]).
= 2DJS(p∥p[θ])− log 4.

In conclusion, minimizing the logistic log-likelihood of the optimal clas-
sifier leads to a loss function that is the discrepancy between the nature
distribution and the model distribution.

Generally, the Bayes-optimal classifier is intractable. Instead, we pa-
rameterize a discriminator,

q[φ] : X → [0, 1], φ∼ Φ.

Since this model cannot be better than the Bayes-optimal classifier, we
have the following bound,

ℓ⋆(θ) ≥ sup
φ∈Φ

ℓ(θ,φ),

where

ℓ(θ,φ) .
= Ep̃[y log q[φ](x) + (1− y) log(1− q[φ](x))].

θt

θt+1/2

θt+1

∇
ℓ(

θ t)

∇ℓ(θt+1/2 )

Figure 12.2. Illustration of the extragradient algo-
rithm for updating θ.

In practice, we thus first optimize the discriminator and then the gen-
erator,

θ⋆,φ⋆ ∈ argmin
θ∈Θ

argmax
φ∈Φ

ℓ(θ,φ).

This can also be interpreted as a two-player zero-sum game—we need
the extragradient optimization algorithm,

θt+1 = θt − η∇θℓ(θt+1/2,φt), θt+1/2
.
= θt − η∇θℓ(θt,φt)

φt+1 = φt + η∇φℓ(θt,φt+1/2), φt+1/2
.
= φt + η∇φℓ(θt,φt).

This is necessary, because alternating gradient descent/ascent is not guar-
anteed to converge to a local minimum.

In practice, it is also necessary to set the loss function of the generator
to be the following,

ℓ(θ | φ) = Ep[θ][− log q[φ](x)]. Initially, it was Ep[θ]
[
log(1− qφ(x))

]
.

As a result, the generator does not saturate when its performance is poor,
because the gradient is bounded as qφ(x)→ 1.



deep learning 55

12.3 Diffusion models

As in VAEs, we want to map a simple distribution to a target distribution
over the data,

π 7→ p[θ] ≈ p,

where π is the simple distribution. Whereas VAEs do this in a single
pass, diffusion models do it incrementally,

π = πT 7→ πT−1 7→ · · · 7→ π0 ≈ p.

Stochastic differential equation view. One can view the diffusion process
in a continuous time by an SDE (Stochastic Differential Equation) [Song
and Ermon, 2019, Song et al., 2020],

dxt = −
1
2

βtxtdt +
√

βtdWt,

where Wt is a Wiener process. The time-reversed SDE can be computed
by the following,

dxt =

(
−1

2
βtxt − βt∇xt log qt(xt)

)
dt +

√
βtdW̃t,

where W̃t is the reversed Wiener process. Intuitively, denoising amounts
to approximating a vector field over the gradient of the probability distribution—
moving towards areas with high probability density. Effectively, we are
performing gradient ascent on the log-probability perturbed by a Wiener
noise process. Hence, we can think of diffusion models as approximating
the score function ∇ log p(x).

Figure 12.3. Diffusion models through the lens of
SDEs [Song et al., 2020].

Evidence lower bound view. One can also present diffusion models in a
less involved way by deriving an ELBO. Let the following be the forward
process,

xt =
√

1− βtxt−1 +
√

βtϵt, ϵt ∼ N (0, I).

Let q be the kernel of the forward diffusion Markov chain and p[θ] the
learned kernel for the time-reversed one. Furthermore, let p be the actual
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distribution over data points. Then, the log-likelihood of a sample x0 ∼ p
can be lower bounded as follows,

log p[θ](x0) = log
∫

p[θ](x0:T)dx1:T Sum rule.

= log
∫

q(x1:T | x0)
p[θ](x0:T)

q(x1:T | x0)
dx1:T

≥ Eq(x1:T |x0)

[
log

p[θ](x0:T)

q(x1:T | x0)

]
Jensen’s inequality.

= Eq(x1:T |x0)

[
T

∑
t=0

log p[θ](xt | xt+1:T)−
T

∑
t=1

log q(xt | x0, x1:t−1)

]
Product rule.

= Eq(x1:T |x0)

[
T

∑
t=0

log p[θ](xt | xt+1)−
T

∑
t=1

log q(xt | x0, xt−1)

]
Markov property.

= Eq(x1:T |x0)

[
log p[θ](x0 | x1) + log

p(xT)

q(xT | x0)
+

T−1

∑
t=1

log
p[θ](xt | xt+1)

q(xt | x0, xt−1)

]

= Eq[log p[θ](x0 | x1)] +
T−1

∑
t=1

Eq

[
log

p[θ](xt | xt+1)

q(xt | x0, xt−1)

]
+ Eq

[
log log

p(xT)

q(xT | x0)

]

= Eq[log p[θ](x0 | x1)]−
T−1

∑
t=1

DKL(q(xt | xt−1, x0)∥p[θ](xt | xt+1))− DKL(q(xT | x0) | π).

We can divide this up into loss terms per timestep,

Lt =


Eq[log p[θ](x0 | x1)] t = 0

−DKL(q(xt | xt−1, x0)∥p[θ](xt | xt+1)) 0 < t < T

−DKL(q(xT | x0) | π) t = T.

Here, the KL divergences can analytically be computed, because all q are
Gaussians and if the steps βt are small enough, the reverse distributions
p[θ] can be accurately approximated by Gaussians—this is generally how
they are parameterized,

xt−1 | xt ∼ N (µ[θ](xt, t), Σ[θ](xt, t)).

Entropy bounds. Using conditional entropy, we can derive the following,

H(xt−1 | xt) = H(xt | xt−1) + H(xt−1)− H(xt).

Since the unit distribution is the maximum entropy distribution, we have
the following entropy bounds between timesteps,

H(xt−1 | xt) ≤ H(xt | xt−1).

As such, the entropy of the reverse process is bounded by the entropy of
the forward process.

Simplified model. Consider a noise schedule {βt}T
t=1 and define

ᾱt
.
=

t

∏
τ=1

(1− βτ), β̄t
.
= 1− ᾱt.
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Using these, we can compute the forward process in closed form at any
timestep,

xt ∼ N (
√

ᾱtx0, β̄t I).

Furthermore, the q targets in the ELBO can be derived to be the following,

xt−1 | xt ∼ N (µ(xt, x0, t), β̃t I).

where

µ(xt, x0, t) .
=

√
ᾱt−1βt

1− ᾱt
x0 +

1− ᾱt−1

1− ᾱt

√
1− βtxt, β̃t

.
=

1− ᾱt−1

1− ᾱt
βt.

Now, the divergences for 0 < t < T in the ELBO simplify to

Lt =
1

2σ2
t
∥µ(xt, x0, t)− µ[θ](xt, t)∥2,

where σ2
t ∈ [βt, β̃t] is the chosen fixed variance of the backward process.

We can also use a different definition of µ(xt, x0, t) by noting the for-
ward process,

xt =
√

ᾱtx0 +
√

1− ᾱtϵ, ϵ ∼ N (0, I)

Rewriting yields

x0 =
1√
ᾱt

xt −
√

1− ᾱt√
ᾱt

ϵ.

As such, we can write µ(xt, x0, t) as

µ(xt, x0, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
.

Note that ϵ fully determines xt and x0 is constant. Hence, the backward
process actually only needs to predict ϵ by a network ϵ[θ](xt, t). Using
this observation a new loss function can be derived,

Eq[Lt | x0] = Eϵ

[
λ(t)∥ϵ− ϵ[θ](xt, t)∥2

]
, λ(t) .

=
β2

t
2σ2

t αt(1− ᾱt)
.

In practice, the full loss is often approximated by

ℓ(θ | x0) =
1
T

T

∑
t=1

Eϵ

[
∥ϵ− ϵ[θ](xt, t)∥2

∣∣∣ x0

]
.

We make a Monte Carlo approximation of this loss by uniformly sam-
pling a timestep t and sampling noise ϵ ∼ N (0, I).
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13 Adversarial attacks

In adversarial attacks, the attacker wants to make small changes to the
input of the model such that the model gives different results. This can
have negative consequences in use cases such as automated driving,
where the traffic signs may be perturbed to give the wrong signals to
the car. Furthermore, it could also be used in medical classification and
segmentation. Such attacks hint at fundamental differences in human
and machine vision.

p-norm robustness. Consider a multi-class classifier,

f : Rd → {1, . . . , m}.

The goal of an adversarial attack is to find a perturbation η such that

f (x + η) ̸= f (x), ∥η∥p ≤ ϵ,

where

∥x∥p
.
=

(
d

∑
i=1

xp
i

)1/p

, ∥x∥∞
.
=

d
max
i=1
|xi|, ∥x∥0

.
= |{i | xi ̸= 0}|. Using ∞-norm, we get perturbation everywhere,

whereas we only change a few pixels if we use
0-norm.

We will focus on p = 2 and an affine classifier that we wish to attack,

f (x) =
m

argmax
i=1

fi(x), fi(x) = w⊤i x + bi.

Further consider a binary classifier—m = 2. Assume x is currently clas-
sified as the first class, then we want x + η to be classified as the second
class. We need f2(x + η) > f1(x + η), so we have the following convex
program,

min
1
2
∥η∥2

2

subject to f1(x + η) ≤ f2(x + η).

This can be rewritten to

min
1
2
∥η∥2

2

subject to (w1 −w2)
⊤(x + η) + b1 − b2 ≤ 0.

The Lagrangian is written as

L(η, λ) =
1
2
∥η∥2

2 + λ
(
(w1 −w2)

⊤(x + η) + b1 − b2

)
.

By the KKT conditions, we have

∇ηL(η, λ) = η+ λ(w1 −w2)
!
= 0.

Hence,
η = λ(w2 −w1).
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We only need to find the minimum λ > 0 such that

0 > f1(x + λ(w2 −w1))− f2(x + λ(w2 −w1))

⇐⇒ 0 > (w1 −w2)
⊤(x + λ(w2 −w1)) + b1 − b2

⇐⇒ 0 > f1(x)− f2(x)− λ∥w1 −w2∥2
2

⇐⇒ λ >
f1(x)− f2(x)
∥w1 −w2∥2

2
.

In conclusion the optimal η is the following,

η =
f1(x)− f2(x)
∥w2 −w1∥2

2
w2 −w1.

This can be generalized to any source class i and target class j—if the
target class does not matter, you take the most easily confusable class.
In the general case, we can linearize the model and iteratively find the
optimal adversarial perturbation [Moosavi-Dezfooli et al., 2016]. This is
done by iteratively solving the following convex program,

min ∥δ∥p

subject to δ⊤
(
∇fi(x)−∇f j(x)

)
< fi(x)− f j(x).

Then, update until f j(x + ηt) > fi(x + ηt)

ηt = ηt−1 + δ, η0 = 0.

Robust training. Robust training is a systemic approach to making mod-
els robust to adversarial attacks. It works by extending the loss function
to neighborhoods of training points,

ℓ(x) 7→ max
η:∥η∥p≤ϵ

ℓ(x + η).

This yields a two-player minimax game, where the adversary picks the
worst perturbation and the learner picks the best parameters in response,

argmin
θ∈Θ

max
η:∥η∥p≤ϵ

ℓ(x + η).

The adversarial task can be solved with projected gradient ascent, e.g.
when p = 2, we get

ηt+1 = ϵ ·Π(ηt + α ·∇xℓ(x + ηt)), Π(z) .
=

z
∥z∥2

.

And with p = ∞, we get

ηt+1 = ϵ ·Π(ηt + α · sgn(∇xℓ(x + ηt))), Π(z) .
=

z
∥z∥∞

.

The fast gradient sign method [Goodfellow et al., 2014] performs one iter-
ation of projected gradient descent with p = ∞, resulting in the following
adversarial choice,

η = ϵ · sgn(∇xℓ(x)).
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