
General

• Cosine theorem: ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩.

• 1√
d
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1 ≤

√
d∥x∥2.

• Cosine angle: cos∠(x, y) = x⊤y
∥x∥∥y∥ .

• Cauchy-Schwarz: |⟨x, y⟩| ≤ ∥x∥∥y∥.
• Completing the square: If M is symmetric and invertible:

x⊤Mx− 2b⊤x = (x−M−1b)⊤M(x−M−1b)

− b⊤M−1b.

• Woodbury’s identity: (I + UV)−1 = I−U(I + VU)−1V.

• Points of S are in general position if any subset Ξ ⊆ S with
|Ξ| ≤ δ is linearly independent.

• Sign function: sgn(z) =
{
+1 z ≥ 0
−1 z < 0

.

• M is positive (semi-)definite if x⊤Mx ≥ 0 (PSD) or
x⊤Mx > 0 (PD) for all x.

• rank(AB) ≤min{rank(A), rank(B)}.
If A ∈ Rm×n, then rank(A) ≤min{m, n}.

• tanh(z) = exp(x)−exp(−x)/exp(x)+exp(−x), σ(z) = 1/1+exp(−z),

ReLU(z) =
{

z z ≥ 0
0 z < 0

.

• tanh(z) = 2σ(2z)− 1.

• ReLU(z) = |z|+z
2 , |z| = ReLU(z) +ReLU(−z).

• Cov(x) = E[(x−E[x])(x−E[x])⊤] = E[xx⊤]−E[x]E[x]⊤.

• Integration by part:
∫

udv = uv−
∫

vdu.

• Geometric series: ∑∞
k=0 ark = a

1−r if |r| < 1.

• log(1+ x) ≈ x for small x.

• 1− x ≤ exp(−x) =⇒ (1− ϵ)n ≤ exp(−nϵ).

• For increasing f , argmaxx x = argmaxx f (x).

• Group (G,◦) satisfies (1) Associativity: (g ◦ h) ◦ k = f ◦ (h ◦ k)
for all g, h, k ∈ G; (2) Identity: There exists a unique e ∈ G
satisfying g ◦ e = e ◦ g = g for all g ∈ G; (3) Inverse: For each
g ∈ G there is a unique inverse g−1 ∈ G such that g ◦ g−1 =
g−1 ◦ g = e; (4) Closure: For every g, h ∈ G, we have g ◦ h ∈ G.

Gradients

Make sure to always type-check gradients!

z = a⊤x =⇒ ∂L
∂x

=
∂L
∂z

a

z = Wx =⇒ ∂L
∂W

=
∂L
∂z

x⊤

z = f (x) element-wise =⇒ ∂L
∂x

=
∂L
∂z
⊙ f ′(x)

z = x⊤Ax =⇒ ∂L
∂x

=
∂L
∂z

(A + A⊤)x

z =
1
2
∥Ax∥2 =⇒ ∂L

∂x
=

∂L
∂z

A⊤Ax

z = softmax(x) =⇒ ∂z
∂x

= diag(z)− zz⊤

σ′(z) = σ(z)(1− σ(z))

tanh′(z) = 1− z2

cos′(z) = − sin(z)

sin′(z) = cos(z)

ReLU′(z) = 1{z ≥ 0}

|x|′ = x
|x|(

f
g

)′
(x) =

f ′(x)g(x)− f (x)g′(x)
g2(x)

∂L
∂xi

=
m

∑
j=1

∂L
∂yj

∂yj

∂xi
.

Information theory

H(p) .
= EX∼p[− log p(X)]

DKL(p ∥ q) .
= EX∼p

[
− log

(
q(X)

p(X)

)]
H(p, q) .

= EX∼p[− log q(X)]

H(p, q) = H(p) + DKL(p ∥ q)

I(p; q) = H(p)−H(p | q)

Probability

p(X | Y) = p(Y | X)p(X)

p(Y)

p(X1:n) = p(X1)
n

∏
i=2

p(Xi | X1:i−1)

p(X1:i−1, Xi+1:n) = ∑
xi

p(X1:i−1, Xi = xi, Xi+1:n).

Gaussian

Definition:

N (x; µ, Σ)
.
=

1√
(2π)d|Σ|

exp
(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
.

Arithmetic:
x + y ∼ N (µx + µy, Σx + Σy)

Mx ∼ N (Mµ, MΣM⊤).

Let p1 = N (µ1, Σ1) and p2 = N (µ2, Σ2), then

H =
d
2

log(2πe) +
1
2

log |Σ1|

DKL =
1
2

[
log
|Σ2|
|Σ1|
− d + tr

(
Σ−1

2 Σ1
)
+ (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
.

Convexity

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y)

f (y) ≥ f (x) + ⟨∇f (x), y− x⟩
⟨∇f (x)−∇f (y), x− y⟩ ≥ 0

∥∇2 f (x)∥2 ≥ 0 .

Strong convexity

f (y) ≥ f (x) + ⟨∇f (x), y− x⟩+ µ

2
∥x− y∥2

∥∇2 f (x)∥2 ≥ µ .

Smoothness

∥∇f (x)−∇f (y)∥ ≤ L∥x− y∥

f (x) ≤ f (y) + ⟨∇f (y), x− y⟩+ L
2
∥x− y∥2

∥∇2 f (x)∥2 ≤ L .

Connectionism

McCulloch-Pitts neuron

f [σ, θ](x) .
= 1{σ⊤x ≥ θ}, σ ∈ {−1, 1}n, x ∈ {0, 1}n, θ ∈ R.

Perceptron

f [w, b](x) .
= sgn(w⊤x + b)

γ[w, b](x, y) .
=

y(w⊤x + b)
∥w∥

γ[w, b](S) .
= min

(x,y)∈S
γ[w, b](x, y)

V(S) .
= {(w, b) | γ[w, b](S) > 0}.

Decision boundary hyperplane: w⊤x/∥w∥ + b/∥w∥ !
= 0. If

γ[w, b](S) > 0, then S is linearly separated. V(S) ̸= ∅ iff S is
linearly separable. Adding points to S makes V(S) smaller.

The perceptron algorithm tries to find any (w, b) ∈ V(S). It
does not aim to find solution with smaller error if V(S) = ∅.
Iterative mistake-driven algorithm:

f [w, b](x) ̸= y =⇒ w← w + yx, b← b + y.
For all iterates wt ∈ span(x1, . . . , xn).

Convergence can be proven by using w⊤wt ≥ tγ and ∥wt∥ ≤
R
√

t, where ∥w∥ = 1, γ[w](S) > 0, and R = maxx∈S ∥x∥.
Then, bound 1 ≥ cos∠(w, wt) = w⊤wt/∥w∥∥wt∥. It converges
within ⌊R2/γ2⌋ iterations.

Number of unique classifications:

C(S, d) =
∣∣∣{y ∈ {−1,+1}n

∣∣∣ ∃w : ∀i : yi(w⊤xi) > 0
}∣∣∣

Assume that points are in general position. Cover’s theorem:

C(n + 1, d) = 2
d−1

∑
i=0

(
n
i

)
.

Proof: Base cases are both 2 and adding a point has two cases
⇒ Recurrence:

C(n + 1, d) = C(n, d) + C(n, d− 1).
For n ≤ d, we have C(n, d) = 2n. After n = 2d, there is a steep
decrease in number of linear classification, quickly moving
toward 0.

Parallel distributed processing

(1) A set of processing units with states of activation; (2) Out-
put functions for each unit; (3) A pattern of connectivity be-
tween units; (4) Propagation rules for propagating patterns of
activity; (5) Activation functions for units; (6) A learning rule to
modify connectivity based on experience; (7) An environment
within which the system must operate.

Hopfield networks

Models an associative memory, which aims to reconstruct
a memory from an input that has been subjected to noise.
Energy function via second-order interactions between n
binary neurons:

H(x) .
=

1
2

d

∑
i=1

d

∑
j=1

wijxixj +
n

∑
i=1

bixi, x ∈ {−1, 1}d.

We have wii = 0 and wij = wji. Simple dynamics:

xi ←
{
+1 H([., xi−1,+1, xi+1, .]) ≤ H([., xi−1,−1, xi+1, .])
−1 otherwise.

Or: xi ← sgn(Hi), where Hi
.
= ∑d

j=1 wijxj − bi.

Hebbian learning (neurons frequently in the same state
reinforce):

W =
1
d

(
n

∑
t=1

xtx⊤t − Id

)
.

Pattern xt is memorized if meta-stable: update rule makes no
updates to it:

xti = sgn(xti +Cti), Cti
.
=

1
d

d

∑
j=1

n

∑
r ̸=t

xrixrjxtj.

If cross-talk |Cti| < 1 for all i, then xt is meta-stable.

If i.i.d. random signs, then Cti ∼ N (0, n/d). At d/n ≈ 0.138,
“avalanche of errors” occurs.

Feedforward networks

Regression models

Mean-squared error: ℓ[θ](S) = 1
2 ∑n

i=1( f [θ](xi)− yi)
2.

Linear model: ℓ[w](S) = 1
2 ∥X⊤w− y∥2 ⇒ Closed form

solution: w⋆ =
(
X⊤X

)−1X⊤y.

Logistic regression (binary outputs) use sigmoid:
σ(z) .

= 1/1+exp(−z). Binary cross-entropy loss:

ℓ[θ](S) = − 1
n

n

∑
i=1

yi log σ( f [θ](xi)) + (1− yi) log(1− f [θ](xi)).

(Multi-class) Cross-entropy loss:
ℓ[θ](x, y) = − log softmaxy( f [θ](x)).

Layers and units

Mapping: f [W, b](x) = ϕ(Wx + b), where ϕ is a pointwise
activation function. DNNs compose: G = FL[θL] ◦ · · · ◦ F1[θ1].

Intermediate layers are permutation symmetric: F[W, b](x) =
P⊤ϕ(PWx + Pb) = P⊤F[PW, Pb](x)⇒ Parameters are not
unique.

Linear networks

Linear layers are closed under composition⇒We do not gain
representational power from composing them.

Residual networks

Residual layers: F[W, b](x) = x + ϕ(Wx + b)− ϕ(0).

Then: F[0, 0] = Id. This makes it such that the model learns
how to incrementally learn a better representation, rather than
having to learn it at every layer. If input and output have dif-
ferent dimensionality, linearly project x. Using this architecture,
the depth can be increased significantly, because gradients
propagate better.

Sigmoid networks

MLP with sigmoid activation:
g[v, W, b](x) .

= v⊤σ(Wx + b), v, b ∈ Rm, W ∈ Rm×n.
Function class: Gn

.
=
⋃∞

m=1 Gn,m, where
Gn,m

.
= {g[v, W, b] | b ∈ Rm, W ∈ Rm×n}.

Or, as a linear span of units,
Gn = span{σ(w⊤x + b) | w ∈ Rn, b ∈ R}.

This set universally approximates C(Rn). But, it does not
provide insight into how depth affects performance⇒ Barron:
Let f : Rn → R with finite C f and any r > 0, there is a
sequence of one hidden layer MLPs (gm)m∈N such that∫

rB
( f (x)− gm(x))2µ(dx) ≤ O(1/m),

where rB is a r-radius ball and µ is any probability measure.
Relaxing the notion of approximation to squared error over
ball with radius r gives a decay of 1/m on the approximation
error.

ReLU networks

ReLU: (z)+
.
= max0,z. Consider a layer of m ReLU units, then

each unit is active or inactive: 1{Wx + b > 0} ∈ {0, 1}m. As
such, we can partition the input space into cells that have the
same activation pattern:

Xκ
.
= {x | 1{Wx + b > 0} = κ}.

The number of cells is a proxy for the complexity of a network.
Consider a ReLU network with L layers of m > n width. The
number of linear regions is lower bounded by

R(m, L) ≥ R(m)⌊m/n⌋n(L−1) .

Thus, complexity is related to depth.

Piecewise linear functions are approximators of C(R) and a
piecewise linear function g with m pieces can be written as

g(x) = ax + b +
m−1

∑
i=1

ci(x− xi)+.

Using the lifting lemma, ReLU networks are universal approxi-
mators of C(R).

Gradient-based learning

Backpropagation

Backpropagation computes gradient in linear time if we know
the gradient of all basic blocks in the function. Assume we
have the following function,

F[θ](x) .
= (FL ◦ · · · ◦ F1)(x), hℓ

.
= Fℓ[θℓ](hℓ−1), h0 = x.

We need the following,

δℓ =
∂h(θ)
∂hℓ

.

We have a recurrence,

δℓ = δℓ+1
∂hℓ+1

∂hℓ
, δL =

∂h(θ)
∂hL

.

1



Then, to compute parameter gradients,

∂h(θ)
∂θℓ

=
∂h(θ)
∂hℓ

∂hℓ

∂θℓ
= δℓ

∂hℓ

∂θℓ
.

Forward propagation: O(# parameters) passes. Backpropaga-
tion: O(# outputs) passes.

Gradient descent

Update rule:

θt+1 = θt − η∇θh(θt) , η > 0, h(θ) .
= ℓ ◦ F[θ].

Discretization of ODE:
dθ = −∇h(θ)dt.

Trajectory outcome (point where∇h(θ) = 0) depends on
initial conditions.

Gradient descent can only be successful if gradients change
slowly⇒ Smoothness: h is L-smooth if

∥∇h(θ)−∇h(θ)′∥ ≤ L∥θ− θ′∥, ∀θ, θ′.
Or: ∥∇2h(θ)∥2 ≤ L for all θ. If η = 1/L, then we have sufficient
decrease,

h(θt+1) ≤ h(θt)−
1

2L
∥∇h(θt)∥2 , ∀t.

Let h be L-smooth and η = 1/L, then an ϵ-critical point will be
found in at most

T =
2L
ϵ2 (h(θ

0)− h(θ⋆)).

Proof: Sufficient decrease⇒ Telescoping sum and min ≤ ∑.

h satisfies PL-inequality with µ > 0 if

1
2
∥∇h(θ)∥2 ≥ µ(h(θ)− h(θ⋆)) , ∀θ.

Intuition: If θ has small gradient, then it is near-optimal. Let h
be L-smooth and µ-PL and η = 1/L, then

h(θT)− h(θ⋆) ≤
(

1− µ

L

)T
(h(θ0)− h(θ⋆)).

Proof: Sufficient decrease⇒ PL⇒ Subtract h(θ⋆) both sides.

Newton’s method: θt+1 = θt −∇2h(θt)−1∇h(θt).

Acceleration, adaptivity, and momentum

Nesterov acceleration achieves better theoretical guarantees
than GD:

χt+1 = θt + γ(θt − θt−1), θt+1 = χt+1 − η∇h(χt+1).

Momentum intuition: If gradient is stable, we can make bolder
steps. Heavy Ball:

θt+1 = θt − η∇h(θt) + β(θt − θt−1) , β ∈ [0, 1].

Assuming constant gradient δ, we have

θt+1 = θt − η

(
t−1

∑
τ=1

βτ

)
δ.

Thus, learning rate increases in case of a stable gradient.

Adaptivity intuition: Different parameters behave differently
⇒ Parameter-specific learning rates:

θt+1
i = θt

i − ηt
i ∂ih(θt)

ηt
i

.
=

η√
γt

i + δ
, γt

i
.
= γt−1

i + [∂ih(θt)]2.

Parameters with small gradient magnitude will have a larger
step size.

Adam combines adaptivity and momentum:
gt = βgt−1 + (1− β)∇h(θt), β ∈ [0, 1]

γt = αγt−1 + (1− α)∇h(θt)
⊙2, α ∈ [0, 1]

θt+1 = θt − ηt ⊙ gt, ηt = 1⊘ (
√

γt + δ).
gt is a smooth gradient estimator and γt measures the stability
of the optimization landscape.

Stochastic gradient descent

When the dataset is too large, computing the full gradient is
infeasible⇒ Estimate gradient with a mini-batch (SGD). SGD
outperforms GD in practice, because it has a lower chance of
getting stuck in a local optimum due to variance in the gradi-
ent estimator.

Convolutional networks

Convolution

Integral operator: (T f )(u) .
=
∫ t2

t1
H(u, t) f (t)dt.

Fourier transform: (F f )(u) .
=
∫ ∞
−∞ e−2πitu f (t)dt.

Convolution: ( f ∗ h)(u) .
=
∫ ∞
−∞ h(u− t) f (t)dt.

Commutative: f ∗ h = h ∗ f , Shift-equivariant: f∆ ∗ h = ( f ∗ h)∆,
Convolution as Fourier: f ∗ h = F−1(F f · Fh)⇒ Can do con-
volution inO(n log n) with Fast Fourier Transform. All proofs
are done by defining new variables dependent on existing
ones. Linear shift-equivariant operator ⇐⇒ Convolution.

Discrete convolution: ( f ∗ h)[u] = ∑∞
t=−∞ f [t]h[u− t].

Cross-correlation: ( f ⋆ h)[u] = ∑∞
t=−∞ f [t]h[u + t].

Toeplitz matrix Hh
n ∈ R(n+m−1)×n:

Hh
n

.
=


h1 0 · · · 0 0
h2 h1 · · · 0 0
...

...
. . .

...
...

0 0 · · · hm hm−1
0 0 · · · 0 hm

 .

This can then be applied to a vectorized f ∈ Rn. Effectively
a proof that convolution is linear with increased statistical
efficiency.

Convolutional networks

Images are 2D, so use 2D definition of convolution:

(X ∗W)[i, j] =
∞

∑
k=−∞

∞

∑
l=−∞

xi−k,j−lwk,l .

Let Xℓ be output of the ℓ-th convolutional layer and ∆ℓ .
= ∂h

∂Xℓ
,

then

∆ℓ−1 = ∆ℓ ⋆ Wℓ,
∂h

∂Wℓ
= ∆ℓ ∗Xℓ−1.

Max-pooling layer:
xℓij = max{xℓ−1

i+k,j+l | k, l ∈ [0, r)}

∂xℓij
∂xℓ−1

mn
= 1{(m, n) = (i⋆, j⋆)},

where (i⋆, j⋆) are the indices of maximum value in the forward
pass.

Data generally has multiple channels:

(X ∗W)[c, i, j] =
Cin

∑
r=1

K

∑
k=−K

K

∑
l=−K

wc,r,k,l xr,i−k,j−l .

Fully connected in channels and local in spatial dimensions.

Output size (x: input, p: padding, k: kernel, s: stride):⌊
x + 2p− k

s
+ 1
⌋

.

Inception: (1) Use 1× 1 convolutions to reduce channels; (2) Use
multiple filter sizes and concatenate solving trade-off between
channels and kernel size; (3) Softmax at intermediate layers for
better error propagation.

Recurrent neural networks
Activations are computed recursively to handle variable-length
data: zt = F[θ](zt−1, xt). Dependent on application, compute
output variables: yt = G[φ](zt).

Elman RNN: F[U, V](z, x) = ϕ(Uz + Vx), G[W](z) = ψ(Wz).

Bidirectional RNNs do both ways and concatenate. Stacked
RNNs connect layers horizontally:

zt,l = ϕ(Ulzt−1,l + Vlzt,l−1), zt,0 = xt.

Let L = ∑T
t=1 ℓ(ŷt, yt), then we have gradients:

∂L
∂U

=
T

∑
t=1

∂L
∂zt

∂zt

∂U
,

∂L
∂V

=
T

∑
t=1

∂L
∂zt

∂zt

∂V
,

where

∂L
∂zt

=
T

∑
i=t

∂ℓ(ŷi, yi)

∂ŷi

∂ŷi

∂zi

i

∏
j=t+1

Φ̇jU ,

where Φ̇j = diag(ϕ′(Uzj−1 + Vxj)). This is only stable if
∥Φ̇jU∥2 = 1. For most activation functions: ∥Φ̇∥2 ≤ α. So,
∥U∥2 > 1/α⇒ Exploding gradient, ∥U∥2 < 1/α⇒ Vanishing
gradient.

Gated memory

Solve vanishing gradient by gating.

LSTM (zt: cell state, ζt: hidden state):
zt = σ(Fx̃t)⊙ zt−1︸ ︷︷ ︸

forget gate

+σ(Gx̃t)⊙ tanh(Vx̃t)︸ ︷︷ ︸
storage gate

, x̃t = [ζt−1, xt]

ζt = σ(Hx̃t)⊙ tanh(Uzt)︸ ︷︷ ︸
output gate

.

zt is only modified by⊙ and +, which allows for easy error
propagation.

GRU simplifies the LSTM to only 3 weight matrices:
zt = σ⊙ zt−1 + (1− σ)⊙ z̃t, σ = σ(Gx̃t)

x̃t = [zt−1, xt]

z̃t = tanh(V[ζt ⊙ zt−1, xt]), ζt = σ(H[zt−1xt]).

Gradient clipping solves exploding gradient

Linear recurrent model

Simplify GRU to be linear such that it can exploit prefix scan
parallelism which hasO(log T) runtime:

zt = σ⊙ zt−1 + (1− σ)⊙ z̃t, σ = σ(Gxt), z̃t = Vxt.

We can ensure that the gradients do not explode by parametriz-
ing the GRU smartly. The LRU has hidden state evolution in a
discrete time linear system: zt+1 = Azt + Bxt.

Diagonalize A = PΛP−1, where Λ = diag(λ1, . . . , λm), λi ∈ C.
This linear system is stable if the modulus of the eigenval-
ues is bounded by 1. Thus, we parameterize them such
that the moduli can only be in (0, 1) in the following way:
λi = exp(− exp(νi))(cos(ϕi) + sin(ϕi)i). This uses
exp(θi) = cos(θ) + sin(θ)i and that we can represent complex
numbers in polar coordinate form via modulus r and phase ϕ:

z = r(cos(ϕ) sin(ϕ)i), r = |z|.
Thus, ri = exp(− exp(νi)) ∈ (0, 1). Thus, at initialization we
sample

ϕi ∼ Unif([0, 2π]), ri ∼ Unif(I), I ⊆ [0, 1].
And compute νi = log(− log ri). The modulus always remains
upper bounded by 1. This is equivalent to Glorot initialization.

We do not lose any representational power, because we can put all
representational power into the output map:

yt = MLP(Re(Gζt)), G ∈ Ck×m.

Sequence learning

Generate sequence step-by-step, given another sequence:

p(y1:n | x1:m) =
n

∏
i=1

p(yi | y1:i−1, x1:m).

This is done by mapping input sequence to latent representa-
tion (encoder RNN):

x1, . . . , xm 7→ ζ.
Decoder RNN uses this along with history to predict next
token:

ζ, y1, . . . , yt−1 7→ zt−1.
This is mapped to a distribution over next tokens,

zt−1 7→ µt, yt ∼ p(µt).
Problem: Lossy compression of input sequence. Solution: Use
attention such that decoder can look at full input sequence at
every step:

aij = softmaxj(MLP([zi−1, ζ j])), ct =
m

∑
i=1

atiζi.

This allows for alignment between input and output sequence.

Problem with teacher forcing: Mismatch between test and
train.

Transformers

Self-attention

Let X ∈ RT×d denote a sequence of input embeddings.
Problem: They are non-contextual. Self-attention:

Q = XWQ, K = XWK, V = XWV ,
where WQ, WK ∈ Rd×dk and WV ∈ Rd×dv . Attention:

Ξ = softmax
(

QK⊤√
dk

)
V .

Multi-headed SA performs attention h times in parallel.

Cross-attention

Two sequences A ∈ RTa×da , B ∈ RTb×db and we want to give
information of B to A:

Q = AWQ, K = BWK, V = BWV ,
where WQ ∈ Rda×dk , WK ∈ Rdb×dk , and WV ∈ Rdb×dv .

Positional encoding

Attention is permutation equivariant⇒Add positional
encoding matrix P ∈ RT×d with

ptk =

{
sin(tωk) k mod 2 = 0
cos(tωk) k mod 1 = 0,

ωk
.
= Ck/d.

Machine translation

Encoder-decoder architecture where the encoder applies
MHSA to input sequence and decoder applies masked MHSA
to history and then cross-attention with contextualized input
sequence. Furthermore, MLP, Layer normalization, and resid-
ual layers are used.

BERT

BERT is a transformer-based pretrained language model
that is used for finetuning on downstream NLP tasks. BERT
tokenizes uses WordPiece tokenization and prepends a [CLS]

token. When the weights of the encoders are pretrained, we can
place additional layers on top that operate on the contextualized
BERT tokens.

Two pre-training stages:

1. Predicting masked out tokens using its left and right
context as input (Cloze test; trains BERT’s understanding of
language);

2. Binary next sentence classification, where the model must
classify two sentences as being consecutive or not (trains
BERT to infer relationships between sentences).

Sentences are separated by [SEP].

Vision transformer

ViT adapts the transformer to images by treating projected 16× 16
image patches as tokens. A possible reason for this model’s
effectiveness is that this architecture carries less inductive bias
than CNN-based models. In general, this seems to be beneficial
for very large datasets.

Geometric deep learning
GDL models neural networks that satisfy invariances by
design.

Invariance and equivariance

f (arbitrary number of inputs) is order-invariant iff
f (X) = f (PX), X ∈ RM×d,

where P is a permutation matrix.

f (arbitrary number of inputs and same number of outputs) is
equivariant iff

f (X) = P⊤ f (PX).

We want models that have these properties by design.

Deep sets

Let ϕ : R→ Rd be a pointwise feature extractor network. Deep
Sets obtains an order-invariant representation of the input
set by summing their features up. This representation can be
given to any network ρ : Rd → Y:

f (x1, . . . , xM) = ρ

(
M

∑
m=1

ϕ(xm)

)
.
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We can easily turn this into an equivariant map by providing
xm to ρ : R×Rd → Y:

f (x1, . . . , xM)i = ρ

(
xi,

M

∑
m=1

ϕ(xm)

)
.

This architecture is universal for a fixed d, but it requires map-
ping that are highly discontinuous for M→ ∞.

PointNet

PointNet is a Deep Sets architecture on three-dimensional
point clouds. The model employs T-net blocks, which apply
rigid transformations to the point cloud, which is permutation
invariant. These are applied twice alternatingly with MLPs to
form ϕ. This gives a 64-dim intermediate feature vector and
1024-dim final feature vector. The features are aggregated by a
max-pool operator.

Object classification: ρ is an MLP with a softmax head that
takes the global feature vector as input.

Object segmentation: ρ concatenates intermediate local feature
and final global feature, which is given to MLP with softmax
head.

Graph neural networks

Let A be the adjacency matrix of an undirected graph. f is
order-invariant on a graph if

f (X, A) = f (PX, PAP⊤) .

And equivariant if

f (X, A) = P⊤ f (PX, PAP⊤) .

Let Xm = {{xn | anm = 1}} (multiset of neighbors’ features). ϕ
takes xm and Xm as input (any pair of isomorphic graphs result
in same feature representations):

ϕ(xm, Xm) = ϕ

(
xm

⊕
x∈Xm

ψ(x)

)
.

This is a message-passing scheme.

Graph convolutional networks (GCNs) aggregates local
neighborhoods with a fixed set of weights (coupling matrix),

Ā .
= D−1/2(A + I)D−1/2 , D = diag(d), dm = 1+

M

∑
n=1

anm.

Element-wise:

āij =
aij + δij√

didj
, δij = 1{i = j}.

Now, ĀX computes the average feature over neighbors and
the node itself. GCNs introduce learnable parameters W:

f [W](X, A) = σ(ĀXW) .

This is an equivariant function, which can be stacked. Then,
we can use the final representations to do graph classification
or node classification. Note that ∥Ā∥2 ≤ 1, so the values will not
explode.

Limitations: Requires a depth equal to diameter of graph to
exchange information between all nodes; In very deep GCNs,
node features become indistinguishable due to smoothing of
Ā; Bottleneck effect of how much information can be stored in
fixed-size representations. There are no canonical solutions to
these problems.

GATs introduce attention (which is equivariant) in the neigh-
borhood function and replaces Ā. It does so by parametrizing
the coupling matrix Q,

qmn = softmaxn(ρ(u⊤[Vxm, Vxn, xmn]))

M

∑
n=1

amnqmn = 1, ∀m ∈ [M].

Here, xij is an edge feature.

Despite better adaptivity, GATs are still message-passing
algorithms. Such algorithms have inherent limitations in the
type of graphs they can distinguish. The Weisfeiler-Lehman
(WL) isomorphism test checks whether two graphs are potentially
isomorphic. It does so in linear time. It can be shown that GCNs
and GATs cannot distinguish graphs beyond the WL-test.

1-WL: (1) Every node starts with the same color; (2) If a vertex
v has neighbors with colors {c1, . . . , ck}, then cv gets a new
color encoding [cv,{{c1, . . . , ck}}]. If the color partitions of the
two graphs are different, the graphs cannot be isomorphic. If
the color partitions are equivalent, the graphs are potentially
isomorphic.

Spectral graph theory

Laplacian operator measures local deviation from the mean in
vanishingly small neighborhoods:

∆ f =
d

∑
i=1

∂2 f
∂x2

i
.

The Fourier basis can be defined as the eigenfunction of the
Laplacian.

Graph Laplacian: L = D−A. Degree-normalized Laplacian:
L̃ = D−1/2(D−A)D−1/2. We can generalize Fourier transform
to graphs: Diagonalize L = UΛU⊤ (exists because symmetric
and PSD) and U can be seen as graph Fourier basis and Λ as
frequencies. Graph convolution can be computed as pointwise
multiplication in Fourier domain:

X ∗Y = U((U⊤X)⊙ (U⊤Y)).
This can be learned by

G[θ](L)X = UG[θ](Λ)U⊤X.

Problem: Eigendecomposition of L takesO
(

M3
)
. Solution:

Use polynomial kernels:

U

(
K

∑
k=0

αkΛ

)
U⊤X =

K

∑
k=1

αkLkX .

Here, the polynomial order K defines the kernel size (or neigh-
borhood size). α ∈ RK are parameters.

Tricks of the trade

Initialization

Parameters are typically chosen with a fixed variance by
sampling from

θ∼ N (0, σ2), θ∼ Unif([−
√

3σ,
√

3σ]).
LeCun init, σ = 1/√n, preserves input variance. Glorot init,
σ =
√

2/n+m, normalizes magnitude of gradient (intuition:
backpropagation combines n-dim input and m-dim output).
Kaiming init, σ =

√
2/n, is designed to be used with ReLU by

observing that only half of the units are active in expectation.
Orthogonal init considers the weights holistically by initializ-
ing as orthogonal matrix (benefit: eigenvalues are±1).

Weight decay

θt+1 = θt − η(∇h(θt)− µθt) = (1− ηµ)θt −∇h(θt) .

Equivalent to (1) gradient descent with ℓ2 regularization, (2)
Bayesian prior that weights are sampled from normal distribu-
tion, (3) Lagrangian with constraint ∥θ∥ ≤ µ.

Under the basis of the Hessian’s eigenvectors, the optimum of
ℓ2-regularized ℓµ is

θ⋆µ = diag
(

λi

λi + µ

)
θ⋆.

Each axis is scaled based on sensitivity. If λi ≫ µ, then
λi/λi+µ ≈ 1, so the solution does not change much.

Early stopping

Stop if validation performance does not improve for past p
epochs. Crudely equivalent to weight decay with µ if stopped
at T ≈ 1/ηµ.

Dropout

Randomly disable subset of parameters during training⇒
Units become less dependent on one another⇒ Instead of
units being specialized, they become generally useful.

Two view: (1) regularization and (2) ensemble of networks:
p[θ](y | x) = ∑

b∈{0,1}P
p(b)p[θ⊙ b](y | x).

This can be approximated by scaling weights by their probabil-
ity of being active.

Normalization

Goal: Make all units more similar. Norm. is beneficial because
the gradient no longer depends on scale of data⇒High
LR without risk of divergence. A unit f : Rd → R can be
normalized by

f̄ =
f −E[ f (x)]√

V[ f (x)]
.

This removes 2 DOF (bias and variance)⇒ Explicitly parame-
terize: f̃ [µ, γ](x) = µ + γ f̄ (x).

BatchNorm approximates E[ f ] and V[ f ] over a mini-batch:

E[ f ] ≈ 1
|B| ∑

x∈B
f (x), V[ f ] ≈ 1

|B| ∑
x∈B

( f (x)−E[ f ])2.

Normalization is very effective and sometimes essential. We
used to believe that it was because it helped combat covariance
shift. However, a modern motivation shows that normal-
ization is the same as weight normalization and scaling by
∥w∥I/∥w∥Σ, where Σ = E[xx⊤].

LayerNorm normalizes over the feature dimension instead of
batch dimension:

E[ f ] =
1
d

d

∑
i=1

fi(x), V[ f ] =
1
d

d

∑
i=1

( fi(x)−E[ f ])2.

And, the data is normalized by

f̄i =
fi −E[ f ]√

V[ f ]
.

Layers need to have a sufficient width d to get stable statistics,
but it is not batch dependent anymore.

Weight normalization

Normalize weights before applying them:

f [v, γ](x) = ϕ(w⊤x), w =
γ

∥v∥2
v .

Gradients:
∂h
∂γ

=
∂h
∂w

∂w
∂γ

,
∂h
∂v

=
γ

∥v∥
∂h
∂w

(
I− ww⊤

∥w∥2

)
.

Here I− ww⊤/∥w∥2 is the projection matrix onto the complement
of w⇒ The direction of w is projected out.

Data augmentation

Transform input data to train invariances.

Label smoothing: Replace labels by noisy probability dis-
tributions, because classifiers are not good at dealing with
mislabeled data.

Distillation

Let F be the teacher and G its student and we want the stu-
dent to match its teacher’s logits. Then, we have tempered
cross-entropy loss:

ℓ(x) = ∑
y∈Y

exp(Fy(x)/T)

∑y′∈Y exp(Fy′ (x)/T)
·

 1
T

Gy(x)− log ∑
y′∈Y

exp(Gy′ (x)/T)

.

Gradient:
∂h

∂Gy
=

1
T

(
exp(Fy(x)/T)

∑y′∈Y exp(Fy′ (x)/T)
− exp(Gy(x)/T)

∑y′∈Y exp(Gy′ (x)/T)

)
.

Neural tangent kernel

Linearized model

f [θ] ≈ f [θ0] + ⟨∇f [θ0], θ− θ0⟩.
f is non-linear w.r.t. x, but linear w.r.t. θ→Define linear model
with gradient feature map:

h[β](x) = f [θ0](x) + β⊤∇f [θ0](x).
Kernel method with k(x, x′) = ⟨∇f [θ0](x),∇f [θ0](x′)⟩ and
MSE loss,

β⋆ = Φ⊤K−1(y− f), K = ΦΦ⊤, ϕi = ∇f [θ0](xi).
Predictions:

h⋆(x) = k(x)⊤K−1(y− f).
Linearized models are non-competitive with full networks.
Also they may be intractable due to number of samples and
parameters. Benefit: We can look at DNNs through the lens of
kernel methods if the parameters do not evolve far away from
θ0.

Training dynamics

Gradient flow ODE with MSE loss:

θ̇t =
n

∑
i=1

(yi − f [θt](xi))∇f [θt](x).

Functional gradient flow:

ḟj[θt] = θ̇⊤t ∇f [θt](xj) =
n

∑
i=1

(yi − f [θt](xi))k[θt](xi, xj).

In matrix form:
ḟ [θt] = K[θt](y− f [θt]), ḟ [θt] = −K[θt]∇f [θ]ℓ(θt).

NTK K[θt] governs the evolution of the joint sample predic-
tions. Problem: NTK has a dependence on the parameters.

Infinite width

In practice it has been found that as the width m of a model is
scaled, the parameters stay more closely to their initialization
during gradient descent. It can be shown (under basic assump-
tions) that the NTK converges in probability to a deterministic
limit as the model is scaled to infinite width: k[θ] m→∞−−−→ k∞.

The deterministic limit depends only on the law of initializa-
tion. Under these training dynamics, minimizing MSE equates
to solving a kernel regression problem with k∞. This provides
insight into why overparameterization works so well in prac-
tice, despite having the ability to overfit.

NTK constancy

The NTK remains constant under gradient flow: ∂K[θt ]
∂t = 0.

Bayesian learning
Goal is to compute the Bayesian predictive posterior:

f (x) =
∫

p(θ | S) f [θ](x)dθ,

where

p(θ | S) = p(S | θ)
p(S) , p(S) =

∫
p(θ)p(S | θ)dθ.

p(S) is intractable but often not necessary. An isotropic
Gaussian prior leads to MAP optimizing ℓ2 regularization.

Markov chain Monte Carlo

However, we do not want MAP only, we want the full dis-
tribution. MCMC methods sample from the posterior by
constructing a Markov chain, where the stationary distribution
is the posterior.

Detailed Balance Equation:
q(θ)Π(θ′ | θ) = q(θ′)Π(θ | θ′), ∀θ, θ′.

Then, the Markov chain is time reversible and has the unique
stationary distribution q.

Metropolis-Hastings samples from an arbitrary Markov chain
with kernel Π̃ and adjusts it such that DBE is satisfied for the
posterior. It does so by constructing a new kernel:

Π(θ′ | θ) = Π̃(θ′ | θ)α(θ′ | θ)

α(θ′ | θ) = min
{

1,
p(θ | S)Π̃(θ′ | θ)
p(θ′ | S)Π̃(θ | θ′)

}
.

This is the unique choice of acceptance function α that has
a one-sided structure. If Π̃ is symmetric, we only need the
ratio of posteriors, not p(S). Problems: Burn-in period can
be arbitrarily long due to poor Π̃ leading to high rejection
probabilities.

Hamiltonian Monte Carlo obtains posterior averages. Energy
function:

E(θ) = −∑
x,y

log p[θ](y | x)− log p(θ).

The Hamiltonian augments with momentum vector:

H(θ, v) = E(θ) +
1
2

v⊤M−1v.

Hamiltonian dynamics:
v̇ = −∇E(θ), θ̇ = v.
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HMC discretizes with stepsize η:
θt+1 = θt + ηvt, vt+1 = vt − η∇E(θt).

We sample the posterior by following momentum-based
gradient descent dynamics. (We can also view this as
momentum-based gradient descent leading to a single sample
approximation of the predictive distribution.) Problem: We
need to compute the full gradient.

Langevin dynamics extends HMC by friction:
θ̇ = v, dv = −∇E(θ)dt−Bvdt +N (0, 2Bdt).

Friction reduces momentum and dissipates kinetic energy,
while the Wiener noise injects stochasticity. Discretize:

θt+1 = θt + ηvt

vt+1 = (1− ηγ)vt − ηs∇Ẽ(θ) +
√

2γηN (0, I).
Here, Ẽ is a stochastic potential function which is the empirical
loss over a random mini-batch of data.

Gaussian process

GPs is a fully tractable Bayesian method. f is a GP if for every
finite subset {x1, . . . , xn} ⊆ X , the resulting finite marginal is
jointly normally distributed,

[ f (x1), . . . , f (xn)] ∼ N (µ, Σ).
In GPs, the mean can be computed by deterministic regression
and the covariance matrix is evaluated by a kernel function:

σij = k(xi, xj).
The kernel function can be seen as a prior over function space
that describes how related the output values corresponding to
the two input value should be. RBF kernel encodes that close
input value should have close output values:

k(x, x′) = exp
(
−γ∥x− x′∥2).

Linear networks assume a random Gaussian weight vector:

w ∼ N
(

0,
σ2

d
Id

)
.

Outputs are computed by yi = w⊤xi. Vectorized: y = Xw.
This is a Gaussian vector:

y ∼ N
(

0,
σ2

d
X⊤X

)
.

In other words, it is a GP with the following kernel:

k(x, x′) =
σ2

d
x⊤x′.

We can do this for multiple units because the preactivations
of units in the same layer are independent, conditioned on the
input. In general, we do not get the same effect if we increase
the depth, because there is randomness not only in the weights
but also the preactivations. However, a deep preactivation
process is “near normal” for high-dimensional inputs.

We can extend this to non-linear networks. But, the activations
are no longer Gaussian due to the non-linearity. However, due
to CLT, they are effectively shaped back into Gaussians when
they propagate to the next layer. The mean function and kernels
are computed by

µ(xℓ) = E[ϕ(Wℓ−1xℓ−1)], kℓ(xi, xj) = E[ϕ(xℓ−1
i )ϕ(xℓ−1

j )].
We can now use kernel regression:

f ⋆(x) = k(x)⊤K−1y, k = kL.
In conclusion, DNNs in the infinite-width limit can be thought
of as GPs (because then all preactivations can be viewed as
Gaussians). Benefit: Uncertainty quantification, No training,
Leverage tricks form kernel machines. Problems: Computing
f ⋆ and storing Kℓ are not feasible, It is much less efficient than
optimizing weights with gradient descent.

Statistical learning theory

VC theory

Let F be a class of binary classifiers. Then the following is the
set of possible classification outcomes over a dataset S:

F(S) = {[ f (x1), . . . , f (xn)] ∈ {0, 1}n | f ∈ F}.
Further define maximum number:

F(n) = sup
|S|=n
|F(S)|.

F shatters S if |F(S)| = 2n (every possible labeling is realized
by some function f ∈ F). VC dimensionality is defined as

VC(F) = argmax
n∈N

sup
|S|=n

1{F(n) = 2n}.

Under uniform convergence, VC inequality holds:

P

(
sup
f∈F
|ℓ̂( f )− ℓ( f )| > ϵ

)
≤ 8|F(n)| exp

(
− nϵ2

32

)
,

where ℓ is the expected loss and ℓ̂ is the empirical loss. Intu-
ition: No generalization guarantees can be given if F can be fit
to any labeling.

Randomization experiments with CIFAR-10 observations:

1. DNNs can perfectly fit the training data;

2. When randomly replacing training labels, the models can
still perfectly fit the data (memorization);

3. The training time does not increase much when labels are
randomized;

4. When randomly shuffling pixels, the models can also
perfectly fit the data⇒ Inductive bias of CNNs does not
provide much benefit in this regard.

These findings are unexplainable by the above theory.

Overparameterization can lead to double descent phe-
nomenon, where large models will eventually start generaliz-
ing better after overfitting.

The flatness of local minima are linked to their generalization
ability, because at flat minima, small perturbations in the pa-
rameters will only have a small effect on performance. These

can be found by small-batch SGD, weight averaging, or en-
tropy SGD.

PAC-Bayesian

For any p ≫ q and p-measurable X: Eq[X] ≤
DKL(q ∥ p) + log Ep[exp(X)].

For a fixed p, any q, and ϵ ∈ (0, 1), we have the following with
probability greater than or equal to ϵ,

Eq[ℓ( f )]−Eq[ℓ̂( f )] ≤

√
2
n

(
DKL(q ∥ p) + log

2
√

n
ϵ

)
.

Here, p is a prior over parameters, q the posterior, and we
bound the expected generalization gap over stochastic classi-
fiers⇒O(1/√n) bound on generalization error. However, it
only applies to stochastic classifiers, not single classifiers.

This motivated the PAC Bayes loss function

ℓPAC(q)
.
= Eq[ℓ̂] +

√
2
n

(
DKL(q ∥ p) + log

2
√

n
ϵ

)
.

Effectively just a regularization term. The KL term can be
computed in closed form if prior and posterior are Gaussian.

Generative models

Autoencoders

Encoder E maps data to latents and decoder D maps latents
to data. We want D(E(x)) = x. Linear autoencoder with MSE
loss is PCA of covariance matrix 1

n X⊤X and taking m principal
eigenvectors. Intuition: Retain as much variance as possible.

Linear factor analysis: Model latents with p(x) =
∫

p(z)p(x |
z)dz. z ∼ N (0, I). x = µ + Wz + η, η ∼ N (0, Σ).
µ⋆ = 1

2 ∑n
i=1 xi. x ∼ N (µ⋆, WW⊤ + Σ) (identifiable up to

orthogonal transformation). z | x can be found and approaches
PCA when σ→ 0 in Σ.

VAE optimizes log-likelihood of data⇒ Intractable⇒ ELBO:
log p[θ](x) ≥ Ep[ϑ](z|x)[log p[θ](x | z)]

−DKL(p[ϑ](z | x) ∥ p(z)).
p[ϑ] is the encoder distribution and p[θ] is the decoder
distribution. This is effectively a reconstruction loss with a
regularization term, where the regularization term ensures a
well-behaved latent space.

In general, the posterior p[ϑ](z | x) is intractable, so we restrict
it to Gaussians,

z | x, ϑ ∼ N (µ[ϑ](x), Σ[ϑ](x)).
And the prior isN (0, I). Then, the KL divergence can be
computed in a closed form:

1
2
(
∥µ[ϑ](x)∥2 + tr(Σ[ϑ](x))− log |Σ[ϑ](x)| −m

)
.

This can be optimized using the reparameterization tick.

Generative adversarial networks

Log-likelihood is not the only way to optimize a model. GANs
provide a training signal by introducing a binary classifier
that distinguishes between samples from “nature” (1) and the
generator (0): discriminator.

Augmented distribution over samples:

p̃(x, y) =
1
2
(yp(x) + (1− y)p[θ](x)).

Bayes-optimal classifier:

P(y = 1 | x) =
p(x)

p(x) + p[θ](x)
.

Minimizing the logistic log-likelihood w.r.t. this discriminator
gives the following loss for the generator,

ℓ⋆(θ) = DJS(p ∥ p[θ])− log 2,
where

DJS(p ∥ q) .
= H

(
p + q

2

)
− H(p) + H(q)

2

DJS(p ∥ q) .
=

1
2

DKL

(
p
∥∥∥∥ p + q

2

)
+

1
2

DKL

(
q
∥∥∥∥ p + q

2

)
.

But, the optimal classifier is intractable, so we train a
parametrized one q[φ],

θ⋆,φ⋆ ∈ argmin
θ

argmax
φ

ℓ(θ,φ),

where
ℓ(θ,φ) = Ep̃[θ][y log q[φ](x) + (1− y) log(1− q[φ](x))].

We have the following bound:
ℓ⋆(θ) ≥ sup

φ
ℓ(θ,φ).

Problem: Gradient descent-ascent is not guaranteed to
converge. Solution: Extragradient optimization algorithm:

θt+1 = θt − η∇θℓ(θt+1/2,φt), θt+1/2 = θt − η∇θℓ(θt,φt)

φt+1 = φt + η∇φℓ(θt,φt+1/2), φt+1/2 = φt + η∇φℓ(θt,φt).
In practice, we also need to use a different loss function for the
generator:

ℓ(θ |φ) = Ep[θ][− log q[φ](x)],
because otherwise the gradient goes to infinity when
q[φ](x) = 1, which makes the generator saturate.

Diffusion models

Map a simple distribution to a complex one in many steps:
π = πT 7→ πT−1 7→ · · · 7→ π0 ≈ p.

SDE view:

dxt = −
1
2

βtxtdt
√

βtdωt.

Time-reversed:

dxt =

(
− 1

2
βtxt − βt∇xt log qt(xt)

)
dt +

√
βtdω̃t.

Denoising amounts to approximating a vector field over the
gradient of the probability distribution moving towards areas
with high probability density. Score models approximate
∇xt log qt(xt).

ELBO view: Forward process:
xt =

√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N (0, I).

Energy of the stochastic process evolves as E[∥xt∥2 | xt−1] =
(1− βt)∥xt−1∥2 + βttr(I). If E[∥x0∥2] = tr(I) = dim(x0), then
energy is conserved throughout the process.

Closed form (ᾱt = ∏t
τ=1(1− βτ)):

xt ∼ N (
√

ᾱt, (1− ᾱt)I) .

Backward process:
xt−1 ∼ N (µ[θ](xt, t), Σ[θ](xt, t)).

ELBO:

log p[θ](x0) ≥
T

∑
t=0

ℓt,

where

ℓt =


Eq[log p[θ](x0 | x1)] t = 0
−DKL(q(xt | xt−1, x0) ∥ p[θ](xt | xt+1)) 0 < t < T
−DKL(q(xT | x0) ∥ π) t = T.

The KL divergences can be analytically computed because
all qt are Gaussians an we parameterized the network as a
Gaussian. The q targets are derived as

q(xt−1 | xt, x0) = N (µ(xt, x0, t), β̃t),
where

µ(xt, x0, t) =
√

ᾱt−1βt

1− ᾱt
x0 +

1− ᾱt−1

1− ᾱt

√
1− βtxt

β̃t =
1− ᾱt−1

1− ᾱt
βt.

Thus ℓt simplify to

ℓt = −
1

2σ2
t
∥µ(xt, x0, t)− µ[θ](xt, t)∥2,

where σ2
t ∈ [βt, β̃t].

By noting the closed form forward process, we have

x0 =
1√
ᾱt

xt −
√

1− ᾱt

ᾱt
ϵ.

We can thus rewrite

µ(xt, x0, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵ

)
.

Note that ϵ fully determines xt and x0 is constant. So, we only
need to predict ϵ. Simplified loss:

Eq[ℓt | x0] = Eϵ[λ(t)∥ϵ− ϵ[θ](xt, t)∥2]

λ(t) =
β2

t

2σ2
t αt(1− ᾱt)

.

In practice, the loss is approximated by

ℓ(θ | x0) =
1
T

T

∑
t=1

[
∥ϵ− ϵ[θ](xt, t)∥2 ∣∣ x0

]
.

Entropy bound: H(xt−1 | xt) ≤ H(xt | xt−1). The entropy of
the reverse process is bounded by the entropy of the forward
process.

Adversarial attacks

The attacker wants to make small changes to the input such
that the model gives a different result.

p-norm robustness

Consider a multi-class classifier f : Rd → [m]. The goal of an
adversarial attack is to find a perturbation η such that

f (x + η) ̸= f (x), ∥η∥p ≤ ϵ.

Consider a binary affine classifier and p = 2,
f (x) = argmax{w⊤1 x + b1, w⊤2 x + b2}.

Assume x is classified as 1 and we want to find η such that
x + η is classified as 2 such that ∥η∥2 is minimized⇒ Convex
program:

minimize
1
2
∥η∥2

2

subject to (w1 −w2)
⊤(x + η) + b1 − b2 ≤ 0.

Set gradient of Lagrangian to zero⇒ η⋆ = λ(w2 −w1). Then,
find λ that satisfies constraint⇒ λ ≥ f1(x)− f2(x)/∥w1−w2∥22.
Thus:

η⋆ =
f1(x)− f2(x)
∥w2 −w1∥2

2
(w2 −w1).

This can be generalized to any source i and target j. In the gen-
eral case, we can linearize the model and iteratively solve the
above convex program.

Robust training

Robust training systematically makes models robust to adver-
sarial attacks by extending the loss function to neighborhoods
of training points:

ℓ(x) 7→ max
η:∥η∥p≤ϵ

ℓ(x + η).

This can be solved with projected gradient ascent:
ηt+1 = Π(ηt + α∇ηℓ(x + ηt)).

Fast gradient sign method (FGSM) performs one iteration with
p = ∞ resulting in η = ϵ · sgn(∇xℓ(x)).

Projection onto ℓ1-ball has no closed form, but doable in
O(n log n).

Projection onto ℓ2-ball: Π∥·∥2≤ϵ(x) = ϵx
max{ϵ,∥x∥2}

.

Projection onto ℓ∞-ball: Π∥·∥∞≤ϵ(x) = [clamp(xi;−ϵ, ϵ)]i∈[d].

4


