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List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A→ B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

T ∈ Rd1×···×dn Tensor

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

θ ∈ Θ Parametrization of a model, where Θ is a compact sub-
set of RK

X Input space

Y Output space

D ⊆ X ×Y Labeled training data
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x 2-dimensional vector in real space R

x̃ 2-dimensional vector in projective space P

x 2-dimensional vector in projective space P with w = 1

X 3-dimensional vector in real space R

X̃ 3-dimensional vector in projective space P

X 3-dimensional vector in projective space P with w = 1
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1 Local features

For many computer vision tasks, we need to be able to identify distinctive
points that can be matched to points of other images.1 These tasks require 1 Local features are used in tasks such as object

recognition (section 4), object tracking (section 7),
and structure reconstruction (section 11).

that points that depict the same object must be detected independently
in different images, and it must be possible to match such corresponding
points between images. This leads to the following requirements,

• Translation, rotation, and scale invariance;

• Robustness to affine transformations, noise, and occlusion;

• A sufficient amount of points have to be detected over an object;

• Regions must contain distinctive structure;

• Real-time performance.

The following is a general approach for finding and matching key-
points between images,

1. Find a set of distinctive keypoints;

2. Define a region around each keypoint, dependent on scale;

3. Extract and normalize the region content to make it invariant to affine
transformations and noise;

4. Compute a local descriptor from the normalized region;

5. Match local descriptors between images.

1.1 Harris detector

The Harris detector is an algorithm for keypoint localization [Harris et al.,
1988]. We are looking for points that have significant change in both the
x- and y-direction, i.e. corners, such that the point will be localizable at
any orientation. A good illustration of this is Figure 1.1. flat

edge

corner

Figure 1.1. The Harris detector seeks to find cor-
ner points, which have a significant change in both
the x- and y-direction. Edges are not localizable, be-
cause if we rotate the patch, we will not be able to
match the two rotated patches together.

To find corners, we want to find points such that if we shift the window
in any direction, it should give a large change in intensity. Let’s define
an error function as the following,

E(u, v) .
= ∑

(x,y)∈W
(I[x + u, y + v]− I[x, y])2,

where W is the set of all points in the window that is a potential corner.
We want to find Ws such that E(u, v) is large for any (u, v). We can
rederive E(u, v) with its first-order Taylor expansion to make this easy
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and efficient:

E(u, v) .
= ∑

(x,y)∈W
(I[x + u, y + v]− I[x, y])2

≈ ∑
(x,y)∈W

(
I[x, y] +

[
Ix Iy

] [u
v

]
− I[x, y]

)2

First-order Taylor approximation

= ∑
(x,y)∈W

([
Ix Iy

] [u
v

])2

=
[
u v

]
M

[
u
v

]

where Ix and Iy are the gradients in the x- and y-direction at the implicit
[x, y] point, and M is the structure tensor,

M = ∑
(x,y)∈W

[
I2x IxIy
IxIy I2y

]
This can be computed using convolutions, which
makes it efficient to compute for all pixels at once.

.

We want to find points with an error surface as in Figure 1.1c. The
eigenvalues of a matrix tell us how much it changes in the direction of
their eigenvectors. Since we found that E(u, v) is approximately equal to
a matrix multiplication with M, the eigenvalues of M tell us how much
the error function changes as we shift the window in the direction of
the eigenvectors. Thus, we want to find points where both eigenvalues
are large. The Harris detector uses the following response function, be-
cause it can be rederived to not need the (computationally inefficient)
eigendecomposition,

R = λ1λ2 − κ(λ1 + λ2)
2

= det(M)− κtr(M)2.

The response function R is a measure of a window’s “cornerness“. If
R > 0, its window is considered to be a corner for the Harris detector.

Lastly, the Harris detector applies non-maximum suppression, which
reduces clusters of points with R > 0 to a single point, since they capture
the same corner.
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(a) Error surface of a patch containing a flat area.
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(b) Error surface of a patch containing an edge.

−5

0

5−5

0

5
0

20

40

u v

(c) Error surface of a patch containing a corner.

Figure 1.2. Different types of error surfaces.

1.2 Scale-invariant region selection

The Harris detector is only able to find keypoints at a fixed scale. How-
ever, we would like to be able to detect keypoints at any scale and use this
scale to match keypoints of different scales. In other words, we want to be
able to match keypoints in a zoomed in version of an image to points in
a zoomed out one. The naive approach would be to compare descriptors
while varying the patch size, but this results in a combinatorial search
problem.
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A better idea is to do detection over a scale space, which has three di-
mensions x, y, σ, where the σ parametrizes the convolution with a Lapla-
cian of Gaussian (second derivative of the Gaussian). This “blurs“ the
image so only large structures remain. Then, we compute the response
function for all points (x, y, σ), and call points that are a maximum in a
3× 3× 3 grid around them a feature point. The Laplacian of Gaussian
can be approximated by the difference of Gaussian operator, which is
more efficient.
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Figure 1.3. Harris detector response function for
κ = 0.06. λ1 is shown on the x-axis, and λ2 is shown
on the y-axis.

1.3 Local descriptors

SIFT is an algorithm that uses the orientation of gradients within a patch
to compute a keypoint descriptor [Lowe, 2004]. It does so by dividing
the found patch into a 4× 4 grid and computing the 8-bin histogram of
gradient orientations, weighted by their magnitude, within each grid cell.
This results in a 4× 4× 8 = 128-dimensional vector representation of a
keypoint.

We can assign an orientation to a keypoint by creating a histogram
of local gradient orientations, weighted by a Gaussian window, within
the patch and assigning the orientation to be the maximum gradient
orientation. We can then align the descriptor to this orientation, such
that we can directly compare two descriptors.

1.4 Matching

There are three main ways of matching keypoints between two images,

• One-way matching: for each keypoint in image 1, match it to the key-
point in image 2 with the smallest descriptor difference;

• Mutual matching: for each keypoint in image 1, match it to the keypoint
in image 2 with the smallest descriptor difference only if this condition
also holds the other way;

• Ratio-threshold matching: for each keypoint in image 1, match it to the
keypoint in image 2 with the smallest descriptor difference only if the
ratio between the smallest and second smallest difference is less than
some threshold.
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2 Deep learning

In this course, we will see many computer vision tasks that pre-date the
deep learning era. However, these tasks have seen much improvement
by applying machine learning to them. Thus, we will first be introduced
to the tasks, followed by how the problem was dealt with initially, and
then how machine learning is applied to it.

2.1 Convolutional neural networks

TODO

2.2 Sequence models An application of RNNs in computer vision is pro-
cessing video, where each frame is processed by
a CNN. Then, each frame’s vector representation
is used to update the hidden state of the RNN to
obtain a representation of the video.

A recurrent neural network (RNN) is a neural network that maps from an
input space of sequences to an output space of sequences in a stateful
way [Rumelhart et al., 1985]. That is, the prediction of the output yt

depends on all inputs x that came before t. This is done by keeping track
of a hidden state ht, which is a function of all previous inputs and the
current input,

ht = σ(Whht−1 + Wxxt).

hi+1hihi−1

xixi−1xi−2

· · · · · ·

· · · · · ·

Wh, Wx, b

Figure 2.1. Computation graph of an RNN.

Putting everything together, backpropagation computes the following
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gradient w.r.t. Wh,

∂ℓ

∂Wh
=

T

∑
j=0

∂ℓj

∂Wh

=
T

∑
j=0

j

∑
k=1

∂ℓj

∂hk

∂hk
∂Wh

=
T

∑
j=0

j

∑
k=1

∂ℓj

∂yj

∂yj

∂hj

∂hj

∂hk

∂hk
∂Wh

=
T

∑
j=0

j

∑
k=1

∂ℓj

∂yj

∂yj

∂hj

(
j

∏
m=k+1

∂hm

∂hm−1

)
∂hk
∂Wh

,

where T is the amount of timesteps in the sequence. If we use the fol-
lowing approximation ∂hm

∂hm−1
≈ Wh, then we see that there are a large

amount of matrix multiplications of Wh with itself. This will lead to ei-
ther vanishing or exploding gradients, depending on whether det(Wh)

is greater or less than 1. Possible solutions for this are gradient clipping
and gated recurrent units [Hochreiter and Schmidhuber, 1997, Cho et al.,
2014].

2.3 Transformers

Q = W⊤
Q XK = W⊤

K X

V = W⊤
V X

softmax

A

output

Figure 2.2. Self-attention mechanism.

Attention is a mechanism in neural networks that a model can learn to
make predictions by selectively attending to a given set of data by using
query q, key k, and value v vector representations. The query and key
vectors are used to determine how much weight should be given to the
value vector.2 The weights are computed by Ai = softmax(q⊤i ki), so the

2 Note the parallel with dictionaries/hashmaps in
programming languages, but, in the attention mech-
anism, we do a “soft-lookup“.

values after the attention block can be computed as follows,

att(xi) = ∑
j

Aijvi.

Self-attention blocks learn the query, key, and value representations
from data. More specifically, it learns matrices WQ, WK, and WV and
computes the vectors from these matrices,

Q = W⊤
Q X

K = W⊤
K X

V = W⊤
V X.

Then, we can use these to compute the output of the self-attention block,

selfatt(X) = softmax

(
Q⊤K√

dq

)
V ,

where dq is the dimensionality of the query and key vectors. Furthermore,
we need to add a positional encoding to provide ordering information
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multi-head self-attention

layer norm

MLPs

⊕

layer norm

⊕

X
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output

positional embeddings⊕

Figure 2.3. Transformer encoder architecture.

to the model, because the self-attention operation is permutation equiv-
ariant. This is done by a sinusoidal positional encoding and are simply
combined with X by addition.

Transformers use multi-headed self-attention, which is a module where
self-attention is applied M times independently to the data. Thus, this
module learns M different ways of looking at the same dataset. The out-
puts of each self-attention block is concatenated and linearly transformed
to the expected dimensionality. Transformers follow this by normaliza-
tion and MLP layers, as can be seen in Figure 2.3.

2.4 Latent variable models

Latent variable models map between an observation space x ∈ RD and
latent space z ∈ RQ with Q < D. The models then learn two functions:
encoder fθ : RD → RQ and decoder gθ : RQ → RD. These models are
called autoencoders, because they predict their input as output.

Generative latent variable models are Bayesian probabilistic functions,

p(x) =
∫

z
p(x | z)p(z)dz.

So, the probability of a sample is the “weighted average“ of this sample
given a latent variable weighted by the probability of this latent vari-
able. Generally, the goal is to be able to sample from this probability
distribution.

Variational autoencoders (VAE) sample z from a simple distributions
such as the Gaussian and learn decoders that map from this distribution
to data points x [Kingma and Welling, 2013]. The aim of training is to
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maximize the probability of each x in the training set, i.e., maximize
the likelihood of seeing our data. Since the likelihood (also known as
evidence) is an intractable integral, we need to derive a tractable lower
bound,

log p(x) = log
∫

p(x | z)p(z)dz

= log
∫

p(x | z)
p(z)
q(z)

q(z)dz

≥
∫

q(z) log
(

p(x | z)
p(z)
q(z)

)
dz Jensen’s inequality

= Eq

[
log

p(x | z)p(z)
q(z)

]
,

which is called the evidence lower bound (ELBO). The probability distribu-
tion qθ is the encoder and can be defined to be anything, e.g., a Gaussian
distribution N (0, I) or a probabilistic deep learning model qθ dependent
on x.

An objective function can be derived from the ELBO, which maximizes
the lower bound of the likelihood,

Eq

[
log

p(x | z)p(z)
q(z)

]
= Eq[log p(x | z)]−Eq

[
− log

p(z)
q(z)

]
= Eq[log p(x | z)]− DKL(q ∥ p).

The negative log-likelihood is thus upper-bounded by

DKL(q ∥ p) + Eq[− log p(x | z)].

VAEs minimize this bound,

θ̂ = argmin
θ∈Θ

∑
x∈D

DKL(qθ(z | x) ∥ p(z))︸ ︷︷ ︸
encoder loss

+Eqθ(z|x)[− log pθ(x | z)]︸ ︷︷ ︸
decoder loss

,

where we now learn a latent representation z given the datapoint x.

x encoder
µ, σ

ϵ ∼ N (0, I)

z

reparameterization trick

decoder x̂

DKL(N (µ, σ),N (0, I)) ∥x− x̂∥2losses:
Figure 2.4. Variational autoencoder architecture.

Because of problems with the gradient, the encoder does not directly
predict z from x, but rather predicts a Gaussian distribution N (µ, Σ)

from x, which is used to sample z. This splits the model into an encoder
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and a decoder network that are updated separately, as can be seen in
Figure 2.4.

Generative adversarial networks (GAN) do not explicitly model the like-
lihood. Instead, they use an adversarial process in which two models are
trained simultaneously: a generator G : RQ → RD and a discriminator
D : RD → [0, 1] [Goodfellow et al., 2014]. The generator captures the
data distribution, while the discriminator estimates whether a sample
comes from the data distribution or the generator. At a high level, we
train D to assign probability 1 to samples from the training data and 0

to samples from the generator, while training G to fool D such that it
assigns probability 1 to its samples,

argmin
θG

argmax
θD

Epdata(x)[log DθD (x)] + Ep(z)
[
log(1− DθD (GθG (z)))

]
.

The loss function of G solely depends on D, which is learned. So, GANs
are a way of learning the loss function.

generator x̂ discriminator
0

x discriminator
1D

Figure 2.5. Generative adversarial network archi-
tecture. The discriminator must predict 0 for data
points generated by the generator, and 1 for data
points from the dataset. The generator wants the
discriminator to predict 1 for its generations.
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3 Optical flow

Optical flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between an observer
and the scene.3 In other words, optical flow does not represent the actual 3 Contrast this with motion field, which is a 2-

dimensional image presenting the projection of the
3-dimensional motion of points in the scene onto
the image plane.

motion of the objects in the scene (that would not be computable from
images), but rather the motion of the pixels in the image plane. Optical
flow is merely an approximation of the motion field. But, in most cases,
it is a pretty good approximation.

The problem statement of optical flow is to estimate the motion, i.e.,
velocity, of each pixel, given two consecutive image frames. To solve this
problem, optical flow makes the following two assumptions,

• Brightness constancy: when a point x = [x, y] in the image at timepoint
t moves to point x + δx in the image at timepoint t + δt, its luminance
does not change,

I[x + δx, y + δy, t + δt] = I[x, y, t];

• Small motion: the pixels do not move far between image frames. The
implication of this is that we can use the Taylor expansion for a very
good approximation around the point we care about.

Now, we can derive how to determine the velocity v = [u, v] at point
x = [x, y] as follows,

I[x, y, t] = I[x + δx, y + δy, t + δt] Brightness constancy

= I[x, y, t] + Ixδx + Iyδy + Itδt First-order Taylor approximation,

where Ix, Iy, It are the derivatives at the implied location [x, y, t]. From
this, we can derive the brightness constancy equation,

I[x, y, t] + Ixδx + Iyδy + Itδt = I[x, y, t]

Ixδx + Iyδy + Itδt = 0

Ix
δx

δt
+ Iy

δy

δt
+ It = 0

Ixu + Iyv = −It.

However, it cannot be solved, because we have two unknowns, u and
v, with one equation per pixel. This is called the aperture problem. The
way this is dealt with is the difference between the Lucas-Kanade and
Horn-Schunck algorithms, i.e., their difference is how they add more
constraints to make the problem tractable.

3.1 Lucas-Kanade

Lucas-Kanade applies a local method that assumes that pixels in the
same area, i.e., a patch around the pixel, have the same velocity. This
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gives us an additional constraint for every pixel in the area, which we
can solve by least-squares estimation,

Ix[x1, y1, t] Iy[x1, y1, t]
...

...
Ix[xn, yn, t] Iy[xn, yn, t]


[

u
v

]
= −


It[x1, y1, t]

...
It[xn, yn, t]


Av = −b

This is equivalent to solving the following by least-squares estimation,

A⊤Av = −A⊤b

∑
(x,y)∈P

[
I2x IxIy
IxIy I2y

] [
u
v

]
= − ∑

(x,y)∈P

[
IxIt
IyIt

]

This is the same matrix as the structure tensor we saw in the Harris
corner detector. Thus, corners are good places to compute flow. If there
are no corners, and e.g. only an edge, then we have the aperture problem.

3.2 Horn-Schunck

Horn-Schunck applies a global method that assumes optical flow fields
to be smooth. It seeks to minimize the following energy function,4 4 In the discrete case that we care about, the inte-

grals are replaced by sums.

E =
∫ ∫

(Ixuxy + Iyvxy + It)
2︸ ︷︷ ︸

brightness change penalty

+ λ(∥∇uxy∥2 + ∥∇vxy∥2)︸ ︷︷ ︸
flow change penalty

dxdy,

where uxy and vxy are the velocities at [x, y] forming a flow field. The
first term minimizes the brightness change, which enforces the brightness
constancy assumption. The second term minimizes the change in flow,
which enforces the smooth flow field assumption. In the discrete case,
this can be seen as minimizing the difference in flow between neighbors,
resulting in smoother flow. A larger λ leads to a smoother flow field.

The derivatives of this function are the following,

∂E
∂ukl

= 2(ukl − ūkl) + 2λ(Ixukl + Iyukl + It)Ix ūkl and v̄kl are the average flow of the 4 neighbors:
[k− 1, l], [k + 1, l], [k, l − 1], [k, l + 1].

∂E
∂vkl

= 2(vkl − v̄kl) + 2λ(Ixukl + Iyukl + It)Iy.

The extrema of E can be found by setting the derivatives to zero and
solving for the unknowns u and v. These form a linear system that can
be solved iteratively using update equations,

ûkl = ūkl −
Ixūkl + Iyv̄kl + It

λ−1 + I2x + I2y
Ix

v̂kl = v̄kl −
Ixūkl + Iyv̄kl + It

λ−1 + I2x + I2y
Iy.
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These update equations are used to update the flow field iteratively until
convergence, starting from zero flow field.

This can also be used to compute flow field of frames with larger
motions by using coarse-to-fine flow estimation. This is done by first
downscaling the image until the displacement is 1 pixel. Then, compute
flow of that and upscale the image and flow field. Repeat this step until
you are back at the original image size.
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4 Recognition

In recognition, we want to be able to recognize whatever (parts of) an
image depicts. For example, determining where all the humans are in an
image. The challenges of this task are the following,

• Background clutter;5 5 E.g. if the background is similar to the object, the
object may not be recognized.

• Intra-class variations.6 6 E.g. if you want to recognize whether an object is
a chair, you need to be able to detect any type of
chair, which can vary greatly.At first (~1960–1990), the geometric era saw recognition as an align-

ment problem, where everything consists of shape primitives. Then, you
only had to recognize the primitives and figure out their alignment to
figure out what object is depicted. Later (~1990–2000), appearance-based
models estimate the appearance by combining a lot of images that depict
the same thing, e.g., human faces. Then, new data points are compared to
this estimate of appearance. Sliding window approaches were also used,
which compare every patch of an image to a template. Currently, image
classifiers are implemented as machine learning problems that take an
image as input and outputs one of a set of predefined labels.

4.1 Bag-of-words

An example of a machine learning algorithm for classification is bag-of-
words. At a high level, it extracts local features from an image, which are
compared to the local features of the training images in an efficient and
robust way. Each matching patch is weighted according to the TF-IDF
metric,

TFIDF(t, d) =
Nt,d

Nd︸︷︷︸
TF

· log
(

|D|
|{d′ ∈ D | t ∈ d′}|

)
︸ ︷︷ ︸

IDF

,

and used to determine a classification of the input image. k-means clustering is a method of partitioning obser-
vations into k clusters. It does so by iteratively alter-
nating between updating the clusters and assigning
points to clusters. It represents the clusters by their
mean, and it assigns points by assigning it to the
cluster representation with the smallest distance. It
repeats this until convergence, which is when none
of the points update their cluster assignment.

1. Feature extraction: The goal of this step is to find patches that would be
interesting for the classification of its image. For this, algorithms such
as SIFT and Harris detection are used to find such interesting patches.
These patches are then extracted and used in the following step;

2. Dictionary learning: Patches that depict the same usually do not contain
the exact same pixels. Thus, we need some way of mapping patches
that depict the same together. This is done by k-means clustering,
which iteratively updates its k clusters by assigning each object to the
cluster with the nearest centroid and updating their representation
(centroid) to be the mean of its objects. This step is repeated until
convergence. Thus, now each feature is mapped to its closest centroid,
which means that similar features are mapped together;

3. Feature encoding: The images are encoded by the bag-of-words vectors
of their features, i.e., an histogram of the counts of the number of
feature occurrences;
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4. Classification: The classification of an image is the class that maximizes
the TF-IDF metric,7 which weights each feature by its inverse docu- 7 Note that each feature maps to the class of which

its image is part.ment frequency. I.e. if a feature occurs in a lot of images, it has a lower
weight, since it is less discriminative.
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5 Segmentation

Segmentation involves the grouping of pixels, where the groupings indi-
cate a semantic relationship. For example, segmenting pixels into back-
ground and foreground. The purpose of segmentation is that the found
groupings can be used in further algorithms.

5.1 k-means

The most simple way of performing segmentation is using the k-means
algorithm. First, we encode all pixels into a feature space, after which we
apply k-means to the features. Then, if two pixels are part of the same
cluster, they are part of the same grouping in the segmentation.

Examples of features are RGB values or filter bank responses.8 How- 8 Apply 24 common filters by convolution.

ever, these do not give us spatial coherence, because spatial information
is not taken into account. If there is a lot of noise, the groupings may
not be very good. Thus, we want pixels that are spatially close to have a
greater chance of being in the same grouping. The way to do this with
k-means is to add two dimensions to the features, x and y position. This
enforces spatial coherence.

The advantage of k-means is that it is simple and fast. However, it has
many problems,

• There is no way of knowing what the value of k should be;

• k-means is sensitive to initial centers;

• k-means is sensitive to outliers;

• It only detects spherical clusters, because points are assigned to clus-
ters by their squared distance.

5.2 Mixture of Gaussians

Mixture of Gaussians (MoG) solves the problem of k-means’ sensitivity
to outliers. Instead of treating the pixels as a bunch of points, we will
assume that they are all generated by sampling a continuous function.
Then, we will be able to remove outliers, because their likelihood will be
very low.

MoGs assume that the data is generated by k weighted d-dimensional
Gaussians with means µb ∈ Rd, covariance matrices Σb ∈ Rd×d, and
weights αb. The likelihood of observing x is the following,

p(x | θ) =
k

∑
b=1

αbN (x; µb, Σb).

We then want to optimize the model w.r.t.

θ =
[
µ1 · · · µk Σ1 · · · Σk α1 · · · αk

]
,
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which is done with the expectation-maximization (EM) algorithm. EM
works by estimating the “ownership“ each Gaussian has over the points,
given the current estimate of θ (E-step). Then, we update θ given the
“ownership“ (M-step). This is done iteratively.

In more details, given the current estimate θ, the E-step computes the
probability that point x is in blob b, which we call the “ownership“ of b
over x,

p(b | x, µb, Σb) =
αb p(x | µb, Σb)

∑k
b′=1 αb′ p(x | µb′ , Σb′)

.

Given the “ownership“ information, the M-step computes the new
means, covariance matrices, and weights,

α′b =
1
n

n

∑
i=1

p(b | xi, µb, Σb)

w(b)
i =

p(b | xi, µb, Σb)

∑n
j=1 p(b | xj, µb, Σb)

µ′b =
n

∑
i=1

w(b)
i xi Weighted mean

Σ′b =
n

∑
i=1

w(b)
i (xi − µb)(xi − µb)

⊤. Weighted variance

Then, after running the EM algorithm, we assign each pixel to the blob
with the highest “ownership“ over the pixel.

The advantage of this approach is that it is probabilistic and can pre-
dict new data points, because it is generative. This also has the advan-
tage that we can detect outliers. Furthermore, it can be stored in O

(
kd2),

which is quite compact. The problems are that we still need to know the
number of components k, and we need a good initialization.9 9 It is often a good idea to start from the output of

k-means.

5.3 Mean-shift

Mean-shift is an algorithm that does not require a predetermined amount
of clusters, like k-means and MoG. Instead, it localizes the histogram
modes of the data. Then, all identified modes are considered a cluster.
It works by starting from random points and iteratively moving toward
the center of mass of the window around the point. This will cause the
algorithm to move toward high density areas. Ultimately, all points that
move toward the same area, i.e. same mode, are considered a cluster.

The iterative update rule is the following,

f (x) =
1

∑n
i=1 k(x, xi)

n

∑
i=1

xik(x, xi),

where x is the current point, k is a distance function, and f (x) is the
new point. Intuitively, it is a weighted average of its distance to all other
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points, which makes it move toward high density areas. The attraction
basin is the region for which all trajectories lead to the same mode, and
all data points in the same attraction basin of a mode are considered a
cluster.

The advantage of this method is that it does not require a predeter-
mined amount of clusters. Another advantage is that it does not assume
any prior shape on data clusters. Furthermore, it has just a single param-
eter h, which is the window size, so it has a physical meaning. However,
the selection of h is not trivial, and the method is computationally quite
expensive.

Figure 5.1. Iteration of mean-shift where points
move toward a mode.

5.4 Hough transform

Remark. This is not an algorithm for segmentation, but rather for finding
features.

The Hough transform uses the structure of shapes to recognize them in
an image. First, we have to find the edges of the objects in the image, so
we can fit shapes to them. Now, let’s say that we want to detect straight
lines for example.10 We use the following equation for a line,11 10 These are important, because of their omnipres-

ence in man-made scenes.
11 We use this instead of y = ax + b, because this
has a bounded parameter domain.

x cos θ + y sin θ = ρ.

Then, we represent all lines through all the points on the edges in a
parameter space. E.g., the point [0, 1] lies on all lines with ρ = 1, thus all
lines in this point are represented by the line ρ = 1 in parameter space.
Then, we need to identify peaks in the parameter space. These peaks
make up the geometry of the objects in the image.

The advantage of this approach is that it can be done for any shape,
such as a circle, but the problem is that as the parameters grow, it gets
exponentially more expensive.

5.5 Interactive segmentation

In interactive segmentation, we assume that we also have information from
the user about the segmentation. I.e., the user has identified some pixels
as being part of some grouping. We can use this information to provide
a better segmentation.

x11 x12 x13

x21 x22 x23

x31 x32 x33

y23

y33y32y31

y21

y11 y12 y13

y22

Figure 5.2. Markov random field, where the y val-
ues are observed, while the underlying x values
remain unobserved.

In this approach, we will assume that the pixels of the image form a
Markov random field (MRF). We assume that there is a defined relation-
ship ψ(xi, xj) between adjacent pixels and a defined relationship ϕ(xi, yi)

between pixels and their hidden state (label). The joint probability of the
field is then defined as the following,

p(X, y) = ∏
i

ϕ(xi, yi)∏
i,j

ψ(xi, xj).
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We then want to minimize the negative log-likelihood,

E(X, y) = −∑
i

ϕ(xi, yi)−∑
i,j

ψ(xi, xj).

We call this the energy function. We can then use an inference algorithm
such as Gibbs sampling to minimize the energy function. However, the
most popular one is GraphCut.

The idea of GraphCut is to turn the MRF into a source-sink graph,
where the edge weights are defined by ϕ and ψ. Let’s say we want to
segment the image into foreground/background12 and we have input 12 If there are more than 2 possible labels, there will

not be a unique global solution.from the user about some pixels that are background and some that
are foreground. We now want to know how to assign the surrounding
pixels. First, we convert all the known background pixels into sources
and foreground pixels into sinks in the source-sink graph. Then, we find
the minimum cost cut that separates the background from the foreground
and label the pixels appropriately. This enforces spatial coherence.

We can also minimize the energy function further by iteratively alter-
nating between using GraphCut and fitting an MoG. Starting from the
user-provided bound, each iteration, we get a new bound from Graph-
Cut, which is used to refine the MoG, which is used to refine the bounds
with GraphCut, etc.

5.6 Learning-based approaches

In fully supervised learning, we assume we have access to a training
dataset of images with full segmentation mask as labels. Thus, whatever
type of segmentation that will be done by a model will depend on the
training data. If the training data consists of background/foreground
segmentation, the model will do background/foreground segmentation.

IoU =

A ∩ B

A ∪ B

Figure 5.3. Illustration of the intersection over
union metric.

Models are evaluated with the intersection over union (IoU) metric
(see Figure 5.3),

1
C

C

∑
i=1

nii

ni + ∑C
j=1 nji − nii

,

where C is the amount of labels, ni is the amount of pixels of label i, and
nij is the amount of pixels of class i predicted to have class j.

Like in unsupervised approaches, we first need to extract features of
the pixels, which can be learned. These features are then given as input
to the models, which are optimized to predict the training labels.

k-nearest neighbors. The simplest learning-based approach is k-nearest
neighbors (kNN). In kNN, every point is labeled to be the mode of its k
nearest neighbors in the training data. The “nearest“ neighbors refer to
the points in the feature space with the smallest distance to the current
feature vector, not the nearest point in the image.
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Transfer learning. Transfer learning is a method that does not require a
large dataset.13 In transfer learning, the weights are first learned on a 13 Which is good, because, in segmentation, training

data is very expensive.related task, such as classification, and dataset (pretraining). Then, we
initialize our segmentation model with these weights as much as possible
and train on the actual dataset (finetuning). This makes the assumption
that pretrained weights are easier to train for segmentation than a ran-
dom initialization.

Hypercolumns. It is common to pretrain on a classification task (one label
per image) and then augmenting the model for segmentation (one label
per pixel). Hypercolumns do this by taking the pixel activations for each
pixel at each layer of the classification network, concatenating them, and
calling that the pixel’s embedding (see Figure 5.4).14 This embedding is 14 For convolutional layers, this means taking the

output of the convolution at that pixel, and, for
downsampling layers, multiple pixels get mapped
to the same value.

then used as input to a pixel classification network that actually predicts
the grouping of the pixel.

This implicitly enforces spatial coherence, because convolutional layers
work locally. Thus, close activations are closely related. The results of
hypercolumns are pretty good, but the boundaries are very coarse, due
to the downsampling layers of the classification model, which cause
many features to be the same value for close pixels.

in
pu

ti
m

ag
e

classifcation network

activations pixel classification
network

Figure 5.4. Hypercolumns.

Fully convolutional networks. In fully convolutional networks (FCN), we
change the usually used linear layers of the classification network to
1× 1 convolutional layers. This allows for pretraining on a classification
task, because linear layers and 1× 1 convolutional layers have the same
parameters. Then, at the end of the model, the images are not turned
into vectors, but rather feature maps. Then dependent on how much the
images were downsampled by the model, we upsample the feature map
from different layers of the network to be of same size as the input image
with a transposed convolution. Now, we have features per pixel that can
be used to predict the label per pixel with 1× 1 convolution.

Refinement with conditional random fields. The outputs of FCNs are not
sharp. But, we can use an additional refinement step with a conditional
random field (generalization of Markov random field). We can use the
FCN output as the unary term ϕ and an edge-aware pairwise term ψ to
refine the segmentation.

U-nets. This model is similar to FCNs, but rather than doing the upsam-
pling in a single transposed convolutional layer, we use the same amount
of upsampling layers as downsampling layers. Additionally, U-nets also
use skip-connections between downsampling and upsampling layers of
the same level.

Figure 5.5. Dilated convolution

Dilated convolutions. In computer vision, we need convolutional layers to
process an input image for a task, and downsampling layers to make the
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receptive field large. However, because the convolutional layers work very
locally (usually 3× 3 or 5× 5), we miss out on contextual information,
and because the downsampling layers remove data, we lose information.
We want a layer that does not downsample, but still has a large receptive
field. The dilated convolution is a generalization of the convolutional
layer that skips values for an exponentially large receptive field without
a change in the amount of weights (see Figure 5.5). Thus, we can still
pretrain a classification network and reuse the weights in the dilated
layers. Another advantage of not needing downsampling layers is that
we get an output for every pixel without needing to upsample, which is
what we want in segmentation.

However, simply only using dilated layers causes artifacts, because
the learned filters are often discontinuous. To mitigate this, we can add
additional convolutional layers to the beginning and end of the model to
smooth out the artifacts. This results in much better segmentations.
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6 Object detection

In object detection, we want to detect objects within an environment. We
are given an image as input, and the output should be a set of objects
with their location within the image.

6.1 Detection via classification

The most naive idea is to run a classification model on every patch within
the image. We can use all previously discussed concepts for the represen-
tation of the patches, such as a gradient histogram or pixel intensities.

6.2 Boosting with weak classifiers

An example of a weak classifier is the rectangle filter. It is essentially
a large gradient calculation, where we compute the sum of one patch,
minus the sum of another next to it. We can compute these very quickly
using a sliding window approach, for which we only need to compute
a cumulative sum over the integral image in O(HW). Then, we can
compute the sum of any patch in O(1). We then classify the patch based
on the difference of sums of the patches.

This will result in a single very weak classifier, but if we combine a lot
of them, we can use boosting to combine them linearly to be a strong clas-
sifier. This is fast, because each weak classifier is very simple. Boosting
works by iteratively finding the weak classifier that achieves the lowest
weighted training error (weights are initialized to be uniform). Then, we
raise the weights of training samples that were misclassified by the best
weak classifier. We repeat this, while collecting the best weak classifier ev-
ery iteration to get a subset of weak classifier that collectively are strong.
We weight each weak classifier by their accuracy on the training dataset.

This will result in a subset of weak classifiers that each might have
a little better than expected accuracy, but together they form a strong
classifier that has good accuracy.

In more details, AdaBoost [Freund et al., 1996] runs for M iterations,
each resulting in a weak classifier. Each iteration m, it first trains a new
weak classifier hm that minimizes the weighted error function,

Jm =
n

∑
i=1

w(m)
i 1{hm(xi) ̸= yi}.

Then, it estimates the weighted error of this classifier on the dataset,

ϵm =
1

∑n
i=1 w(m)

i

n

∑
i=1

w(m)
i 1{hm(xi) ̸= yi}.

Then, it calculates the weighting coefficient for hm(x), which is large if
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the weak classifier is good, and otherwise small,

αm = log
(

1− ϵm

ϵm

)
.

Lastly, it updates the weighting coefficients,

w(m+1)
i = w(m)

i exp(αm1{hm(xi) ̸= ti}).

The final classifier is then the weighted linear combination, according to
αm, of the weak classifiers.

6.3 Implicit shape model

An implicit shape model (ISM) learns a star-topology structural model,
which means that features are considered independent given the center
of the object. It learns a visual codebook with displacement vectors that
encode where the center of the object must be that this visual word
is a part of. For example, we might encode that a car must have two
visible wheels. Then, if two wheels point at the same center with their
displacement vectors, there is a car object at that center.

6.4 Learning-based approaches

The difficulty in using learning-based approaches in object recognition
is that the output has a variable size, since an image may contain any
number of objects. Thus, we must design new models that can output
a variable amount of outputs. Also, there are an exponential amount of
possible regions within an image, which makes classifying every possible
patch infeasible.

The solution to this is selective search [Uijlings et al., 2013]. Selective
search first segments the image into a large number of regions using a
graph-based segmentation technique. Then, it iteratively alternates be-
tween collecting segmentation regions as region proposals, and combin-
ing segmentation regions into larger ones. This results in a wide spec-
trum of region proposal sizes. This enables learning-based approaches,
because now we only need to classify a small number of patches.

CNN

SVMBbox reg
CNN

SVMBbox reg

Figure 6.1. R-CNN architecture.

R-CNN. R-CNN works by first extracting approximately 2000 region
proposals using selective search [Girshick et al., 2014]. Then, it warps the
region proposals to constant-sized images patches and passes them to
a classification network, which classifies the region (CNN followed by
support vector machine).

The problem with R-CNN is that the training and testing is still slow
(47 seconds per test image).

Fast R-CNN. Fast R-CNN solves the problem of R-CNN by first feeding
the entire input image into a CNN to generate a feature map [Girshick,
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2015]. Then, the region proposals are identified within this feature map.
This is then reshaped to a constant-sized representation which is passed
to a fully connected layer that outputs a probability distribution over
classifications. The reason for that this model is faster is because we only
need to run a single CNN, instead of 2000 for each region proposal.

CNN

FCNBbox reg Softmax

Figure 6.2. Fast R-CNN architecture.

Faster R-CNN. The largest bottleneck in Fast R-CNN is the selective
search, which is very slow. Therefore Ren et al. [2015] came up with
Faster R-CNN that uses a region proposal network (RPN) that lets the
model learn the region proposals. The RPN works by taking the feature
map as input and outputting a bounding box and “objectness“ score.

This network has four loss functions that need to be optimized: Region
proposal “objectness“ classification loss, Region proposal bounding box
regression loss, Region classification loss, and another bounding box
regression loss on the eventual classification network.

CNN

proposals

RPN

RoI pooling

Figure 6.3. Faster R-CNN architecture.

You only look once. All R-CNN approaches require a call to a classifica-
tion network for every region proposal. However, this slows down the
algorithm. YOLO predicts bounding boxes and class probabilities in a
single pass [Redmon et al., 2016]. It works by dividing the input image
into an S× S grid. If the center of an object falls into a grid cell, that grid
cell is responsible for detecting that object. Each grid cell then predicts
B bounding boxes ((x, y, w, h, c), where c is the confidence score), and C
conditional class probabilities.15 It then picks the boxes with the greatest

15 Thus, the output of the model has dimensionality
S× S× (5B + C).

confidence and removes boxes if their IoU is lower than some threshold.

YOLO is much faster than the R-CNN approaches with a real-time
performance of approximately 45 frames per second. A minor problem
is that it struggles with small objects and it imposes strong spatial con-
straints (since each grid cell can only have one class prediction), which
limits the number of nearby objects it can predict.
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7 Tracking

Tracking is the following of the movement of an object (point, region, or
template), i.e., we want to find the position of the object in the consecutive
frames. Thus, the problem statement is that we want to find the position
of an object in frame t + 1, given that we know its position in frame t.

To make sure that the object detection location does not “teleport“,
we can give the models the prior that objects have a constant velocity.16 16 This is especially useful when the camera is sta-

tionary.We can do this by penalizing points that are not in the direction of the
current velocity of the object.

7.1 Point

If we want to track a point between frames, we can make the assump-
tion that the color of the point will remain the same, and optimize the
following error function (one-dimensional case),

E(h) = (I[x, t])− I[x + h, t + 1])2

≈ (I[x, t]− I[x, t + 1]− hIx[x, t])2 First-order Taylor approximation

∂

∂h
E(h) = −2Ix[x, t](I[x, t]− I[x, t + 1]− hIx[x, t]).

At the minimum, where the derivative is 0, we get the following,

h =
I[x, t + 1]− I[x, t]

Ix[x, t]
.

However, if the gradient is 0, i.e., when the image region is flat, Ix[x, t]
will be 0 and thus we have no information about which direction the
point moved in. This is very similar to the problem in optical flow, called
the aperture problem.

Furthermore, we assume to always move toward the closest minimum.
But, the image is non-convex in general, which has multiple solutions.
This can be solved by a high framerate, because then the movement
between frames is small.

Like in optical flow, in two dimensions, we need more constraints to
solve for the displacement. And, like in optical flow, we can solve this by
either solving it globally (Horn-Schunck) or locally (Lucas-Kanade).

7.2 Template

In template tracking, we want to track an object between frames, repre-
sented by a bounding box, which we call its template. The most naive
solution is to simply compare pixel intensities and minimizing the fol-
lowing error function,

E(u, v) = ∑
x,y

(I[x + u, y + v]−T[x, y])2,
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where T is the template. However, the object in the template might make
a transformation such as a rotation or scaling. We could also parametrize
those transformations, instead of only a translation, by generalizing the
previous error function to any transformation family W,

E(p) = ∑
x
(I[W(x; p)]−T[x])2,

where p parametrizes a “warp“ W. However, we cannot directly solve
for p, thus we iteratively improve it by updating it with some δp,

= ∑
x

(
I[W(x; p + δp)]−T[x]

)2

≈∑
x

(
I[W(x; p)] + δp∇pI[W(x; p)]−T[x]

)2
First-order Taylor approximation

= ∑
x
(I[W(x; p)] + δp∇W(x;p)I[W(x; p)]∇pW(x; p)−T[x])2 Chain rule

∂

∂δp
E(p) = 2 ∑

x

(
∇W(x;p)I[W(x; p)]∇pW(x; p)

)⊤
(
I[W(x; p)] + δp∇W(x;p)I[W(x; p)]∇pW(x; p)−T[x]

)
.

Chain rule

We can then solve for δp by setting the gradient to 0,

δp = H−1 ∑
x

(
∇W(x;p)I[W(x; p)]∇pW(x; p)

)⊤
(T[x]− I[W(x; p)]),

with Hessian matrix H defined as follows,

H = ∑
x

(
∇W(x;p)I[W(x; p)]∇pW(x; p)

)⊤(
∇W(x;p)I[W(x; p)]∇pW(x; p)

)
.

We iteratively update the warp by δp until convergence.

However, this method is not robust to image noise, since it assumes
that pixel intensities remain the same between frames. Furthermore,
some three-dimensional transformations are impossible to parametrize
as a two-dimensional warp of an image. For example, a person turning
around w.r.t. the camera cannot be parametrized as a two-dimensional
warp.

7.3 Tracking by detection

We can also track by detecting keypoints in each frame and minimizing
the distance to the feature descriptor of the point we are tracking. This
does not require the assumption that the image intensities remain the
same, and can track large displacements.

We can also use this to track a region by matching keypoint descriptors
of the template with the next frame. Then, removing outliers with e.g.
RANSAC. The bounding box in the next frame is then the box that
encapsulates all points that are left.

However, in many cases, we do not have an exact template, but we
want to track any object of a specific type. This can be done by detecting
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the objects independently in each frame and then associating the detec-
tions over time with a bipartite matching algorithm. This is especially
important when there are multiple objects in the scene.

7.4 Online learning

Often, the template changes throughout frames, but, until now we have
assumed that the template is constant. However, it is more realistic to as-
sume that the appearance of the tracked object changes. Online learning
accounts for this by collecting all detected features of the tracked object
throughout the frames and the background. Then, it uses these to train
the detector every frame. Thus, the detector improves every frame, and
updates it representation of the object.

The advantage of this is that it is robust to changes to the environ-
ment, e.g., if we go from a dark to a bright environment. However, the
disadvantage is that the representation of the object can gradually drift
to something else. But, this can be avoided by not allowing the model to
drift too far from our initial template with additional constraints.
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8 Projective geometry

Using projective geometry, we can model the imaging process of a perspec-
tive camera,17 because it satisfies the following constraints, 17 And various other transformations that Euclidean

space cannot, such as translation.
• Straight lines must be mapped to straight lines;

• The size of an object must be inversely proportional to its distance
from the camera;

• We must be able to represent points at infinity to model vanishing
points.

In projective geometry, the homogeneous coordinate space is used,

x̃ ∝

[
x
1

]
∈ P2,

which can be converted to Euclidean space,

x̃ 7→
[

x/w

y/w

]
∈ R2,

where w is the last entry of x̃. Homogeneous coordinates with w = 0
are called ideal points and serve as a direction toward infinity, rather than
points.

In this space, lines can be represented as the following,

ℓ =
[

a b c
]⊤

,

where the points on this line satisfy ℓ⊤ x̃ = 0. Now, if we want to find the
point where two lines ℓ, ℓ′ intersect, we need to find a point that satisfies
ℓ⊤ x̃ = ℓ′⊤ x̃ = 0. This is exactly the cross product,

x̃intersection = ℓ× ℓ′.

We can find the line between two points x̃1, x̃2 in the same way,

ℓ = x̃1 × x̃2.

In three dimensions, we can also represent planes,

π =
[

a b c d
]⊤

.

A point lies on the plane π if and only if π⊤X = 0. If we want to find a
plane from three points, we need to solve

π⊤
[

X1 X2 X3

]
= 0.

We can construct lines as the intersection of two planes, or construct
points as the intersection of three planes.
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8.1 Transformations

Translations in Euclidean geometry are non-linear, but by using homoge-
neous coordinates it becomes a linear operation,

[
x
y

]
7→

1 0 tx

0 1 ty

0 0 1


x

y
w

 =

x + tx

y + ty

w

 .

Furthermore, we can make the following transformations,

• Rigid transformations (rotation and translation) with the following
matrix, cos θ − sin θ tx

sin θ cos θ ty

0 0 1

 . This matrix has 3 degrees of freedom: tx , ty, θ.

• Similarity transformations (rotation, translation, and scaling) with the
following matrix, s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1

 . This matrix has 4 degrees of freedom: tx , ty, θ, s.

• Affine transformations (rotation, translation, scaling, and shearing)
with the following matrix, a1 a2 a3

a4 a5 a6

0 0 1

 . This matrix has 6 degrees of freedom: a1:6

• Projective transformations with the following matrix,a b c
d e f
g h i

 . This matrix has 8 degrees of freedom, because it is
specified up to scale.

8.2 Homography

Suppose that we have point correspondences between two images. Now,
we want to find the projective transformation H that relates the two
images. For this, we use direct linear transformation. We have the following
equations,

λi x̄′i = Hx̄i The homography is constrained to map xi to x′i .λix′i
λiy′i
λi

 =

h11xi + h12yi + h13

h21xi + h22yi + h23

h31xi + h32yi + h33

 .
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Now, when we revert them back to the real coordinate system, we get
the following,

λi = h31xi + h32yi + h33

λix′i = h11xi + h12yi + h13

λiy′i = h21xi + h22yi + h23

This gives us the following linear constraints,

h21xi + h22yi + h23 − h31y′ixi − h32y′iyi − h33y′i = 0

h11xi + h12yi + h13 − h31x′i xi − h32x′iyi − h33x′i = 0.

In matrix form, we can set this up as the following for n points,


x1 y1 1 0 0 0 −x′1x1 −x′1y1 −x′1
0 0 0 x1 y1 1 −y′1x1 −y′1y1 −y′1
...

...
...

...
...

...
...

...
...

xn yn 1 0 0 0 −x′nxn −x′nyn −x′n
0 0 0 xn yn 1 −y′nxn −y′nyn −y′n





h11

h12

h13

h21

h22

h23

h31

h32

h33


= 0.

Singular value decomposition (SVD) decomposes a
matrix A = UΣV⊤, where U and V are unitary ma-
trices, and Σ is a diagonal scaling matrix. The SVD
is very useful for solving (overdetermined) equa-
tions of the following form,

Ax = 0.

Now, when solving such equations, we want to min-
imize ∥Ax∥ subject to ∥x∥ = 1. We can solve for this
by using SVD,

min ∥Ax∥ ∥x∥ = 1

min ∥UΣV⊤x∥ ∥x∥ = 1

min ∥ΣV⊤x∥ ∥x∥ = 1

min ∥Σb∥ ∥Vb∥ = 1.

Then, ∥Σb∥ is minimized if

b =
[
0 · · · 0 1

]⊤ .

Thus, the solution is the following,

x = V
[
0 · · · 0 1

]⊤
= Vn,

where Vn is the last column vector of V .

If we stack n ≥ 4 points, we can use SVD to find the h vector that min-
imizes the algebraic distance. However, this does not have a geometric
meaning. We would like a cost function that minimizes the distortion of
the points. An example of this is the symmetric transfer error,

Ĥ = argmin
H

∑
(x,x′)∈D

d(x, H−1x′)2 + d(x′, Hx)2,

where D is the collection of point correspondences, and d(·, ·) is a dis-
tance function in real space. In practice, we use the algebraic solution as
a starting point and then refine it to minimize the geometric error.
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9 Camera model

The pinhole camera is a mathematical model of how perspective cameras
work. It assumes that the pinhole is infinitely small, so it only lets one
lightray through per point in the space.18

18 If the pinhole camera is not infinitely small, the
image would become blurry. However, in reality,
an infinitely small pinhole is impossible and a very
small pinhole would not let enough light through
to see anything. The solution to this are lenses that
map all light coming from a point to its correspond-
ing point in the image.

9.1 Internal camera matrix

X

optical axis

xc

yc

zc

image plane

xfocal point

f

Figure 9.1. Illustration of how the intrinsic camera
matrix works.

The coordinate frame of the pinhole camera is chosen such that the
origin is in the center of the pinhole. The image plane behind the camera
is in the plane where zc = − f , where f is the focal distance. The z-axis
is called the principal axis and goes in the direction where the camera is
pointing toward. If we know a 3-dimensional point Xc, then it is possible
to calculate the image coordinate x of that point projected onto the image
plane:

x = − f
xc

zc
, y = − f

yc

zc
.

The minus sign indicates that the projected image is upside down. To get
rid of this mirroring, we use a virtual pinhole camera in which the image
plane is put at zc = f , i.e., in front of the pinhole. In this model, we have

x = f
xc

zc
, y = f

yc

zc
.

Using homogeneous coordinates, we can model this with the following,

x̃ =

 fx s cx 0
0 fy cy 0
0 0 1 0

 X̃c = KX̃c.

In practice, we often set fx = fy and s = 0. The translation c moves the
origin of the image from the middle to the top left of the image plane,
which makes computation easier.19 19 Computation becomes easier then, because most

libraries, such as NumPy and PyTorch, start the coor-
dinates from the top left.

9.2 External camera matrix

The camera will generally not be in the origin of the 3-dimensional world
space. So, we need the transformation that moved the camera from the
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xw

zw

yw
world frame

yc

xc

zc

optical axis

camera frame

F

image

Figure 9.2. F is the rigid transformation that the
camera made within the world space. To convert
world coordinates such that the camera is the origin,
we transform them by F−1.

origin to its point. Let

F =

[
R t
0⊤ 1

]
be this transformation, then the projection of a point Xw in world space
onto the image plane is given by the following,

x̃ = KF−1Xw. We take the inverse of F, because we want to move
the origin of the points to the origin of the camera.

We denote this matrix by P = KF−1,20 and can be estimated by DLT 20 P has 11 degrees of freedom.

with 6 (Xw, x) correspondences. Again, DLT only minimizes the algebraic
error, which we can then perfect by minimizing a geometric error.



computer vision 2023–2024 31

10 Epipolar geometry

Remark. In this section, all points are in projective space. They are not
denoted by x̃ and X̃, but rather by x and X.

Epipolar geometry is the geometry of stereo vision, where two cameras
view a scene. When two cameras view a scene from distinct positions,
there are geometric relations between the 3-dimensional points and their
2-dimensional projections on the image planes. These geometric relations
lead to constraints between the image points that we can make use of.
These relations are derived based on the assumption that the two cameras
are approximated by the pinhole camera model (section 9).

e1 e2

X

C1 C2baseline

ℓ1

ℓ2

π

x2x1

Figure 10.1. Epipolar geometry. The points x1, x2 on
the two image planes that correspond to the same
3-dimensional point X are connected by a common
plane. The intersection of the plane with the image
planes form the epipolar lines.

Figure 10.1 shows the geometric relationships between the 3-dimensional
points and its projections onto the images. X is the 3-dimensional point
that is projected onto camera 1 as x1 and camera 2 as x2 (as seen in the
pinhole camera model). Together, C1, C2, and X form the epipolar plane π.
x1 and x2 must also be on this plane. More specifically, the intersections
between the epipolar plane and image planes are lines called the epipolar
lines ℓ1 and ℓ2. x1 must be on ℓ1 and x2 must be on ℓ2.

We can also see this from a different perspective. The projections of
C2 onto image 1, and C1 onto image 2, are called the epipoles e1 and e2.
These are computed as follows,

e1 = P1C2

e2 = P2C1,

where P1 and P2 are the camera matrices of cameras 1 and 2, respectively.
The line formed between x1 and e1 is the epipolar line (same for x2 and
e2). This gives us the following constraint,

ℓ1 = e1 × x1

ℓ2 = e2 × x2.

Intuitively, this is because both C1 and C2 are on the epipolar plane,
thus so must be e1 and e2. The epipolar lines are the intersection of the
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epipolar plane with the image planes, and we know two points that are
on both, x and e, which form a line.

Notice that x1 cannot be “behind“ e1, because that would imply that
X is behind C1, which is not the case, because X is visible in image 1.
The same holds for camera 2.

In general, we want to be able to reconstruct 3-dimensional points
from 2-dimensional point correspondences between n images. This is
done in the following three steps,

1. Compute the fundamental (or essential) matrix that relates the point
correspondences,

x⊤2 Fx1 = 0,

where F transforms x1 to the epipolar line of x2 and F⊤ transforms x2

to the epipolar line of x1. This is done using the direct linear transform;

2. From the fundamental matrix, compute the relative pose (T , R) be-
tween the cameras;

3. Using the point correspondences and the relative pose, backproject the
2-dimensional image points into 3-dimensional space and find their
intersection to find X.

10.1 Correspondence geometry

We need to find out in what way x1 constrains the location of x2 in image
2, without knowing X. x1 constrains the point X to be on the projection
line from C1 to x1, as can be seen in Figures 9.1 and 10.2.

e2

x1

X?

C1 C2

ℓ2

Figure 10.2. Knowing x1 constrains its correspond-
ing point x2 to be on the epipolar line ℓ2, and not
behind e2, because then X would be behind camera
1, which is not the case.

The key insight into constraining x2 is that we do not need to know
the exact location of X. We only need to find a second point on ℓ2 to
compute it with the cross product (we already know e2). Furthermore,
the projection line emanating from x1 is on the epipolar plane, thus
any point on this projection line is also on the epipolar plane. If we
project that point onto image plane 2, we get a second point on ℓ2. We
can compute a point on the projection line by using the pseudo-inverse
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P+
1 .21 A 3-dimensional point X ′ on the projection line between C1 and 21 The pseudo-inverse can be computed with SVD

as M+ = V 1
Σ U⊤. M+x maps x to some point y that

mapped to x = My. However, this is not necessarily
y, since we lose one dimension of information in
the 3× 4 matrix P.

x1 can be computed as follows,

X ′ = P+
1 x1.

The epipolar line ℓ2 can be computed by the cross product between the
epipole e2 and this point on image plane 2,

ℓ2 = P2C1 × P2P+
1 x1.

The cross product matrix is the conversion of a vec-
tor to a matrix that would be equivalent to perform-
ing a cross product with that vector,

[a]×
.
=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .

Definition 10.1 (Fundamental matrix). The fundamental matrix F is
defined as satisfying the epipolar constraint for all point correspon-
dences in image 1 and 2,

x⊤2 Fx1 = 0. F has 7 degrees of freedom, because it is a 3× 3
matrix, is defined up to scale, and det(F) = 0
(rank 2).The fundamental matrix relates points in one image plane with lines

in the other. I.e., x2 must be on the line Fx1 and x1 must be on the
line x⊤2 F = F⊤x2.

It satisfies the following equations w.r.t. the camera matrices,

F = [P2C1]×P2P+
1 Note that these equations are not used for

estimating the fundamental matrix, since we do
not have access to the camera matrices.F⊤ = [P1C2]×P1P+

2 .

Definition 10.2 (Essential matrix). The essential matrix E relates
points in one image plane with lines in the other by the epipolar con-
straint in the same way as the fundamental matrix (definition 10.1),

x̂⊤2 Ex̂1 = 0, E has 5 degrees of freedom, because it has the
same parameters as the fundamental matrix,
minus the intrinsic camera parameters.where x̂ = K−1x.

The difference is that the essential matrix assumes that the cam-
eras are calibrated. This means that the intrinsic camera parameters
are known. We have the following relation between the two matrices,

E = K⊤FK.

8-point algorithm. Given that we know 8 point correspondences,22 we 22 We assume that all our point correspondences are
correct, i.e., they satisfy x⊤1 Fx2 = 0.can compute F using direct linear transformation (DLT) derived from
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x′⊤Fx = 0,


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1

...
...

...
...

...
...

...
...

...
x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1





f11

f12

f13

f21

f22

f23

f31

f32

f33


= 0, Let A denote the matrix, and f the vector of

fundamental matrix entries.

after which we use the SVD trick to find the best algebraic solution.

However, the problem with this is that the values of the matrix grow
very large, because of the multiplications, while the last column vector
remains 1. Using DLT, this will always result in the best matrix being
very similar to the following, 0 0 0

0 0 0
0 0 1

 .

Thus, importantly, we need to first normalize the coordinates of the im-
ages to be in [−1, 1]× [−1, 1] before computing F.

Now, we also need to enforce the singularity constraint (rank 2, det(F) =
0) of F, since DLT will give a rank 3 matrix. One possible solution is to set
the smallest singular value to equal 0 using SVD. However, this does not
necessarily yield the best results, because we are adjusting it a posteriori.

7-point algorithm. We would like our algorithm to only be able to give
rank-2 matrices. We could use 7 point-correspondences, making A a
7× 9 matrix.23 Thus, this matrix has a 2-dimensional null space, which 23 We could also use more and then use the space

corresponding to the two smallest singular valueswe denote by f1 and f2 (with corresponding fundamental matrices F1

and F2). This means that we have a family of solutions to the problem
such that A( f1 + λ f2) = 0,

F1 + λF2.

However, this does not necessarily give a rank-2 matrix. The solution to
this problem satisfies the following,

det(F1 + λF2) = 0,

which results in a cubic equation with 1 or 3 solutions for λ.

5-point algorithm. The essential matrix only has 5 degrees of freedom,
thus we only need 5 point correspondences to compute it. However,
as in the 7-point algorithm, this results in a 4-dimensional null space.
Furthermore, we additionally have the constraint that E has two equal
non-zero singular values. This results in 10 cubic polynomials that need
to be solved for.
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10.2 Camera geometry

From the essential matrix,24 we can compute the relative pose between 24 Or the fundamental matrix, since they are closely
related by

E = K⊤FK,

as we have already seen.

the 2 cameras [Longuet-Higgins, 1981]. This is done by first decomposing
E = UΣV⊤.25 Then, we can compute the four possible relative poses as

25 We know the following,

Σ =

1 0 0
0 1 0
0 0 0

 ,

because of the constraints on the essential matrix.

the following,

T = U3, R = UWV⊤

T = −U3, R = UWV⊤

T = U3, R = UW⊤V⊤

T = −U3, R = UW⊤V⊤,

where W is the following matrix,

W =

0 −1 0
1 0 0
0 0 1

 .

For each configuration, we then check for the Cheirality condition, i.e.,
the reconstructed points must be in front of the cameras.

10.3 Scene geometry

From the relative camera pose and point correspondences, we can trian-
gulate the points to find them in three dimensions. A possible solution
would be to backproject the x1 and x2 and find their intersection.

We can do this by first finding the x and y lines that the points x1 and
x2 are within their respective image. Let x be the point in the image, then
we have the following relations,

x = ℓx × ℓy

ℓx =
[
−1 0 x

]⊤
ℓy =

[
0 −1 y

]⊤
.

Then, we can find the planes on which these lines are within the 3-
dimensional space,

Πx = P⊤ℓx

Πy = P⊤ℓy.

Lastly, to get x’s backprojection, we have to find the intersection between
these planes, which is defined by the points X that satisfy the following,[

Π⊤x
Π⊤y

]
X = 0.

We want to find the intersection of the two backprojections of x1 and
x2.26 We can find this by finding a solution for the two backprojections 26 We could also use n > 2 cameras, which relies on

the same idea: finding the intersection of n backpro-
jections. However, more than 4 cameras does not
help.
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mid-point

Figure 10.3. Mid-point reprojection. Since the rays
will likely never intersect, we find the segment with
the smallest length between the two rays. Then, we
take the mid-point of this segment as the point. By
reprojection the mid-point onto the images, we can
compute the reprojection error.

that satisfies the following,

det



ℓ⊤x1

P1

ℓ⊤y1
P1

ℓ⊤x2
P2

ℓ⊤y2
P2


 = 0.

However, due to noise, the two backprojections will never truly inter-
sect. Thus, we need to find a best intersection. A natural best estimate is
the mid-point of the shortest line between the two backprojection lines.
This minimizes the 3-dimensional error, but not the reprojection error. We
could further optimize this estimate to minimize the reprojection error,

d(x1, P1X̂)2 + d(x2, P2X̂)2.
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11 Structure from motion

In Structure from Motion (SfM), we want to recover the 3-dimensional
structure from m images that depict n 3-dimensional points. Recovering
the structure involves estimating the camera matrices, P1, . . . , Pm, and
the positions of the points X1, . . . , Xn. The fact that we have more than 2

viewpoints enables us to reveal and remove more mismatches.

Ck−1 Ck+1

3D structure

Ck

Figure 11.1. Structure from motion. We iteratively
extend and refine the recovered structure.

In sequential SfM, we initialize the 3-dimensional structure from two
images, using the same technique as in the previous section. Then, for
each additional view, make a reconstruction with all previous views. In
the new view, there are old points that we had already reconstructed,
but also new points that are new to the reconstruction. We refine the
old points by considering the new view, and we extend the structure by
adding the new points.

Afterward, we refine the recovered structure. We use bundle adjust-
ment, which is a non-linear method that minimizes the sum of squared
reprojection errors,

m

∑
i=1

n

∑
j=1

d
(

xij, PiX̂j
)2.

In general, bundle adjustment involves a large amount of parameters.
However, there are many methods for solving this problem efficiently.

11.1 Robust estimation

When optimizing the geometric error when backprojecting, the squared
error can be a source of bias for outliers. One possible solution is to use
an M-estimator that gives more weight to small errors and less weight to
large errors. For example, we can use the robust norm function ρ to give
outliers less influence over the fit,

ρ(ϵ; σ) =
ϵ2

σ2 + ϵ2 .

Choosing the correct scale σ is critical. A popular choice is 1.4826, which
is plotted in Figure 11.2.

−10 −5 0 5 10
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1

ϵ

Figure 11.2. Robust norm function ρ(ϵ; σ) with σ =
1.4826.
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Another solution is to use the random sample consensus (RANSAC)
algorithm to robustly compute the best fit. For k iterations, the algorithm
computes a minimum model with n data points. It then checks how many
“inliers“ this model has, which, intuitively, means how many points does
this model explain well enough. If the amount of inliers is above the
threshold d, we fit the model to all inliers, and compute the error on all
points. We return the model with the lowest error on its inliers.

function RANSAC(X ,n,k,t,d)
ϵmin ← ∞
initializeMbest

repeat k times
Q ← n points randomly sampled from X
M← FitModel(Q)
R ← Residual(X ,M, Error)

I ← {x ∈ X | R(x) ≤ t}
if |I| ≥ d then
Minliers ← FitModel(I)
ϵ← Error(Minliers, I)
if ϵ < ϵmin then
Mbest ←M

end if
end if

endreturnMbest

end function

Algorithm 1. Random sample consensus algorithm.
X are the data points, n is the minimum number of
data points needed to fit a model, k is the amount
of iterations to run, t is the upper bound on the
error for considering a point as an inlier, and d is
the minimum amount of inliers to consider a model
“good“.

Let w be the probability of a point being an in inlier. Then, wn is the
probability that all n points used to fit the model are inliers. 1−wn is the
probability that at least one of the points is not an inlier, which would
result in a bad model. (1− wn)k is the probability that RANSAC does
not select a single subset with all inliers. If we let p be the probability that
RANSAC will return a good model, then we have the following identity,

1− p = (1− wn)k,

which means that if we want probability p to get a good model, then we
can compute the necessary k as follows,

k =
log(1− p)

log(1− wn)
.
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12 Stereo matching

In humans and machines, depth perception is very important to interact
with the environment. In humans, this is done by two eyes that are
slightly offset. From this difference, depth can be estimated. We can do
the same with cameras with potentially even more views, which could
result in better depth estimation. If the cameras are not perfectly on the same x-axis

or do not have the same rotation, we can solve it
by rectifying them using a homography [Loop and
Zhang, 1999]. Geometrically, this means first pro-
jecting the two images onto a common plane that
is parallel to the baseline. It can also be seen as
rectifying the epipolar lines.

The standard setup in stereo geometry is two identical cameras that
are only displaced on the x-axis. In other words, they have the same
rotation and height. Then, it is easy to compute the fundamental matrix,

F =

0 0 0
0 0 1
0 −1 0

 .

Then, we have the following epipolar lines,

ℓ1 = x⊤2 F =
[
0 1 −y2

]⊤
ℓ2 = Fx1 =

[
0 1 −y1

]⊤
,

which tells us that all points will have the same y-axis, and are parallel
to the x-axis.

If there is a 3-dimensional point at X = [X, Y, Z], then we have the fol-
lowing relationships with the 2-dimensional points on the image planes,

x1 = f
X
Z

Under the assumption that camera 1 is at the
origin w.r.t. camera 2.

y1 = f
Y
Z

x2 = f
X− bx

Z
Translating camera to the left is the same as
translating the world to the right. bx is the baseline
on the x-axis.y2 = f

Y
Z

.

The stereo disparity (which is the difference in pixel locations) d = x1 − x2

can then be computed as follows,

d = x1 − x2

= f
X
Z
− f

X− bx

Z

= f
bx

Z
We can then solve for the depth Z,

Z =
f bx

d
Furthermore, we can compute how much the disparity changes as the
depth changes,

dd
dZ

=
d

dZ
f bx

Z

=
f bx

Z2 ,
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small baseline large baseline

single pixel

Figure 12.1. In stereopsis, a large baseline makes it
easier to estimate the depth of further points, but it
comes at the cost that the search problem becomes
harder.

which tells us that the uncertainty in the pixel location grows quadrati-
cally with depth, causing large depth error. But, this uncertainty is also in-
versely proportional to the baseline, thus we can increase bx to see depth
better at deep locations. However, this comes at the cost that the dis-
parity becomes larger as the baseline increases, which makes the search
problem of matching the pixels between images harder. Furthermore, a
large baseline results in more occlusion problems, where one camera is
occluded while the other is not, making it impossible to estimate depth.27 27 A small baseline makes single-sided occlusion

less common, because they are more likely to both
be occluded, which is not a problem, since we then
estimate the depth to the occlusion.

If we have a small baseline, the disparity is low, which makes it harder to
achieve fine-grained resolution, since pixels are not infinitely small. See
Figure 12.1 for an illustration of this.
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Figure 12.2. Matching algorithm, where the points
on the corresponding lines are being matched to
each other. A line to the right means that there is
an obstruction.

Now, we need to figure out how to match the pixels in one image to
another. Note that the search is limited to the epipolar line, so we only
need to match along the common epipolar line of the two image planes.
We also need the points to enforce spatial consistency, since close points
in the environment are also close between the image planes. Also, we can
never turn back, i.e., if x1 is matched to x2, then x′1 > x1 cannot match
to a point x′2 < x2. We then associate with each matching of pixels a
cost that is computed from their intensities. We can then use a matching
algorithm to compute the optimal matching [Baker, 1981].

12.1 Multi-view stereo

We can also add more cameras to the setup. An obvious advantage is
that we can set the cameras up such that we have multiple baselines
[Okutomi and Kanade, 1993]. This has the result that we no longer have
the trade-off between large and small baseline, because we can use both.
This makes it possible to compute the depth of far points accurately and
deal with the visibility problem of large baselines. An example of a multi-
view setup being more robust to occlusions is Figure 12.3. The left two
cameras would not be able to find the depth of the point on the cube, but
the introduction of the right camera made it possible.
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3D structure

invisible

Figure 12.3. Visibility problem that is resolved by
adding a third camera.

12.2 Volumetric stereo

In volumetric stereo, we discretize the 3-dimensional space into voxels.28 28 A voxel is a “3-dimensional pixel“.

We then “carve“ the geometry out of these voxels. This gives us a recon-
struction of the scene, from which we can create a depth map by taking
the first occupied voxel for each pixel. We assign a photoconsistency cost
to each voxel, and then we make the minimum cost cut in this graph.

Figure 12.4. Above view of voxel carving.

We can also use visibility-first methods. In these methods, we first
handle the visibility problem, and then we carve out the voxels. We do
this by first segmenting the foreground from the background for every
camera. We then backproject the foreground silhouette to the image
plane. All these pixels are visible from this camera. The visual hull is
then the intersection of these silhouettes. We only keep the voxels that
are part of the visual hull, which gives us a tight bound on the object.

Figure 12.5. The visual hull of the object with three
cameras. As we increase the amount of cameras, the
intersection becomes smaller and thus the bound
on the object tighter.
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