
Computational Intelligence Lab
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes

computational intelligence lab ii

Contents

1 Preliminaries 1

1.1 Vector spaces 1

1.2 Norms 1

1.3 Matrices 2

1.4 Eigenvalues and eigenvectors 3

1.5 Convexity 4

2 Dimensionality reduction 5

2.1 Linear autoencoders 5

2.2 Projection 6

2.3 Principal component analysis 10

2.4 Learning algorithms 11

3 Matrix completion 13

3.1 Fully observed case 14

3.2 Incompletely observed case 18

3.3 Randomized methods for SVD 23

4 Latent variable models 25

4.1 Probabilistic clustering models 25

4.2 Topic models 28

4.3 Embeddings 30

5 Deep neural networks 34

5.1 Backpropagation 35

5.2 Gradient methods 36

5.3 Convolutional neural networks 38

6 Generative models 40

6.1 Autoregressive models 40

6.2 Variational autoencoders 42

6.3 Generative adversarial networks 43

6.4 Diffusion models 44

computational intelligence lab iii

List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A→ B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m× n matrix

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

computational intelligence lab 1

1 Preliminaries

1.1 Vector spaces

The vector space Rm consists of all column vectors with m elements. For
a set of vectors C = {c1, . . . , cn | ci ∈ Rm}, we can define a subspace
spanned by this set, denoted by span(C). It is the set of all possible linear
combinations of elements of C. If a set of vectors that span a subspace
are independent, they are called a basis, b1, . . . , bk ∈ Rm. The number of
basis vectors defines the dimensionality of the subspace.1 1 We know that the amount of basis vectors must

be smaller than the amount of vectors that span the
subspace, which must be smaller than the dimen-
sionality of the space,

k ≤ m ≤ n.

Observation. The following facts hold about subspaces,

• Every subspace contains the zero vector 0;

• If x and y are in the subspace, then x + y is also in the subspace;

• If x is in the subspace and a ∈ R, then ax is also in the subspace.

Definition 1.1 (Orthogonal subspaces). Subspaces V andW are or-
thogonal when v⊤w = 0 for all v ∈ V , w ∈ W .

1.2 Norms

Definition 1.2 (Inner product). An inner product ⟨·, ·⟩ : V × V →
R is an operation defined on a vector space V that satisfies the
following properties ∀x, y, z, a, b ∈ R,

• Commutativity: ⟨x, y⟩ = ⟨y, x⟩;

• Linearity: ⟨x, ay + bz⟩ = a⟨x, y⟩+ b⟨x, z⟩;

• Positive definiteness,

x ̸= 0 =⇒ ⟨x, x⟩ > 0

x = 0 ⇐⇒ ⟨x, x⟩ = 0;

• Bilinearity (follows from commutativity and linearity),

⟨x + y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩
⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩.

Corollary. ⟨x + y, x + y⟩ = ⟨x, x⟩+ 2⟨x, y⟩+ ⟨y, y⟩.

Corollary. ⟨Ax, y⟩ = ⟨x, A⊤y⟩.

The vector space V , along with an inner product, defines an inner vec-
tor space. During this course, we will assume that we always work with
real vectors in Rn. An example of an inner product is the dot product,2 2 Usually, this operation is what is meant by the

inner product.

computational intelligence lab 2

x · y = x⊤y =
n

∑
i=1

xiyi.

Definition 1.3 (Norm). A norm ∥ · ∥ : Rn → R is a function that can
be thought of as a way of measuring the distance from the origin.
Norms satisfy the following properties,

• Positive definiteness, x ̸= 0 =⇒ ∥x∥ > 0;

• Triangle inequality, ∥x + y∥ ≤ ∥x∥+ ∥y∥;

• Cauchy-Schwarz inequality, |⟨x, y⟩| ≤ ∥x∥∥y∥.

Corollary. For the Euclidean norm, the following holds,

cos θ =
⟨x, y⟩
∥x∥∥y∥ ,

where θ is the angle between x and y.

Corollary (Cosine theorem).

∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x, y⟩.

Each inner product defines a canonical norm ∥x∥ .
=
√
⟨x, x⟩. For ex-

ample, the Euclidean norm is defined by the dot product,

∥x∥2 =
√

x⊤x =

√
n

∑
i=1

x2
i .

The p-norm is a generalization of the Euclidean norm,

∥x∥p =

√
n

∑
i=1
|xi|p.

1.3 Matrices

The rank r of a matrix A ∈ Rm×n is the dimensionality of its column space.
It is bounded by

r ≤ min{m, n}. The matrix is full-rank if r = min{m, n}.

A matrix A ∈ Rm×n defines 4 fundamental subspaces,

• Column space ⊆ Rm (r dimensional), {b | Ax = b};

• Null space ⊆ Rn (n− r dimensional), {x | Ax = 0};

• Row space ⊆ Rn (r dimensional), {b | A⊤x = b};

• Left null space ⊆ Rm (m− r dimensional), {x | A⊤x = 0}.

computational intelligence lab 3

The row space row(A) is the orthogonal complement of the null space
null(A), thus row(A) + null(A) = Rn. Similarly, col(A) + null(A⊤) =

Rm. row(A) col(A)

null(A) null
(

A⊤
)

RmRn

b

xn

xr

Figure 1.1. Illustration of the 4 spaces defined by a
matrix A. It shows the perpendicular spaces. Fur-
thermore, it shows that Axr = b for some xr ∈
col(A). Also, if you add a vector from the null
space to the row vector, it still maps to the same
b, A(xr + xn) = Axr + Axn = Axr = b.

Definition 1.4 (Orthonormal matrix). An orthonormal matrix is an
invertible matrix whose columns q1, . . . , qn are all orthogonal to
each other and of unit length, i.e.,

q⊤i qj = 0, ∀i ̸= j ∈ [n]

q⊤i qi = 1, ∀i ∈ [n].

Properties. Let Q ∈ Rn×n be an orthogonal matrix,

Q⊤ = Q−1

⟨x, y⟩ = ⟨Qx, Qy⟩.

Definition 1.5 (Trace). The trace of a square matrix A ∈ Rn×n is the
sum of its diagonal,

tr(A) =
n

∑
i=1

aii.

Properties. Let A, B, C ∈ Rn×n, x, y ∈ Rn, c, d ∈ R, then

tr(cA + dB) = c · tr(A) + d · tr(B) Linearity.

tr(A) = tr
(

A⊤
)

tr(ABC) = tr(CAB) = tr(BCA) Cyclic property.

x⊤y = tr
(

x⊤y
)
= tr

(
xy⊤

)
. xy⊤ is a rank-1 matrix.

Furthermore, tr(A) is equal to the sum of the eigenvalues of A.

1.4 Eigenvalues and eigenvectors

The eigenvector v ∈ Rn of a matrix A ∈ Rn×n has its direction un-
changed by its transformation,

Av = λv,

which is equivalent to
(A− λI)v = 0.

This matrix must be singular, thus we get the characteristic polynomial,

det(A− λI) = 0.

Any λ that satisfies the characteristic polynomial is an eigenvalue of A.
Its corresponding eigenvector can then be found by solving the following
linear system of equations for v,

(A− λI)v = 0.

computational intelligence lab 4

The following lemmas are useful for computing the characteristic poly-
nomial of different types of matrices.

Lemma 1.6 (Determinant of 2 × 2 matrix). Let A ∈ R2×2 be the
following matrix,

A =

[
a b
c d

]
.

Its determinant is computed by

det(A) = ad− bc.

Lemma 1.7 (Determinant of triangular matrices). The determinant of
a triangular matrix A ∈ Rn×n is equal to the product of its diagonal,

A =
n

∏
i=1

aii.

As a consequence the eigenvalues of a triangular matrix are its diag-
onal entries.

Lemma 1.8 (Determinant of matrix products). Let A, B ∈ Rn×n, then

det(AB) = det(A)det(B).

1.5 Convexity

Definition 1.9 (Convexity). A function f : Rn → R is convex if

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y), x, y ∈ Rn, λ ∈ [0, 1].

Lemma 1.10 (Jensen’s inequality). Let f be convex, then

f (E[x]) ≤ E[f (x)].

computational intelligence lab 5

2 Dimensionality reduction

The motivation behind dimensionality reduction is to find a low-dimensional
representation of high-dimensional data.3 Dimensionality reduction has 3 Often, the original raw representation is high-

dimensional and redundant, e.g., images, audio,
time series.

two goals: (1) compressing the data, while preserving as much relevant
information as possible, and (2) interpreting the data, which is easier in
low-dimensional space.

Dimensionality reduction is often performed by an autoencoder, which
typically has a bottleneck of low dimensionality and aims to predict its
input; see Figure 2.1. Let the original data space be d-dimensional and
the latent space be k-dimensional with k ≪ d. An autoencoder consists
of an encoder F and a decoder G,

F : Rd → Rk, G : Rk → Rd.

The idea is that x ∈ Rd is mapped to a latent vector z ∈ Rk by the
encoder, which is mapped to a reconstruction x̂ ∈ Rd by the decoder.
The idea is that the encoder must compress the information well for the
decoder to be able to reconstruct its input. The reconstruction function
is then the following function,

G ◦ F : Rd → Rd,

which aims to resemble the identity function (G ◦ F)(x) = x. Generally,
this is only possible if the data is intrinsically k-dimensional.

2.1 Linear autoencoders

BottleneckInput Output

W V

x x̂

z

Figure 2.1. Diagram of a single layer linear autoen-
coder.

In order to build a nice theory, we will only consider a single layer linear
autoencoder.4 As a result, we have the following functions, 4 Considering non-linear parametrizations will re-

sult in a much more powerful autoencoder.

F(x) = Wx, W ∈ Rk×d

G(z) = Vz, V ∈ Rd×k

(G ◦ F)(x) = VWx.

The objective to minimize is the following,

R(W , V) = R(P = VW)
.
=

1
2

E∥x− Px∥2,

Intuitively, it is the difference between the identity function and G ◦ F.

Corollary. For centered data (i.e. E[x] = 0), optimal affine maps
degenerate to linear ones.

Proof. Let F(x) = Wx + a and G(z) = Vz + b, then an affine model’s
function is computed by

(G ◦ F)(x) = VWx + c, c = Va + b.

computational intelligence lab 6

Proof by contradiction. Assume there exists a c ̸= 0 such that E∥x −
(Px + c)∥2 ≤ E∥x− Px∥2. Let c ̸= 0, then

E∥x− (Px + c)∥2 = E∥x− Px− c∥2

= E
[
∥x− Px∥2 + ∥c∥2 − 2⟨x− Px, c⟩

]
Cosine theorem.

= E∥x− Px∥2 + ∥c∥2 − 2⟨E[x]− PE[x], c⟩ Linearity of expectation.

= E∥x− Px∥2 + ∥c∥2 Centered data: E[x] = 0

> E∥x− Px∥2. c ̸= 0.

This contradicts the assumption. ■

Thus, we will assume that the data is centered, which makes the anal-
ysis easier, since we do not need to consider the affine case. This is a
reasonable assumption, because data can always be centered by subtract-
ing E[x] from all data points.

Note that while the optimal linear reconstruction map P is unique,
its parametrization VW is not unique, since for any invertible matrix
A ∈ Rk×k, we can construct an optimal parametrization,

VW = V IW = V(AA−1)W = (VA)(A−1W),

with A−1W , VA.

The weight matrices V , W are non-identifiable. As a result, we must
not over-interpret the found representation.

Since P cannot be any d× d matrix, we want to know how the compo-
sition of V ∈ Rd×k and W ∈ Rk×d characterizes the matrix P and which
constraints they impose. The answer to this is that the weight matrices
impose a rank constraint on P,

rank(P) = min{rank(V), rank(W)} ≤ min{k, d} = k.

P is constrained to be, at most, a rank-k matrix.

2.2 Projection

The rank constraint and linearity of P means that the image (column
space) of P is a linear subspace U ⊆ Rd of dimension at most k. We will
break the solution to our problem into two parts: (1) finding the optimal
subspace U , and (2) finding the optimal mapping to that subspace.5 5 We do not search for the weight matrices W , V ,

since they are not unique, but P is unique.

Finding the optimal mapping to a subspace. We will first focus on (2); given
linear subspace U , we need to determine the optimal linear map P⋆, such
that

P⋆ = argmin
col(P)=U

∥x− Px∥2, ∀x.

computational intelligence lab 7

Definition 2.1 (Orthogonal projection). A linear transformation P :
V → V is called an orthogonal projection onto U if ∀x ∈ V :

1. Projection: P(x) ∈ U ;

2. Idempotency: P(P(x)) = P(x).

3. Orthogonality: null(P)⊥col(P), which is equivalent to the column
space and row space of P being equal. It is also equivalent to
self-adjointness holding, ⟨P(x), y⟩ = ⟨x, P(y)⟩.

P(x) ∈ col(P)

x

U

P(x)− x ∈ null(P)

Figure 2.2. Orthogonal projection of x onto sub-
space plane U .

Lemma 2.2. ΠU defined as

ΠU (x) = argmin
x′∈U

∥x− x′∥2

is an orthogonal projection of Rn onto U .

Proof. We need to show that the definition of ΠU indeed is an orthogonal
projection by showing that it adheres to the properties of Definition 2.1
(linearity, projection, orthogonality, and idempotency).

1. Linearity: A function f is linear if it satisfies homogeneity and additiv-
ity,

f (αx) = α f (x), f (x + y) = f (x) + f (y).

This can easily be shown for ΠU ,

ΠU (αx) = argmin
x′′∈U

∥αx− x′′∥2

= argmin
αx′∈U

∥αx− αx′∥2

= α argmin
x′∈U

|α|∥x− x′∥2 argminλx f (x) = λ argminx f (x).

= α argmin
x′∈U

∥x− x′∥2

= αΠU (x).

ΠU (x + y) = argmin
z∈U

∥z− (x + y)∥2

= argmin
ΠU (x)+y′

y′∈U

∥ΠU (x) + y′ − x− y∥2 z .
= ΠU (x) + y′ for some y′ ∈ U .

= ΠU (x) + argmin
y′∈U

∥(y′ − y) + (ΠU (x)− x)∥2 argminy+x f (x) = y + argminx f (x).

= ΠU (x) + argmin
y′∈U

∥y′ − y∥2 + ∥ΠU (x)− x∥2 Cosine theorem.

− 2⟨ΠU (x)− x, y′ − y⟩
= ΠU (x) + argmin

y′∈U
∥y′ − y∥2 − 2⟨ΠU (x)− x, y′⟩ ∥ΠU (x)− x∥2 and ⟨ΠU (x)− x, y⟩ do not depend

on y′.

= ΠU (x) + ΠU (y); ΠU (x)− x ∈ U⊥ and y′ ∈ U , so their inner
product is 0.

computational intelligence lab 8

2. Projection: This is true by definition of the values that the argmin are
allowed to take on;

3. Idempotency: For all u ∈ U , ΠU (u) = argminx′∈U ∥u− x′∥2 = u. Thus,
ΠU = ΠU ◦ΠU ;

4. Orthogonality: We need to show that ΠU (x)− x ∈ U⊥. Firstly, we have

∥ΠU (x)− x∥2 = min
u∈U
∥u− x∥2 ≤ ∥ũ− x∥2, ∀ũ ∈ U . (1)

Decompose ΠU (x)− x = u + u⊥, where u ∈ U and u⊥ ∈ U⊥. Then,
we only need to show u = 0, which we will prove by contradiction.
Let u ̸= 0, then

∥ΠU (x)− x∥2 = ∥u∥2 + ∥u⊥∥2 + 2⟨u, u⊥⟩ Cosine theorem.

> ∥u⊥∥2 u ̸= 0 and ⟨u, u⊥⟩ = 0.

= ∥ΠU (x)− u− x∥2.

This contradicts with Equation (1), because ΠU (x)− u ∈ U .

■

So, we know that ΠU is a linear function. Now, we want to find the
matrix P representing that linear transformation.

Lemma 2.3. Given an orthonormal basis U of U (ui ∈ U , ∥ui∥ =

1, ⟨ui, uj⟩ = 0, ∀i ̸= j), we can compute the optimal projection matrix,

P = UU⊤.

Note that in this case W and V share parameters, and UU⊤ is the
optimal weight matrix if we enforce parameter sharing via V = W⊤.

Proof. We need to show that P is the orthogonal projection matrix onto
U :

1. Projection: Px = ∑k
i=1 uiu⊤i x = ∑k

i=1⟨ui, x⟩ui ∈ U ;

2. Self-adjointness: P⊤ = (UU⊤)⊤ = UU⊤ = P;

3. Idempotency: PP = UU⊤UU⊤ = UU⊤ = P;

4. Orthogonality: ⟨Px, x − Px⟩ = ⟨x, P(x − Px)⟩ = ⟨x, (P − P2)x⟩ =

⟨x, (P− P)x⟩ = 0.

■

The problem is that we do not have an orthonormal basis of U in
general. The next lemma gives a more general result for any basis.

computational intelligence lab 9

Lemma 2.4. For a non-orthonormal basis V ∈ Rd×k of U , we can
recover the projection matrix,

P = VV+, V+ .
=
(

V⊤V
)−1

V⊤. V+ is the left Moore-Penrose pseudo-inverse of V .

Proof. We need to show that P is the orthogonal projection matrix of U :

1. Projection: PV = VV+V = V
(
V⊤V

)−1
V⊤V = V . Together with the

rank constraint, this yields Pu⊥ = 0 for all u⊥ ∈ U⊥;

2. Self-adjointness: P⊤ =
(

V
(
V⊤V

)−1
V⊤
)⊤

= V
(
V⊤V

)−1
V⊤ = P;

3. Idempotency: PP = V
(
V⊤V

)−1
V⊤V

(
V⊤V

)−1
V⊤ = VV+ = P.

■

Note that we have not made any reference to the data x ∼ ν until now.
This means that all of the above results are a priori by the structure of
the model and choice of objective.

Finding the optimal subspace. Now we need to find out which subspace
of dimension k or less is optimal to project onto. First, we need to rewrite
the objective function to find a new interpretation,

R(P) = 1
2

E∥x− Px∥2

=
1
2

E
[
∥x∥2 + ∥Px∥2 − 2⟨x, Px⟩

]
Cosine theorem.

=
1
2

E∥x∥2 +
1
2

E∥Px∥2 −E⟨x, P2x⟩ Linearity of expectation and idempotency.

=
1
2

E∥x∥2 +
1
2

E∥Px∥2 −E∥Px∥2 ⟨x, P2x⟩ = ⟨Px, Px⟩.

=
1
2

E∥x∥2 − 1
2

E∥Px∥2.

Because our data is centered, we know the following,

Var[x] = E∥x∥2 − ∥E[x]∥2 = E∥x∥2

Var[Px] = E∥Px∥2 − ∥E[Px]∥2 = E∥Px∥2 − ∥PE[x]∥2 = E∥Px∥2.

Figure 2.3. Intuitively, the projection onto the
shown line preserves the most information. This
projection from R2 onto R maximizes variance.

Assuming centered data,

R(P) = 1
2
(Var[x]−Var[Px]) ∝ −Var[Px].

Hence, minimizing R(P) is equivalent to maximizing the total vari-
ance of the projected data, Var[Px].

computational intelligence lab 10

We can further simplify this expression to find a sufficient statistic for
the objective function,

−1
2

Var[Px] = −1
2

E∥Px∥2

= −1
2

E⟨x, Px⟩ ∥Px∥2 = ⟨Px, Px⟩ = ⟨x, P2x⟩ = ⟨x, Px⟩.

= −1
2

E
[
tr
(

x⊤Px
)]

Trace of scalar is equal to scalar.

= −1
2

tr
(

E
[
Pxx⊤

])
Cyclic property of trace.

= −1
2

tr
(

PE
[

xx⊤
])

.

E[xx⊤] is a sufficient statistic for R(P). Hence, the optimal projec-
tion is fully determined by the covariance matrix E

[
xx⊤

]
, together

with E[x] for centering.

2.3 Principal component analysis

Intuitively, eigenvectors represent axes along which matrices have the
largest variance. Thus, we want to project onto the k eigenvectors of
E[xx⊤] that are associated with the k largest eigenvalues.

Theorem 2.5 (Spectral theorem). Any symmetric and positive semidef-
inite matrix Σ can be non-negatively diagonalized with an orthogo-
nal matrix,

Σ = QΛQ⊤, Λ = diag(λ1, . . . , λd),

where λ1 ≥ · · · ≥ λd ≥ 0 and Q ∈ Rd is orthogonal.

The spectral theorem gives us the eigendecomposition of E[xx⊤], be-
cause it is symmetric. The eigenvectors form an orthonormal basis, so
the k principal eigenvectors are also orthonormal. Hence, we can use
Lemma 2.3 to form the projection matrix, which is essentially what the
PCA theorem tells us.

Theorem 2.6 (PCA theorem). The variance maximizing projection
matrix P for a covariance matrix E[xx⊤] = QΛQ⊤ as in the spectral
theorem is given by

P = UkU⊤k , Uk = Q

[
Ik

0

]
,

which means that Uk consists of the k principal eigenvectors.

computational intelligence lab 11

Proof.

Var[Px] = tr
(

PE[xx⊤]
)

= tr
(

UU⊤QΛQ⊤
)

P = UU⊤, E[xx⊤] = QΛQ⊤.

= tr
((

Q⊤U
)(

Q⊤U
)⊤

Λ

)
. Cyclic property.

This term is maximized by Q⊤U =
[

Ik 0
]⊤

. ■

In conclusion, given a dataset of n points {x1, . . . , xn}, we perform
dimensionality reduction by first centering the data,

µ =
1
n

n

∑
i=1

xi

x̄i = x− µ.

Then, we compute the covariance matrix Σ ∈ Rd×d,

Σ =
1
n

n

∑
i=1

x̄i x̄⊤i .

For that matrix, we compute the eigendecomposition (which exists
because Σ is symmetric),

Σ = QΛQ⊤,

where Q ∈ Rd×d is orthogonal and Λ is diagonal. We then discard
the d− k last dimensions to obtain Uk ∈ Rd×k,

Uk = Q

[
Ik

0

]
.

The latent vectors are then computed by

zi = U⊤k x̄i.

Their reconstructions are computed by

x̂i = Ukzi.

The squared reconstruction error is equal to the sum of the lower
d− k eigenvalues.

2.4 Learning algorithms

Eigenvalue decomposition of the (symmetric) sample covariance matrix
hasO

(
d3) complexity. Furthermore, the complexity of computing E[xx⊤]

isO
(
nd2), where n is the number of data points.6 This is quite costly, thus 6 Typically, n≫ d.

we need to search for algorithms that have lower runtime complexity.

computational intelligence lab 12

Power method. The power method is a recursive algorithm for computing
principal eigenvectors. It initializes a vector at random v(0) ∼ N (0, I).
Then, it iteratively improves this guess,

v(t+1) =
Av(t)

∥Av(t)∥ .

The computational complexity of this algorithm is O
(
Td2).

Lemma 2.7. Let u1 be the unique principal eigenvector of a diago-
nalizable matrix A with eigenvalues λ1 > λ2 ≥ · · · ≥ λn ≥ 0. If
⟨v(0), u1⟩ ̸= 0, then

lim
t→∞

v(t) = u1.

Proof. We can decompose vectors as a linear combination of eigenvectors,
v(0) = ∑n

i=1 αiui. Then,

v(k) ∝ Akv(0)

=
d

∑
i=1

αiλ
k
i ui Akv(0) = ∑d

i=1 αi Akui = ∑d
i=1 αiλ

k
i ui .

∝ α1u1 +
d

∑
i=2

αi

(
λi
λ1

)k
ui. Divide by λk

1.

λi/λ1 < 1 for i > 1, thus the sum goes to 0 and v(k) → u1. ■

We can use this algorithm to also compute the next principal eigen-
vectors by factoring out u1 by A2 = A− λ1u1u⊤1 and then applying the
algorithm again to A2 to recover u2, and continue doing that until we
have the k principal eigenvectors.

Thus, the total complexity of finding the k principal eigenvectors is
O
(
Tkd2) instead of O

(
d3). However, this does not get rid of the O

(
nd2)

complexity for computing the sample covariance matrix, which is a big-
ger problem.

Gradient descent. By treating the autoencoder as a neural network, we
can use deep learning techniques, such as gradient descent. Gradient
descent iteratively updates the weights by

P(t+1) = P(t) − η∇PR(P).

The gradient is computed by (P− I)xx⊤. The problem with this is that
we cannot constrain P to be a projection. Thus, we actually need to
update V and W . Thus, by the chain rule for matrix derivatives,

∇VR(W , V) = (VW − I)xx⊤W⊤

∇WR(W , V) = V⊤(VW − I)xx⊤.

The complexity for T iterations is then O
(
T(k + B)d2), where B is the

batch size.

computational intelligence lab 13

3 Matrix completion

The goal of matrix completion is to fill in the missing entries of a sparse
matrix. E.g., Netflix might want to use matrix completion to predict
which users will give which ratings to which movies, given the ratings
given by all users of Netflix. However, not all users have rated all movies,
thus the matrix is sparse and must thus be filled in. Netflix can use this
prediction to decide which movies they should recommend to their users.

If we assume that all entries are independent, then no information is
carried by one entry about another. Because of this, we cannot reconstruct
the matrix. Thus, we need to make an assumption about the dependency
within the matrix.

A minimal assumption that we make is that entries within the same
row or the same column are not independent, i.e.,

aij ⊥⊥ {akl | k ̸= i ∧ l ̸= j} | {ail | l ̸= j} ∪ {akj | k ̸= i}.

This states that aij is independent from all entries not on the same
row or column, given that we know all entries on the same row or
column. However, in reality, we do not have all values on the row
and column for all entries. Thus, effectively, we have an indirect
coupling between all entries, since akl influences akj and ail (if they
are unknown), which influence aij.

Formally, we have an underlying rating matrix A ∈ Rn×m and an ob-
servation matrix Ω ∈ {0, 1}n×m, where ωij = 1 means that aij is observed.
The observed matrix will be denoted by Ã to differentiate between the
underlying matrix and its observations. The goal is to predict all values
akl , where ωkl = 0. A possible issue with the values is that some users

might generally give higher ratings than others.
Thus, we want to account for this by variance nor-
malization. We can do this per row (user) or per
column (item). (While it makes more sense intu-
itively that we should normalize ratings per user, it
has been shown to be more effective to normalize
over item ratings.) Normalization yields a vector
with zero mean and unit variance,

Z =
X− µ

σ
.

To approximate the underlying matrix A ∈ Rn×m, we will make the
assumption that it is a rank-k matrix. This is enforced by approximating
A as the product of two matrices U ∈ Rn×k and V ∈ Rm×k,

A ≈ UV⊤.

Then, we get the following loss function that we wish to minimize,

U, V ∈ argmin
U,V

ℓ(U, V)
.
=

1
2

∥∥∥ΠΩ

(
Ã−UV⊤

)∥∥∥2

F
,

where ΠΩ(M) = M ⊙Ω and ∥ · ∥F is the Frobenius norm. Rewriting as
sums, we get the following loss function,

ℓ(U, V) =
n

∑
i=1

m

∑
j=1

ωij

(
ãij − u⊤i vj

)2
.

computational intelligence lab 14

We view ui ∈ Rk as representing each user and vj ∈ Rk as repre-
senting each item. We estimate aij to be their inner product,

aij ≈ u⊤i vj.

Furthermore, we have that U and V are fully determined by the
observed values Ã, but can be used to extrapolate to a full matrix
A, achieving our objective. Moreover, we have that all rows and
columns are coupled, which satisfies our dependence assumption.

3.1 Fully observed case

In this section, we consider the fully observed case, where Ω = 1n×m.
Thus, we optimize w.r.t. the following loss function,

ℓ(U, V) =
1
2

∥∥∥A−UV⊤
∥∥∥2

F
.

−2 −1 0 1 2
−2

−1

0

1

2

u

v

Figure 3.1. Negative gradient field for a = 1 in the
scalar case with minima indicated by black. As can
be seen, [0, 0] is a 2-way saddle point and any vec-
tor [−z, z] for z ∈ R moves toward it. We can start
at any other point and use gradient-based optimiza-
tion to converge to the minimum.

Scalar case. To observe the properties of the gradients, we will first con-
sider the 1-dimensional case, where a ≈ uv, with u, v ∈ R. We have the
following loss function,

ℓ(u, v) =
1
2
(a− uv)2

with the following derivatives,

∂

∂u
ℓ(u, v) = v(uv− a),

∂

∂v
ℓ(u, v) = u(uv− a),

which induces the negative gradient field shown in Figure 3.1. Further-
more, we have the following Hessian,

∇2ℓ(u, v) =

[
v2 2uv− a

2uv− a u2

]
.

Lemma 3.1 (Second-order characterization of convexity). If f : X →
R is twice differentiable, then f is convex if and only if

∇2 f (x) ⪰ 0, ∀x ∈ Int(X).

At the origin, we have the following Hessian,

∇2ℓ(0, 0) =

[
0 −a
−a 0

]
.

In the scalar case, the objective function is non-convex for a ̸= 0. The
same result can be generalized to any n, m ≥ 1.

computational intelligence lab 15

As a result, we do not have any general convergence guarantees us-
ing gradient-based methods. However, we can make guarantees for this
specific problem if we study the gradient flow of the loss function with
ordinary differential equations (ODE). Consider a balanced initialization
u0 = v0. We see that u and v will evolve identically, because their partial
derivatives are equal in this case. We have the following update rules,

ut+1 = ut − η
∂

∂u
ℓ(u, v) = ut − ηv(uv− a)

vt+1 = vt − η
∂

∂v
ℓ(u, v) = vt − ηu(uv− a),

where η is an arbitrarily small stepsize. We then have the following ODEs
of u and v w.r.t. the step t,

du
dt

=
ut+1 − ut

η
= −v(uv− a),

dv
dt

=
vt+1 − vt

η
= −u(uv− a).

Consider x = uv = u2 = v2 (because of balanced initialization and
identical evolution), then we have the following ODE,

dx
dt

= u
dv
dt

+ v
du
dt

= −u2(uv− a)− v2(uv− a) = −2x(x− a).

Solving this ODE yields the following solution for x(t),

x(t) = a +
ac− a2

ce2at + a− c
t→∞
= a.

Starting from a balanced initialization, gradient descent with a small
enough η > 0 will converge uv to a.

Rank-1 model. Now consider the fully observed rank-1 model,

ℓ(u, v) =
1
2

∥∥∥A− uv⊤
∥∥∥2

F
, A ∈ Rn×m, u ∈ Rn, v ∈ Rm.

We can rewrite this to a more useful form,

=
1
2

tr
((

A− uv⊤
)⊤(

A− uv⊤
))

∥M∥2
F = tr

(
M⊤M

)
.

=
1
2

tr
(

A⊤A− vu⊤A− A⊤uv⊤ + vu⊤uv⊤
)

=
1
2

(
tr
(

A⊤A
)
− tr

(
vu⊤A

)
− tr

(
A⊤uv⊤

)
+ tr

(
vu⊤uv⊤

))
Linearity of trace.

=
1
2

(
tr
(

A⊤A
)
− tr

(
u⊤Av

)
− tr

(
v⊤A⊤u

)
+ tr

(
v⊤vu⊤u

))
Cyclic property of trace.

=
1
2

(
tr
(

A⊤A
)
− 2tr

(
u⊤Av

)
+ ∥u∥2∥v∥2

)
tr(A) = tr

(
A⊤
)
.

∝
1
2
∥u∥2∥v∥2 − u⊤Av.

computational intelligence lab 16

We observe that the direction of u and v is fully decided by the second
term. Thus, if we first solve for that, we can then easily solve for the norm
of the two vectors by also considering the first term.

Specifically, let u = c1ũ and v = c2ṽ, such that ũ and ṽ are unit
vectors, and c .

= c1 · c2. Then, we have the following loss function with
an additional parameter c,

ℓ(ũ, ṽ, c) =
1
2

c2 − cũ⊤Aṽ, ∥ũ∥ = ∥ṽ∥ = 1.

Hence, we first maximize u⊤Av under the constraint that u and v are
unit vectors, and then decide which c minimizes the loss function. Thus,
first we have the following problem

u, v ∈ argmax
∥u∥=∥v∥=1

u⊤Av.

We can solve this problem with its constraints by using Lagrangian mul-
tipliers,

L(u, v, α, β) = u⊤Av− α
(
∥u∥2 − 1

)
− β

(
∥v∥2 − 1

)
.

Using the first-order optimality condition, we get the following solutions,

∇uL(u, v, α, β) = Av− 2αu !
= 0

∇vL(u, v, α, β) = A⊤u− 2βv !
= 0.

Choosing α and β to satisfy the unit vector constraints, we get the follow-
ing solutions,

u =
Av
∥Av∥ , v =

A⊤u
∥A⊤u∥ .

Thus, the solutions must satisfy

u ∝
(

AA⊤
)

u, v ∝
(

A⊤A
)

v.

As a result, we know that u is an eigenvector of AA⊤ and v is an eigen-
vector of A⊤A. Using this fact, we can rewrite the intermediate objective
as

u⊤Av =
u⊤AA⊤u
∥A⊤u∥ =

u⊤λu√
u⊤AA⊤u

=
u⊤λu√
u⊤λu

=
λ∥u∥2
√

λ∥u∥
=
√

λ.

In order to maximize this term, we must thus select u and v to be the
principal eigenvectors of their respective matrices. Furthermore, ℓ(ũ, ṽ, c)
with this selection of ũ and ṽ is minimized by selecting c =

√
λ1, where

λ1 is the principal eigenvalue of AA⊤ and A⊤A.

computational intelligence lab 17

The loss for a rank-1 model is minimized by selecting

A =
√

λ1uv⊤,

where u and v are the principal eigenvectors of AA⊤ and A⊤A,
respectively, and λ1 is the principal eigenvalue of AA⊤ and A⊤A.
We can compute these vectors by the power iteration algorithm.

Rank-k model. We can generalize the previous result by making use of
the singular value decomposition (SVD).

Theorem 3.2 (SVD theorem). For each matrix A ∈ Rn×m, there exists
a diagonal matrix Σ ∈ Rn×m with ordered entries σi ≥ σi+1 ≥ 0, ∀i ∈
min{n, m} and orthogonal matrices U ∈ Rn×n, V ∈ Rm×m such that
A can be expressed as

A = UΣV⊤.

The SVD of A is intimately is intimately related to the eigendecompo-
sition of AA⊤ and A⊤A,

AA⊤ = UΣΣ⊤U⊤

A⊤A = V⊤Σ⊤ΣV .

Thus, U and V⊤ are the eigenvectors of AA⊤ and A⊤A, respectively.
Furthermore, σ2

i is the i-th eigenvalue of both.

Lemma 3.3. Let the SVD of A ∈ Rn×m be given by A = UΣV⊤, then

∥A∥2
F =

min{n,m}
∑
i=1

σ2
i .

Proof. This can be shown by the properties of the trace operator,

∥A∥2
F = tr

(
A⊤A

)
= tr

(
VΣ⊤U⊤UΣV⊤

)
= tr

(
VΣ⊤ΣV⊤

)
= tr

(
V⊤VΣ⊤Σ

)
= tr

(
Σ⊤Σ

)
=

min{n,m}
∑
i=1

σ2
i .

■

Lemma 3.4. Let the SVD of A ∈ Rn×m be given by A = UΣV⊤, then

∥A∥2
.
= sup
∥x∥=1

∥Ax∥ = σ1.

computational intelligence lab 18

Proof. We use the fact that orthogonal matrices preserve the Euclidean
norm,

sup
∥x∥=1

∥Ax∥ = sup
∥x∥=1

∥UΣV⊤x∥ = sup
∥x∥=1

∥ΣV⊤x∥

= sup
∥z∥=1

∥Σz∥ = ∥Σ∥2 = σ1.

■

The Eckart-Young theorem is widely used for linear matrix approxi-
mation. It states that if we prune the singular values below σk in the SVD
representation, we get an optimal rank-k approximation of a matrix.

Theorem 3.5 (Eckart-Young theorem). Let the SVD of A ∈ Rn×m be
given by A = UΣV⊤. Then, for all 1 ≤ k ≤ min{n, m}, we have

Ak
.
= Udiag([σ1, . . . , σk])V

⊤ ∈ argmin
rank(B)≤k

∥A− B∥F.

From this, we can easily find the optimal rank-k approximation of A
by

A ≈ Ak =
k

∑
i=1

σiuiv⊤.

Furthermore, we can directly compute the squared error of low rank
approximations as

∥A− Ak∥2
F =

rank(A)

∑
i=k+1

σ2
i .

The SVD is computable in O
(
min{nm2, mn2}

)
, which is fast for a non-

convex problem. However, we cannot use this technique in the case of
incomplete observations.

3.2 Incompletely observed case

In practice, the matrix is often incompletely observed, meaning that we
can only compute the loss function w.r.t. the observed entries. This task
is called “Matrix completion”, and we cannot use SVD in this case. Even
worse, this problem is NP-hard, thus we have to resort to approximation
algorithms.

Alternating least squares. As we saw, we parametrize the approximation
of A as a factorization of two matrices U ∈ Rn×k and V ∈ Rm×k,

A ≈ UV⊤.

Since we cannot solve the problem exactly, we want to add regularization
to the loss function to increase numerical stability of the solution,7 7 This will also be very important later.

ℓ(U, V) =
1
2

∥∥∥ΠΩ

(
Ã−UV⊤

)∥∥∥2

F
+

λ

2

(
∥U∥2

F + ∥V∥2
F

)
, λ > 0.

computational intelligence lab 19

If we fully expand the norms, we will find that this objective is a 4-
th degree polynomial in the parameters (entries of U and V) with the
following monomials,

ωijuirvjruisvjs, 1 ≤ r, s ≤ k

ωijuirvjr, 1 ≤ r ≤ k

u2
ir, 1 ≤ r ≤ k

v2
jr, 1 ≤ r ≤ k.

Importantly, every 4-th order term involves exactly one row index i of U
and one row index j of V . In other words, the objective w.r.t. ui depends
further only on V and not any other row of U.8 Using this information, 8 The parameter dependencies form a bipartite

graph between the rows of U and V .we can separate out part of the objective function depending on a row vj,
where we treat U as fixed,

ℓU(vj) =
1
2

∥∥∥ΠΩ

(
Ã−UV⊤

)∥∥∥2

F
+

λ

2

(
∥U∥2

F + ∥V∥2
F

)
∝

1
2

n

∑
i=1

m

∑
j′=1

ωij′
(

aij′ − u⊤i vj′
)2

+
λ

2

m

∑
j′=1

k

∑
r=1

v2
j′r Expand norms and remove ∥U∥2

F , because it does
not depend on vj.

∝
1
2

n

∑
i=1

ωij

(
aij − u⊤i vj

)2
+

λ

2

k

∑
r=1

v2
jr Remove all terms that do not contain entries of vj.

=
1
2

n

∑
i=1

ωija2
ij + ωiju⊤i vju⊤i vj − 2ωijaiju⊤i vj +

λ

2
v⊤j vj

∝
1
2

n

∑
i=1

ωijv⊤j uiu⊤i vj +
λ

2
v⊤j vj −

n

∑
i=1

ωijaiju⊤i vj u⊤i vj = v⊤j ui .

=
1
2

(
v⊤j

(
n

∑
i=1

ωijuiu⊤i

)
vj + λv⊤j vj

)
−
(

n

∑
i=1

ωijaiju⊤i

)
vj

=
1
2

v⊤j

(
n

∑
i=1

ωijuiu⊤i + λIk

)
vj −

(
n

∑
i=1

ωijaiju⊤i

)
vj.

Analogously, we can construct the following objective w.r.t. ui,

ℓV (ui) =
1
2

u⊤i

(
m

∑
j=1

ωijvjv⊤j + λIk

)
ui −

(
m

∑
j=1

ωijaijv⊤j

)
ui.

Since the matrix in the first term is rank-k, we can invert it.9 We have the 9 This is because of the identity matrix, which is a
result of the regularization.following first-order optimal solution to the above loss functions,

v⋆
j =

(
n

∑
i=1

ωijuiu⊤i + λIk

)−1(n

∑
i=1

ωijaijui

)

u⋆
i =

(
m

∑
j=1

ωijvjv⊤j + λIk

)−1(m

∑
j=1

ωijaijvj

)
.

This involves taking the inverse of a k × k matrix, thus computing u⋆
i

and v⋆
j has O

(
k3) complexity, which is generally quite fast, because k is

small.

computational intelligence lab 20

Alternating least squares (ALS) makes use of these subproblems by
alternating between optimizing U given V and V given U,

V (t+1) = argmin
V

ℓU(t)(V)

U(t+1) = argmin
U

ℓV (t+1)(U).

An iteration of ALS has complexity O
(
(n + m) · k3). However, since

each row of both matrices can be optimized in parallel, this can be
done much faster in practice. Furthermore, since we are optimizing
the objective fully over one half of the parameter space, the objective
monotonically decreases. Hence, it converges to a first-order optimal
fixed point, which may be a saddle point.

Moreover, we have the advantage that we can easily augment the
model by adding additional dimensions and minimizing w.r.t. the
existing dimensions, which may be useful when new users enter the
system or new items become available.

Projection methods. We will now consider optimizing the objective by
gradient descent, where the gradient is

∂

∂B
1
2
∥ΠΩ(Ã− B)∥2

F = ΠΩ(Ã− B)⊙ ∂

∂B
ΠΩ(Ã− B) ∂

∂X ∥X∥2
F = 2X.

= ΠΩ(Ã− B)⊙ΠΩ(−1n×m) Projection is linear.

= −ΠΩ(Ã− B).

However, gradient descent does not constrain its iterates to be rank-k
matrices. Projected gradient descent solves this by projecting to the con-
strained space in between every gradient step. In general, it is hard to
project to a space of rank-k matrices, but SVD makes it possible by mak-
ing use of the Eckart-Young theorem. We will denote [M]k as the projec-
tion to the space of rank-k matrices, which is computed by pruning all
singular values below σk, as shown by the Eckart-Young theorem. Hence,
the update rule is the following,

A(t+1) =
[

A(t) + ηΠΩ

(
Ã− A(t)

)]
k
.

This converges to a first-order optimal solution if η is small enough as a
general result of projected gradient descent.

Figure 3.2. Illustration of projected gradient de-
scent, where the dotted lines indicate projection
steps.

The problem with this approach is that the space of rank-k matrices is
non-convex and is thus not guaranteed to converge to a global optimum.
Thus, the next idea is to find the tightest convex relaxation of this space.
I.e., we want to find a convex space that contains all rank-k matrices, but
not too many more. For this, we use the nuclear norm,

∥M∥∗ .
=

rank(M)

∑
i=1

σi,

computational intelligence lab 21

where σi is the i-th singular value of M. Let σ(M) be the vector of singular values of M,
then, as shown by Lemma 3.3, the Frobenius norm
can be computed by

∥M∥F = ∥σ(M)∥2.

Similarly, the nuclear norm can be computed by

∥M∥∗ = ∥σ(M)∥1.

Furthermore, the spectral norm can be computed
by

∥M∥2 = ∥σ(M)∥∞.

Definition 3.6 (Convex envelope). The convex envelope of a function
f : X → R is the largest convex function g such that

g(x) ≤ f (x), ∀x ∈ X .

Theorem 3.7. The convex envelope of rank(·) on {M | ∥M∥2 ≤ 1}
is the nuclear norm ∥ · ∥∗.

Proof. Let M ∈ Rn×m with ∥M∥2 ≤ 1. By Lemma 3.4, we thus have
σ1 ≤ 1. Thus,

∥M∥∗ =
rank(M)

∑
i=1

σi ≤
rank(M)

∑
i=1

1 = rank(M).

Furthermore, any valid norm is a convex function. Hence, by Defini-
tion 3.6, this concludes the proof. ■

We will use this to approximate the objective by a convex function. We
have the following objective,

ℓ(B) =
1
2
∥ΠΩ(Ã− B)∥2

F, rank(B) ≤ k, ∥B∥2 ≤ c. The second constraint adds regularization and is
necessary due to the condition of the space of
Theorem 3.7.This can be rewritten using Lagrange multipliers as a non-convex objec-

tive,

ℓ(B) =
1
2
∥ΠΩ(Ã− B)∥2

F + r · rank(B) + µ∥B∥2

≈ 1
2
∥ΠΩ(Ã− B)∥2

F + τ∥B∥∗ + γ∥B∥F. The nuclear norm is the convex envelope of the
rank function and the Frobenius norm upper
bounds the spectral norm.This approximation of this objective is convex, so, using gradient descent

and correct η, we can optimize it to a global optimum.

Definition 3.8 (Shrinkage operator). Let X ∈ Rn×m with SVD X =

Udiag(σ)V⊤ be given, then

shrinkτ(X)
.
= Udiag(σ − τ)+V⊤,

where M+ clips all entries of M at zero.

Note that the rank of shrinkτ(C) decreases monotonically with τ, because
more singular values are zeroed out as τ increases.

Theorem 3.9. The shrinkage operator minimizes the following opti-
mization problem,

shrinkτ(X) ∈ argmin
B

1
2
∥X − B∥2

F + τ∥B∥∗.

computational intelligence lab 22

Using the shrink operator, we can define a new update rule, starting
from Y (0) = 0,

X(t+1) = shrinkτ

(
Y (t)

)
Y (t+1) = Y (t) + ηtΠΩ

(
Ã− X(t+1)

)
.

With a suitable schedule ηt > 0, the sequence {X(t)} will converge to the
solution of the following optimization problem,

lim
t→∞

X(t) ∈ argmin
B

τ∥B∥∗ +
1
2
∥B∥2

F, ΠΩ(Ã) = ΠΩ(B).

Hence, the result of this algorithm will be exactly reproducing the ob-
served entries, which the non-relaxed problem cannot guarantee, as there
may be no rank-k algorithm with a projected residual that is zero. How-
ever, the convex relaxation approach does not define a low-rank sequence
of matrices. Rather, the shrinkage operator is used to implicitly encourage
low-rank approximations.

The singular value projection approach maintains a rank-k matrix,
while the convex relaxation approach maintains a sparse iterate
sequence and converges to reproduce the observed entries exactly.
Both are beneficial relative to a dense representation of A.

Exact recovery. So far we have only been interested in how to find the
“best” completed matrix, given an incomplete matrix Ã. However, now
we are interested in the conditions under which we can exactly recover
the matrix, assuming that the underlying matrix A is of rank k.

Assume A ∈ Rn×n, then the degrees of freedom are the k singular val-
ues and k left and right singular vectors. The i-th singular vector has n− i
degrees of freedom due to the constraints of unit length and pairwise
orthogonality, thus the SVD has the following degrees of freedom,

k + 2
k

∑
i=1

n− i = k + 2

(
nk−

k

∑
i=1

i

)
= 2nk− k2.

Thus, a necessary condition to exactly recover A ∈ Rn×n is that we have
at least that number of observations. This condition is not sufficient,
which we will prove by an example. Let A have the SVD A = UΣV⊤,
then

A = σ1u1v⊤1 +
k

∑
i=2

σiuiv⊤i .

Let u1 = ei and v1 = ej, then in order to recover σ1, we need to have
sampled aij.

For exact recovery, it does not only matter how many entries we
have sampled, but also where we have sampled them. Intuitively,
we need the information to be “sufficiently distributed”.

computational intelligence lab 23

The following gives us conditions for which we can exactly reconstruct
the underlying matrix with high probability, under the assumption that
the entries have been uniformly sampled.

Definition 3.10 (Incoherence). Let A be a rank-k matrix with SVD
A = UΣV⊤. Furthermore, define the following matrices,

P .
=

k

∑
i=1

uiu⊤i , Q .
=

k

∑
i=1

viv⊤i , E .
=

k

∑
i=1

uiv⊤i .

Then, A is incoherent with parameter µ if and only if the following
conditions are satisfied,

|pij|, |qij| ≤
µ
√

k
n

, i ̸= j∣∣∣∣pii −
k
n

∣∣∣∣, ∣∣∣∣qii −
k
n

∣∣∣∣ ≤ µ
√

k
n

|eij| ≤
µ
√

k
n

.

Theorem 3.11. Let A ∈ Rn×n be a rank-k matrix that is incoherent
with µ ≥ 1 and for which S samples have been observed at random.
Then, there is a universal constant C such that if S ≥ Cµ2nk(log n)6,
then with probability at least 1− n−3, A fulfills

A = argmin
B
∥B∥∗, ΠΩ(B) = ΠΩ(A).

This says that if the matrix is recoverable from its sampled entries,
then it can be recovered via nuclear norm minimization.

3.3 Randomized methods for SVD

Considering that most algorithms introduced in this section make use
of the singular value decomposition as a fundamental operator, we will
now consider algorithms for computing it approximately in a low time
complexity.

Let A ∈ Rn×m. The idea is to find an orthogonal matrix Q ∈ Rn×2k

such that A ≈ QQ⊤A. Then, we perform SVD of the smaller matrix
B .

= Q⊤A = ŨΣ̃Ṽ⊤, where B ∈ R2k×m, and extend this SVD to A,
A ≈ (QŨ)Σ̃Ṽ⊤. The same can be done for the columns of B to further
reduce the time complexity.

A

B

recover
near-optimal
decomposition

probabilistic
strategy to
find small
matrix

approximate
decomposition

decomposition

deterministic
algorithm

deterministic
algorithm

Figure 3.3. Schematic view of how to use random
projections to compute the matrix decompositions
more efficiently.

However, the key question is how to choose Q appropriately. The
following is a scheme for finding a suitable Q,

1. Generate a random matrix with i.i.d. Gaussian entries, R ∈ Rm×2k;

2. Compute Y =
(

AA⊤
)q

AR, where Y ∈ Rn×2k, by repeated matrix

computational intelligence lab 24

multiplications;

3. Construct an orthonormal basis Q for the image of Y (e.g., via Gram-
Schmidt).

computational intelligence lab 25

4 Latent variable models

The philosophy behind latent variable models is that we have observ-
ables X, which are augmented by latent variables Z, which happens by
specifying a complete data model p(X, Z), which implies a marginal model,

p(X = x) = ∑
z∈Z

p(X = x, Z = z).

The marginal model can be specified by a conditional p(X | Z) and prior
p(Z),

p(X = x) = ∑
z∈Z

p(X = x | Z = z)p(Z = z).

4.1 Probabilistic clustering models

Assume we are given a dataset of s observables {xt | t ∈ [s]}. The
conceptually simplest family of latent variable models assigns a k-class
categorical random variable Zt to each observable. The latent information
tags an observable as a member of that class.

Specifically, we have the following prior categorical distribution,

Zt ∼ Categorical(π1, . . . , πk), P(Zt = z) = πz,

where π ∈ ∆k−1 is an unknown parameter.10 To fully parametrize the 10 ∆k−1 is the k-dimensional probability simplex,
which is the space of vectors where all elements
are non-negative and sum to 1.

latent variable model, we need a class-conditional distribution for each
class, p(x | z). By parametrizing the class-conditional distribution of z by
θz, we have the following parametrized distribution over X,

p(x; θ) =
k

∑
z=1

p(z)p(x | z) =
k

∑
z=1

πz p(x; θz).

We interpret this as a mixture distribution – convex combinations of
class-specific distributions. Moreover, this model is fully parametrized
by the prior and class-conditional distribution parameters,

θ = [π, θ1, . . . , θk].

For given parameters θ, we can use Bayes’ rule to compute the latent
posteriors,

p(z | x; θ) =
πz p(x; θz)

∑k
ζ=1 πζ p(x; θζ)

.

We can interpret these probabilities as observable-specific probabilistic
cluster memberships.

Learning the parameters. A common approach to learn the best parame-
ters is to maximize the likelihood of the data, which is called maximum
likelihood estimation (MLE). In other words, we choose the model pa-
rameters that maximize the probability of the observed data,

ℓ(θ) = log
s

∏
t=1

p(xt; θ) =
s

∑
t=1

log p(xt; θ) =
s

∑
t=1

log
k

∑
z=1

πz p(xt; θz).

computational intelligence lab 26

This gives us the following optimization problem,

θ⋆ ∈ argmax
θ

ℓ(θ),

which we optimize by the expectation-maximization (EM) algorithm. The
EM algorithm is a general tool for learning in latent variable models, but
we will introduce it in the context of mixture models.

Let qt ∈ ∆k−1, ∀t ∈ [s] be the variational parameters. Using this we
can derive the evidence lower bound (ELBO),

ℓ(θ) =
s

∑
t=1

log
k

∑
z=1

qtz
πz

qtz
p(xt; θz)

≥
s

∑
t=1

k

∑
z=1

qtz log
(

πz

qtz
p(xt; θz)

)
Jensen’s inequality, log is concave.

=
s

∑
t=1

k

∑
z=1

qtz(log πz + log p(xt; θz)− log qtz)

.
= ℓ(θ; {qt}s

t=1).

Since this lower bounds the MLE, we can use the ELBO as an objective to
implicitly maximize the log-likelihood. Maximizing w.r.t. q increases the
tightness of the bound of ELBO on the MLE,11 while maximizing w.r.t. θ 11 q does not affect the likelihood, so an increase can

only tighten the bound.improves the model fit.

Firstly, we will solve for the optimal choice of qt,

ℓ(θ; {qt}s
t=1), qt ∈ ∆k−1, ∀t ∈ [s].

We can solve for every qt independently, because the ELBO is separable
w.r.t. qt. Furthermore, we enforce the normalization constraint on qt

by introducing a Lagrange multiplier λ. This results in the following
objective to maximize per qt,

q⋆
t ∈ argmax

qt

k

∑
z=1

qtz(log πz + log p(xt; θz)− log qtz)− λ

(
k

∑
z=1

qtz − 1

)
.

The derivative w.r.t. qtz of this function is

∂ℓ(θ; qt)

∂qtz
=

∂

∂qtz

k

∑
z′=1

qtz′(log p(xt; θz′) + log πz′ − log qtz′)

− ∂

∂qtz
λ

(
k

∑
z′=1

qtz′ − 1

)

= log p(xt; θz) + log πz −
∂

∂qtz
qtz log qtz − λ

= log p(xt; θz) + log πz − log qtz −
qtz

qtz
− λ

= log p(xt; θz) + log πz − log qtz − λ− 1.

Thus, we have the following first-order optimality condition,

log p(xt; θz) + log πz − log qtz
!
= λ + 1.

computational intelligence lab 27

Exponentiating both sides yields

qtz
!
=

πz p(xt; θz)

eλ+1 .

Enforcing the constraint of qt ∈ ∆k−1, we get

qtz =
πz p(xt; θz)

∑k
ζ=1 πζ p(xt; θζ)

.

As we saw before, this is the posterior of the latent class variable p(z |
xt; θ). Note that the optimal choice of the variational parameters qt de-
pends on the parameters θ. Hence, it is only a partial step, called the
expectation (E) step.

Now we also need a step to maximize the model parameters θ. We
can easily solve for π by

π⋆
z = p(z) =

s

∑
t=1

p(xt, z) =
s

∑
t=1

p(z | xt)p(xt) =
1
s

s

∑
t=1

qtz. This assumes that the data is distributed
uniformly.

This solution can also be derived by the first-order optimality condition
with the Lagrangian.

Moreover, the solution for θz depends on the choice of the model
distribution, but we can generally get to separable problems,

θ⋆z ∈ argmax
θz

s

∑
t=1

qtz log p(xt; θz).

This means that the parameters for different classes z are decoupled
given the variational parameters q. Thus, for each component, we only
have to solve a weighted MLE problem, which is often possible to do
analytically. This partial step is called the maximization (M) step.

Gaussian mixture model. We will consider a common special case of the
above framework, where we specify the component models p(X | Z) by
Gaussians with unit variance,

p(x; π, {µ1, . . . , µk}) =
k

∑
z=1

πzN (x; µz, Id),

where

N (x; µ, Σ) = (2π)−d/2det(Σ)−1/2 exp
(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

The EM algorithm then consists of the following alternating equations,

qtz
.
= p(z | xt, θ) =

πz exp
(
− 1

2∥zt − µz∥2
)

∑k
ζ=1 πζ exp

(
− 1

2∥zt − µζ∥2
) E-step.

µz =
∑s

t=1 qtzxt

∑s
t=1 qtz

, πz =
1
s

s

∑
t=1

qtz. M-step.

Intuitively, the E-step (soft) clusters the data points and the M-step com-
putes the weighted centroids of each component.

computational intelligence lab 28

4.2 Topic models

We will now consider a class of latent variable models known as topic
models. These are used to analyze document collections and to discover
the topical content of documents. Informally, topical content is the infor-
mation that the words of a document carry about what the document is
about.

Let Σ be the word vocabulary with |Σ| = m words. A document
di of length si is part of a collection of n documents and is a field of
random variables Xit, whose realizations are words xit ∈ Σ, ∀t ∈ [si].
We will assume that topical content is invariant to word order.12 As a 12 This is known as exchangeability, which says that

the distribution of a sequence of random variables
does not change under any permutation of their
order.

consequence, the sufficient statistics of a document are the frequencies
of word occurrences within it. Hence, we can reduce the data to a bag-
of-words representation of occurrence counts,

Nij = |{xit = wj | t ∈ [si]}|.

In words, Nij denotes how often word wj occurred in document di. We
can thus summarize the full document corpus in an occurrence matrix,

N = [Nij] ∈Nn×m.

Moreover, we have to conceptualize what we mean by “topic”. Gener-
ally, topics refer to things that people are interested to talk or write about.
Hence, we can represent topics by latent variables Z ∈ [k], akin to what
we saw in mixture models. We will then associate these topics with word
occurrences, which induce topics of entire documents.13 Note that topics 13 If we were to associate the topic variables with

documents, we would effectively be performing
document clustering. However, in this case, we
want the topics of documents to be induced by the
words that they contain.

are not mutually exclusive, since documents can concern multiple.

We will assume that the documents in the corpus were created ac-
cording to the following generative process.14 For each word, we sample 14 This is important so we can infer/reverse engi-

neer a model from it. Also, it is important to make
assumptions about the data explicit.

a topic from p(z | d), and then sample the words from p(w | z). Thus,
in order to define the latent variable data model, we need a document-
conditional distribution over latent variables, p(z | d), and a topic-conditional
distribution over words, p(w | z). We can then define a document-
conditional word distribution,

p(w | d) =
k

∑
z=1

p(w | z)p(z | d).

From this, we define the log-likelihood objective as

ℓ(θ; N) = log p(N; θ) = log
n

∏
i=1

m

∏
j=1

p(wj | di)
Nij =

n

∑
i=1

m

∑
j=1

Nij log p(wj | di).

Learning. We can equivalently write the log-likelihood objective in terms
of the raw data,

ℓ(θ) =
n

∑
i=1

si

∑
t=1

log
k

∑
z=1

p(xit | z)p(z | di).

computational intelligence lab 29

Similarly to the mixture models, we define an ELBO,

ℓ(θ) ≥
n

∑
i=1

si

∑
t=1

k

∑
z=1

qitz(log p(xit | z) + log p(z | di)− log qitz).

Moreover, following the same steps, we can derive the EM equations,

qitz =
p(xit | z)p(z | di)

∑k
ζ=1 p(xit | ζ)p(ζ | di)

E-step.

p(wj | z) =
∑n

i=1 ∑si
t=1 qitz · 1{xit = wj}
∑n

i=1 ∑si
t=1 qitz

, p(z | di) =
1
si

si

∑
t=1

qitz. M-step.

Intuitively, the E-step computes the posterior probabilities, qitz = p(z |
xit, di), where p(z | di) acts as a prior. This yields a probabilistic clustering
of word occurrences. The M-step computes the MLE for a q-weighted
multinomial sample. This algorithm will converge, but not necessarily to
the global maximizer.

We can use the class-conditional word distribution, p(w | z), to find
similar words that are connected by a common topic.

Latent Dirichlet allocation. The problem with the above topic model is
that it assumes a fixed set of documents and selects the parameters to
maximize the predictability of words within these. The natural next step
is to extend the above in a way that accounts for modeling unseen doc-
uments. The generative process of this model is that we first choose a
distribution over topics, p(z | α). Then, for each word, sample a topic
from p(z | α) and sample the word from p(w | z).

Effectively, the latent Dirichlet allocation (LDA) model takes a “Bayesian
step up” from latent variable modeling. Its main idea is that it models a
distribution over priors, which are modeled by mixture vectors,

v ∈ ∆k−1.

This parameter is distributed according to a Dirichlet distribution, and
has hyperparameter α,

p(v; α) ∝
k

∏
z=1

vαz−1
z , αz > 0, ∀z ∈ [k].

The Dirichlet distribution is chosen as the prior because it is a conjugate
prior of the categorical distribution. Typically, we set αk = α and optimize
α on held-out validation data.

Let U = [p(wj | z)] ∈ [0, 1]m×k, then we have the following distribu-
tion,

p(X = [x1, . . . , xs] | U) =
∫ s

∏
t=1

p(xt | U, v)p(v; α)dv

p(wj | U, v) =
k

∑
z=1

ujzvz.

computational intelligence lab 30

As can be seen, the probabilities are not conditioned on the observed
documents. As a result, when a new document is introduced, we can use
the same distributions, whose parameters were learned from an existing
document collection. In this sense, the LDA model is more robust than
the topic model that was initially introduced.

Figure 4.1. Factors identified by non-negative ma-
trix factorization in a face reconstruction task.

Figure 4.2. Factors identified by principal compo-
nent analysis in a face reconstruction task.

Probabilistic matrix decomposition. The topic model introduced above is
intimately related to matrix decomposition, where we see that the topic
variable z ∈ [k] plays the role of a rank constraint. More specifically, we
define the following matrices,

U .
= [p(wj | z)] ∈ [0, 1]m×k, V .

= [p(z | di)] ∈ [0, 1]n×k.

We then form N̂ = UV⊤, which is a rank-k matrix. We interpret the
entries of this new matrix N̂ as

N̂ji = u⊤j vi =
k

∑
z=1

p(wj | z)p(z | di) = p(wj | di).

Note that N̂ is a relative version of N, where Nij ≈ si N̂ij. Thus, we have
a matrix decomposition with additional constraints,

ujz ≥ 0, ∀j ∈ [m], z ∈ [k], vzi ≥ 0, ∀i ∈ [n], z ∈ [k].

This is known as non-negative matrix factorization (NMF).15 The objec- 15 For NMF, we can use the ALS algorithm, where
we add projection steps to enforce non-negativity,

ujz = max{0, ujz}, vzi = max{0, vzi}.
Figures 4.1 and 4.2 show identified factors of NMF
and PCA on a face reconstruction task. As can be
seen, NMF tends to identify part-based represen-
tations and its features are sparse, because there is
no way of removing added features, due to the non-
negativity constraint. In other words, NMF models
must be careful in what they add.

tive follows from the maximum likelihood principle,

ℓ(U, V ; N) =
n

∑
i=1

m

∑
j=1

Nij log N̂ij, N̂ = UV⊤.

Further, we have normalization constraints on the row and column level,
namely

m

∑
j=1

ujz = 1, ∀z ∈ [k],
k

∑
z=1

vzi = 1, ∀i ∈ [n].

Thus, we have a special case of non-negative matrix decomposition with
a log-likelihood objective.

4.3 Embeddings

In natural language, the atomic units of meaning are symbols, such as
words. Generally, these symbols do not carry their meaning with them.
Rather, their meaning come from their use within its language. The
idea of embeddings is to learn representations that capture semantics
by embedding symbols in vector space. Specifically, we want to learn
a mapping from words to vectors such that the vectors represent word
semantics.

The latent variable approach to this problem is to learn latent repre-
sentations that are predictive of observations. Thus, we need to design
a task such that the latent representations of the words must have some

computational intelligence lab 31

form of semantics to be able to perform the task well. In the skip-gram
model, we use the task of predicting whether a word is in the context of
another.16 Effectively, we are treating the embedding of each word as a 16 Rupert Firth: “You shall know a word by the com-

pany it keeps.”latent variable that predicts the co-occurring of context words. After the
model has converged, we do not care about performing the task well, but
rather the parameters (embeddings) of the model that lead to the task
being performed well.

This task has the following likelihood function that we wish to maxi-
mize,

ℓ(θ) = log
T

∏
t=1

∏
δ∈I

p(xt+δ | xt; θ) =
T

∑
t=1

∑
δ∈I

log p(xt+δ | xt; θ),

where θ contains the embeddings as parameters of this model and I is a
set of displacements, e.g., I = {−R, . . . ,−1, 1, . . . , R}. The probabilities
are computed by normalized inner products,

p(v | w; θ) =
exp⟨zw, zv⟩

∑u∈Σ exp⟨zw, zu⟩
.

We can further refine this by introducing biases bv ∈ R to explicitly
control the marginal probability and using different embeddings for con-
ditioned and predicted words,17 leading to 17 This is necessary, because words are often not

within their own context window, but will have a
high inner product, because their vectors are equal.

p(v | w; θ) =
exp(⟨ζw, zv⟩+ bv)

∑u∈Σ exp(⟨ζw, zu⟩+ bu)

with parameters
θw = (zw, ζw, bw) ∈ R2m+1.

Sufficient statistics for this model is a co-occurrence matrix, where

Nvw = |{t | xt = w, xt+δ = v, δ ∈ I}|.

The log-likelihood can then be computed by

ℓ(θ) = ∑
v∈Σ

∑
w∈Σ

Nvw

(
⟨ζw, zv⟩+ bv − log ∑

u∈Σ
exp(⟨ζw, zu⟩+ bu)

)
.

The problem with this approach is that computing the normalization
constant is expensive. We can discard normalization by reformulating
the prediction problem as a classification problem. For this, we also need
positive samples,

S+ = [(xt, xt+δ) | t ∈ [T], δ ∈ I]. The [] notation indicates a multiset.

And, additionally we need negative samples, which we randomly sample,

S− = [(xt, vtj) | t ∈ [T], vtj
iid∼ q, j ∈ [r]],

where q is a distribution over Σ and r is the sampling factor. Generally, q
is chosen to satisfy

q(w) ∝ p(w)α,

computational intelligence lab 32

where typically α = 3/4. The intuition behind this is that what matters
most in learning semantic representations is not the very frequent words,
which carry little meaning, and also not the infrequent words, but the in-
between range. This choice of α makes them more likely to be sampled,
as shown in Figure 4.3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

p(w)

p(
w
)α

Figure 4.3. Plot of p(w)α for α = 3/4.

We can then define a logistic log-likelihood function that we wish to
minimize,

ℓ(θ) = ∑
(w,v)∈S+

log σ(⟨ζw, zv⟩+ bv) + ∑
(w,u)∈S−

log(1− σ(⟨ζw, zu⟩+ bu)).

This does not require computing a normalization constant.

Pointwise mutual information. Let p(v, w) denote the true distribution of
co-occurring words and by q(v, w) = p(w)p(v) the distribution used for
negative sampling. The optimal Bayesian classifier would then be

P((v, w) = true) =
πp(v, w)

πp(v, w) + (1− π)q(v, w)
,

where π is the prior probability of a true pair. Considering the pre-image
(logit) of the logistic function, we get

h⋆vw = σ−1
(

πp(v, w)

πp(v, w) + (1− π)q(v, w)

)
= log

(
πp(v, w)

πp(v, w) + (1− π)q(v, w)
· πp(v, w) + (1− π)q(v, w)

(1− π)q(v, w)

)
σ−1(p) = log p

1−p , p ∈ (0, 1).

= log
(

πp(v, w)

(1− π)q(v, w)

)
= log

p(v, w)

q(v, w)
+ log

π

1− π
.

Hence, in the case of balanced classes π = 1/2 (equivalent to r = 1) and
α = 1, we get

h⋆vw = log
p(v, w)

p(w)p(v)
,

which is the pointwise mutual information.

GloVe. Global word vectors (GloVe) considers word embedding models
in terms of matrix factorization. It maximizes a different objective,

ℓ(θ, N) = ∑
v,w∈Σ
Nvw>0

f (Nvw)
(
log Nvw − log N̂vw

)2, N̂vw = p(v, w; θ),

which is a weighted square loss on the log-scale. In practice, the following
weighting function is used,

f (N) = min
{

1,
(

N
Nmax

)α}
,

where often α = 3/4.

computational intelligence lab 33

The idea of this objective is that the we can work with an unnormalized
conditional probability distribution and simply choose

log p(v, w) = ⟨ζw, zv⟩.

The reason for this is that the squared objective is two-sided, whereas a
likelihood objective will always increase if we increase probabilities and
the balancing effect comes purely from the normalization.

GloVe can be interpreted as a low-rank matrix factorization with

U .
= [ζ1, . . . , ζn]

⊤, V .
= [z1, . . . , zn]

⊤.

Then, we have the following matrix of unnormalized probabilities,

log N̂ = UV⊤.

The GloVe objective is a weighted Frobenius norm of the approximation
residual between the observed log-count matrix and a low-rank factor-
ization of embedding matrices. As a special case, consider

f (N) = min{1, N},

which results in a matrix completion problem,

U, V ∈ argmin
U,V

n

∑
i=1

n

∑
j=1

1{Nij > 0}
(

log Nij −
(

UV⊤
)

ij

)
=
∥∥∥Π1{N>0}

(
log N −UV⊤

)∥∥∥2

F
. This is a matrix completion problem with

A = log N and ωij = 1{Nij > 0}.

We can optimize U and V by stochastic gradient descent,

ζw ← ζw + 2η f (Nvw)(log Nvw − ⟨ζw, zv⟩)zv

zv ← zv + 2η f (Nvw)(log Nvw − ⟨ζw, zv⟩)ζw,

where we sample (v, w) at random.

computational intelligence lab 34

5 Deep neural networks

Generally, deep learning models consist of a function H : Rn → Rp

that extracts p-dimensional features from n-dimensional data and a lin-
ear map g that makes the final prediction. The final learned function is
then formalized by ψ = g ◦ H. Machine learning philosophies differ in
the way that they extract features from the data. There are three main
philosophies,

• Feature engineering: H is hand-crafted to extract intuitive features
that have good predictive power of the label. The problem with this
approach is that it requires domain expertise;

• Feature expansion: H maps to a high-dimensional feature space using
kernels and implicit models;

• Compositionality: The feature extraction function H is learned through
the composition of L simple building blocks,

H = HL ◦ HL−1 ◦ · · · ◦ H2 ◦ H1, Hl : Rnl−1 → Rnl .

In compositional models, the partial maps H1:l
.
= Hl ◦ · · · ◦H1 produce

intermediate representations. These satisfy the Markov property and, as
such, need to preserve task-relevant information. Once information is
lost, it cannot be recovered. The idea of the layers is to make relevant
information more accessible and explicit with increasing depth, such that
g can easily make a prediction.18 18 For example, the early layers of CNN typically

learn low-level features, whereas the later layers
will learn higher level features that make use of the
low-level features.

The key question is how to define the basic building blocks such that
their composition is more powerful than any one block can be. Consider
two linear layers,

F(x; W2) = W2x, G(x; W1) = W1x.

Their composition is again a linear layer,

(F ◦ G)(x) = W2W1x = Wx, W = W2W1.

So, linear layers are not appropriate building blocks.

The key idea is to combine a linear map with a non-linearity,

H(x; W) = Φ(Wx),

where Φ is a non-linear element-wise activation function,

Φ(z) = [ϕ(z1), . . . , ϕ(zm)], ϕ : R→ R.

Theoretically, a neural network with one hidden layer and a non-polynomial
activation function is a universal function approximator. This means that
any function can be represented using a single hidden layer and a non-
linear activation function.19 However, in practice, this single hidden layer

19 The following are commonly used activation
functions with their derivatives,

• Sigmoid, σ : R→ (0, 1),

σ(z) .
=

1
1 + e−z

σ′(z) = σ(z)(1− σ(z))

= σ(z)σ(−z);

• Hyperbolic tangent, tanh : R→ (−1, 1),

tanh(z) .
=

ez − e−z

ez + e−z

tanh′(z) = 1− tanh2(z);

• Rectified linear unit, ReLU : R→ R≥0,

ReLU(z) .
= max{0, z}

ReLU′(z) = 1{z > 0}.

computational intelligence lab 35

may need to be infinitely large. A single hidden layer multi-layer percep-
tron (MLP) is formalized by the following function,

ψ(x; β, W) = β⊤σ(Wx) =
m

∑
j=1

β jσ
(

w⊤j x
)
=

m

∑
j=1

β j

1 + exp
(
−w⊤j x

) . In this case, g(y; β) = β⊤y and H(x; W) = Wx.

In order to tune this model, we need to be able to compute its gradients,
which tell us how to locally optimize a loss function ℓ. In this case, we
choose a squared loss, ℓ(ŷ, y) = 1

2 (ŷ− y)2. The gradients are computed
by

∂

∂β j

1
2
(ψ(x; β, W)− y)2 = (ψ(x; β, W)− y)

∂

∂β j
ψ(x; β, W)

=
ψ(x; β, W)− y

1 + exp
(
−w⊤j x

)
∂

∂wji

1
2
(ψ(x; β, W)− y)2 = (ψ(x; β, W)− y)

∂

∂wji
ψ(x; β, W)

= (ψ(x; β, W)− y)β j
∂

∂wji
σ
(

w⊤j x
)

= (ψ(x; β, W)− y)β jσ
(

w⊤j x
)

σ
(
−w⊤j x

) ∂

∂wji
w⊤j x σ′(z) = σ(z)(1− σ(z)) = σ(z)σ(−z).

=
ψ(x; β, W)− y

1 + exp
(
−w⊤j x

) β jxi

1 + exp
(

w⊤j x
) .

Learning is typically carried out through stochastic gradient descent,
which iteratively selects a random mini-batch St ⊆ S = {(xi, yi)}n

i=1.
The update rule is then

θt+1 = θt − η ∑
(x,y)∈St

∇θℓ(ψ(x; θ), y).

5.1 Backpropagation

Calculating the gradient by hand for every model is very tedious and time
consuming. Backpropagation is an algorithm that can compute the gradi-
ent of any function, which consists of building blocks with known gradi-
ents, in linear time. This algorithm makes use of dynamic programming,
which means that it breaks the problem down into smaller subproblems
and re-uses solutions to previously seen subproblems. In this case, the
solution to the subproblems are the gradients, which can be re-used in
later gradients by the chain rule and sum rule. In short, backpropagation
exploits compositionality to efficiently compute the gradient.

Let Hk : Rn → Rm be an intermediate layer of a compositional model.
It’s Jacobi map is defined as

[Jk]ij
.
=

∂hki
∂zj

, hki is the i-th output of layer k and zj is its j-th
input.

computational intelligence lab 36

which is an implicit function of the input z ∈ Rn to hk. Furthermore,
define the error signal as

δk
.
=

[
∂ℓ

∂hk

]⊤
,

which quantifies how a change in loss is induced by a change in unit
k’s activation. Using the chain rule, we can find a recurrence relation
between error signals,

δk
.
=

[
∂ℓ

∂hk

]⊤
=

[
∂ℓ

∂hk+1

∂hk+1
∂hk

]⊤ .
= J⊤k+1δk+1.

Thus, we can use dynamic programming to compute all error signals
efficiently. Lastly, in order to compute the gradient w.r.t. the parameters,
we use the chain rule again,

∂ℓ

∂[Wk]ij
=

∂ℓ

∂hk

∂hk
∂[Wk]ij

=
∂ℓ

∂hk

[
∂ϕ(y)

∂y

∣∣∣∣
y=Wkzk−1

]
∂

∂[Wk]ij
Wkzk−1

= δ⊤k diag
(
ϕ′(Wkzk−1)

)
veci([zk−1]j)

= [δk]i · ϕ′
(
[Wk]

⊤
i zk−1

)
· [zk−1]j.

Intuitively, the local parameter gradient ∂ℓ
∂Wk

is the product of an up-
stream vector zk−1, a downstream error signal δk, and the local sensitivity
of the unit ϕ′(Wkzk−1). Note that we first need to perform a forward pass
in order to compute these gradients in the backward pass.

Moreover, we have the following Jacobi maps for different activation
functions,

• Linear activation, Jk = W ;

• ReLU layer, Jk = diag(1{Wz > 0})W ;

• Sigmoid layer, Jk = diag(σ(Wz)⊙ σ(−Wz))W .

5.2 Gradient methods

In gradient descent, we iteratively update the parameters by

θk+1 = θk − η∇ℓ(θk), η > 0.

A fundamental question is whether gradient descent will converge to
an optimal solution. The key intuition is that gradient descent can only
work if the gradient does not change too much relative to the step size.
The gradient information must remain informative in a neighborhood
around a point.

computational intelligence lab 37

Definition 5.1 (Smoothness). A differentiable function ℓ : Rd → R

is L-smooth for some L > 0 if

∥∇ℓ(θ)−∇ℓ(θ′)∥ ≤ L∥θ− θ′∥, ∀θ, θ′.

This is equivalent to the gradient being L-Lipschitz continuous.

Figure 5.1. Graph of the gradient of an L-smooth
1-dimensional function. Due to smoothness, the gra-
dient may only stay within the grey area for every
point. Higher L makes the area larger, which means
that the current gradient is less informative about
its surroundings. Thus, we have to be more careful
when applying gradient descent.

Smoothness implies a bound on the Hessian,

∥∇2ℓ(θ)∥ ≤ L, ∀θ.

As a consequence, this means that smoothness bounds the largest eigen-
value of the Hessian. A large L means that the gradient can change
quickly, making it more unstable, thus we need to lower the stepsize.
This is intuitively why the stepsize η = 1/L works well.

Definition 5.2 (ϵ-critical point). Let ℓ be differentiable at θ, then θ is
an ϵ-critical point if

∥∇ℓ(θ)∥ ≤ ϵ.

Lemma 5.3. Gradient descent on an L-smooth, differentiable func-
tion ℓ : Rd → R with step size η = 1/L finds an ϵ-critical point in at
most

k =
2L(ℓ(θ0)− ℓ⋆)

ϵ2

steps.

Thus, smoothness is sufficient to find local minima. The question is
what properties of ℓ will ensure convergence to a global minimum.

Definition 5.4 (Polyak-Lojasiewicz condition). A differentiable func-
tion ℓ : Rd → R satisfies the Polyak-Lojasiewicz (PL) condition with
parameter µ > 0 if

1
2
∥∇ℓ(θ)∥2 ≥ µ(ℓ(θ)− ℓ⋆), ∀θ.

Lemma 5.5. Let ℓ be differentiable, L-smooth, and µ-PL. Then, gra-
dient descent with stepsize η = 1/L converges at a geometric rate,

ℓ(θk)− ℓ⋆ ≤
(

1− µ

L

)k
(ℓ(θ0)− ℓ⋆).

Definition 5.6 (Strong convexity). A differentiable function ℓ : Rd →
R is µ-strongly convex for some µ > 0 if

ℓ(θ′) ≥ ℓ(θ) + ⟨∇ℓ(θ), θ′ − θ⟩+ µ

2
∥θ′ − θ∥2, ∀θ, θ′.

computational intelligence lab 38

Intuitively, strong convexity bounds the smallest eigenvalue of a lo-
cally quadratic approximation of ℓ.

Lemma 5.7 (Strong convexity ⇒ PL). Let ℓ be µ-strongly convex,
then it fulfills the PL condition with the same µ.

Thus, strong convexity ensures convergence to a global optimum.

Momentum. The heavy ball method is an optimization algorithm with
momentum,

θk+1 = θk − η∇ℓ(θk) + β(θk − θk−1), β ∈ (0, 1).

Intuitively, we are acting as if the iterates have mass. As a consequence,
we will pass small gradient areas faster, and thus overcomes converging
to local minima.

Adaptivity. AdaGrad uses the gradient history to adapt the stepsize per
dimension,

[θk+1]i = [θk]i − ηk
i ∇iℓ(θk), ηk

i
.
=

η√
γk

i + δ
,

where
γk

i = γk−1
i + (∇iℓ(θk))

2.

Acceleration. Nesterov’s accelerated gradient descent has the following
update rule,

θ′k+1 = θk + β(θk − θk−1)

θk+1 = θ′k+1 − η∇ℓ(θ′k+1).

While it is not intuitive why this works, it provides a faster convergence
rate than vanilla gradient descent.

Adam. Adam combines momentum and adaptivity to increase conver-
gence speed. It defines the following variables,

gk = βgk−1 + (1− β)∇ℓ(θk), β ∈ [0, 1]

hk = αhk−1 + (1− α)∇ℓ(θk)
⊙2, α ∈ [0, 1].

The update rule is then

θk+1 = θk − ηk ⊙ gk, ηk = η ⊘
(√

hk + δ
)

.

5.3 Convolutional neural networks

Images and audio have an extremely high dimensionality, which means
that a fully connected layer would have an extremely high parameter
count. However, we can exploit the locality, scale, and shift invariance of
these types of data using a new operator; the convolution.

computational intelligence lab 39

Definition 5.8 (Convolution). Given two functions f , h, their convo-
lution is defined as

(f ∗ h)(u) .
=
∫ ∞

−∞
h(u− t) f (t)dt =

∫ ∞

−∞
f (u− t)h(t)dt.

The convolution operator is shift invariant, meaning that if we shift
and then apply the operator, we get the same result as if we were to first
apply the operator and then shift. Formally,

f∆ ∗ h = (f ∗ h)∆

The converse is also true: any linear shift-invariant transformation can
be written as a convolution.

In practice, we have discrete data, which means that we have to define
a discrete convolution operator,

(f ∗ h)[u] .
=

∞

∑
t=−∞

f [t]h[u− t].

This easily extends to two dimensions,

(f ∗ h)[x, y] =
∞

∑
u=−∞

∞

∑
v=−∞

f [u, v]h[x− u, y− v].

Typically, f and h are defined over a finite domain.

The cross-correlation operator is equal to a convolution with a flipped
kernel,

(f ⋆ h)[u] .
=

∞

∑
t=−∞

h[t] f [u + t].

Convolutional neural networks (CNN) learn the kernel of convolu-
tional layers and stacks them in a compositional way to extract features
from images. In this way, these layers exploit the shift invariance, locality,
and scale of the data. Furthermore, it increases the statistical efficiency
w.r.t. MLPs, because of the shared parameters.

As MLPs, CNNs alternate between (linear) convolutional layers and
non-linear element-wise functions to increase model capacity. Moreover,
it employs max-pooling layers to decrease the dimensionality of the input.
It does so by taking only the maximum of every k × k patch. This has
the effect that the input is subsampled k times. After many max-pooling
layers, the data will no longer be location dependent, which allows us to
throw away spatial information by flattening the data. From there, linear
layers can be used to make the final prediction.

computational intelligence lab 40

6 Generative models

Generally, a dataset has a true generative process p(x) that we can sample
from by querying the dataset. Considering that collecting data is often
expensive, we wish to parametrize a generative model p(x; θ) that is
indistinguishable from p(x).

We want the models to not generate unnatural patterns, so we do not
want the following,

p(x; θ)≫ p(x) ≈ 0, ∃x.

Furthermore, we want the full domain of the distribution to be covered
by our generative model. Thus, we also do not want the following to
happen,

p(x)≫ p(x; θ) ≈ 0, ∃x.

Moreover, we want to train generative models such that they give
high probabilistic mass to samples from the dataset. Thus, a good objec-
tive function is to maximize the log-likelihood of the dataset (maximum
likelihood estimation),

ℓ(θ) = Ex∼p(x)[log p(x; θ)].

However, we will see that some models cannot tractably compute the
likelihood and must thus resort to lower bounds. We will also see that
the likelihood might not be the best measure of success, which will lead
to alternative loss functions.

6.1 Autoregressive models

Autoregressive models make use of a sequential ordering of variables
and define the model directly on these observables. There are data types
that have an inherent temporal ordering, such as text and audio, while
other data types require defining an ordering. For example, in order
to generate images pixel-by-pixel, a consistent ordering of the pixels
must be defined. Empirically, it has been found that any ordering, even
random, works well.

In order to compute the likelihood, autoregressive models make use
of the chain rule,

p(x; θ) =
m

∑
t=1

p(xt | x1, . . . , xt−1; θ).

Typically, autoregressive models are modeled by modeling the condi-
tional distribution p(xt | x1:t−1; θ) as a neural network. Specifically, the
history is first mapped to a latent variable (embedding),

x1:t−1 7→ z ∈ Rd,

computational intelligence lab 41

which is used to predict the probability distribution over next observables
xt by applying the softmax operator,

p(x | x1:t−1; θ) =
exp⟨z, wx⟩

∑x′∈X exp⟨z, wx′⟩
.

We sample from p(x; θ) by iteratively sampling p(xt | x1:t−1; θ) and ap-
pending it to the history.

Pixel CNN. Pixel CNN is used to generate n×m images,

p(x) =
n×m

∏
t=1

p(xi | x1, . . . , xt−1).

However, it only conditions on the pixels within a predefined context
window. Since it is only allowed to use information about pixels above
and to the left of the current pixel, we have to use a masked kernel win-
dow that zeroes out all pixels below and to the left of the current pixel.
This enables the model to learn much faster than other autoregressive
models, because it does not have to wait for all previous pixels to be
generated, because we already have access to them, and the latent rep-
resentation depends only on the pixels within the context window. But,
generation is still slow, because all pixels in the context window need to
be generated first.

Transformers. Recently, transformers have been used to power state-of-
the-art language models. They make use of multi-headed self-attention
(MHSA), layer normalization, and an MLP. Let X ∈ RT×d contain the T
d-dimensional embeddings in the current context window. MHSA intro-
duces a query matrix WQ ∈ Rd×k, a key matrix WK ∈ Rd×k, and a value
matrix WV ∈ Rd×r. We multiply these with X to compute query, key,
and value representations for every timestep,

Q = XWQ ∈ RT×k, K = XWK ∈ RT×k, V = XWV ∈ RT×r.

These interact like a soft mapping, where the queries and keys decide
how much from the values should be taken,

Ξ = AV ∈ RT×r, A = softmax

(
QK⊤√

k

)
∈ RT×T ,

where softmax is applied row-wise. Intuitively, the queries broadcast
what information the timesteps want, the keys broadcast what informa-
tion they have to be compatible with the queries, and the values contain
the actual information. The outputs ξ i are convex combinations of the
values vt, where the query qi and keys kt decide the attention weights
ait,

ξ i =
T

∑
t=1

aitvt, ait ∝ q⊤i kt.

computational intelligence lab 42

Setting d = k = r, makes the output shape equal the input shape, which
means that we can stack self-attention layers easily. Furthermore, we
can add “heads” that are each smaller self-attention operations that are
combined. Let h be the number of heads, then we first project X to h
d/h-dimensional representations,

XWi ∈ RT×d/h, Wi ∈ Rd×d/h, i ∈ [h].

Afterwards, we apply self-attention to each head. Finally, we concatenate
them and project them to the output,

Ξ = concat(head1, . . . , headh)WO ∈ RT×d, WO ∈ Rh·r×d.

These can efficiently be computed by parallelizing the self-attention op-
erators of the heads.

X

Ξ

Masked MHSA

Layer norm

Feed forward

Layer norm

Figure 6.1. Layer in the transformer architecture.

In order to satisfy the autoregressive property, we need to mask out
future timesteps. This is easily done by adding a mask matrix to the
attention matrix, resulting in

A = softmax

(
QK⊤√

k
+ M

)
, M =


−∞ −∞ · · · −∞

0 −∞ · · · −∞
...

...
. . .

...
0 0 · · · −∞

 .

The result is that ait = 0 for t ≥ i, so the i-th timestep is only a function
of the timesteps before it.

Transformers also make use of layer normalization, which normalizes
the data by

x′ = γ

(
x− µ

σ

)
+ β, µ =

1
d

d

∑
i=1

xi, σ2 =
1
d

d

∑
i=1

(xi − µ)2,

where γ, β ∈ R are parameters. This normalization block is applied in
order to balance activation magnitudes across tokens and dimensions.

6.2 Variational autoencoders

The variational autoencoder (VAE) is a latent variable model, where x is
first mapped to an instantiation of an elementary distribution p(z | x)
by an encoder, from which we sample the latent variable z. Then, a de-
coder reconstructs the original input x̂ from this latent variable z. During
training, we make sure that the output distributions of the encoder do
not deviate too far from a prior distribution p(z). After training, we can
then generate new data points by sampling z from the prior and passing
it through the decoder.

The log-likelihood is computed by

log p(x; θ) = log
∫

p(z)p(x | z; θ)dz,

computational intelligence lab 43

which is intractable, because we cannot integrate over all latent variables.
Thus, we must derive an ELBO using a variational distribution q,

log p(x; θ) = log
∫

p(z)p(x | z; θ)dz

= log
∫

q(z)
p(z)
q(z)

p(x | z; θ)dz

≥
∫

q(z) log
p(z)
q(z)

p(x | z; θ)dz

=
∫

q(z) log p(x | z; θ)dz−
∫

q(z) log
q(z)
p(z)

= Eq(z)[log p(x | z; θ)]− DKL(q(z)∥p(z))

We parameterize q as the encoder with parameters ψ (instead of choosing
q for every x like in the case of mixture models), which results in the
final loss function,

ℓ(θ, ψ) = Eq(z|x;ψ)[log p(x | z; θ)]− DKL(q(z | x; ψ)∥p(z)).

Thus, the ELBO encourages good reconstruction by the first term and
makes sure that the distributions produced by the encoder do not deviate
too far from the prior by the second term. However, we can make a Monte
Carlo approximation of the expectation by using the reparametrization
trick. This involves sampling an instance from a fixed distribution and
using this to compute an instance of the desired distribution with the
same probability. In the case of q as a Gaussian, where the encoder
outputs means µ and variances σ, we can obtain a sample from this
distribution by only sampling from N (0, I) as follows,

ϵ ∼ N (0, I)

z = µ + σ ⊙ ϵ.

z is a sample from N (µ, diag(σ2)). The second term of the ELBO is
analytically computable if we further define the prior to be Gaussian
N (0, I).

6.3 Generative adversarial networks

In practice, the log-likelihood may not be the best to optimize for. The
next idea views generative models in terms of a classification problem,

p(x, Y; θ) = Yp(x) + (1−Y)p(x; θ), Y ∈ {0, 1},

where Y indicates from which distribution x is sampled.

Assume that we have access to a classifier (or discriminator) that can
distinguish between samples from the true data distribution and samples
from the model’s distribution,

π : Rn → [0, 1], π(x) ≈ P(Y = 1 | x).

computational intelligence lab 44

We then have the following logistic loss,

ℓ(θ; π) = E[Y log π(x) + (1−Y) log(1− π(x))]

=
∫

p(x) log π(x)dx +
∫

p(x; θ) log(1− π(x))dx.

The Bayes-optimal classifier for this loss is

π⋆(x) = P(Y = 1 | x)

=
p(x | Y = 1)p(Y = 1)

p(x | Y = 1)p(Y = 1) + p(x | Y = 0)p(Y = 0)
Bayes’ rule.

=
p(x) · 1/2

p(x) · 1/2 + p(x; θ) · 1/2
Set equal priors for both cases.

=
p(x)

p(x) + p(x; θ)
.

Furthermore, by using the Bayes-optimal classifier, we can rewrite the
logistic loss function as optimizing the Jensen-Shannon divergence be-
tween p(x) and p(x; θ),

ℓ(θ) =
∫

p(x) log
p(x)

p(x) + p(x; θ)
dx +

∫
p(x; θ) log

p(x; θ)

p(x) + p(x; θ)
dx Insert Bayes-optimal classifier.

= Ep(x)

[
log

p(x)
p(x) + p(x; θ)

]
+ Ep(x;θ)

[
log

p(x; θ)

p(x) + p(x; θ)

]
Rewrite as expectations.

= Ep(x)

[
log

2 · p(x)
2 · (p(x) + p(x; θ))

]
+ Ep(x;θ)

[
log

2 · p(x; θ)

2 · (p(x) + p(x; θ))

]
Multiply by 2/2 within the logarithms on both
sides.

= Ep(x)

[
log

2 · p(x)
p(x) + p(x; θ)

]
+ Ep(x;θ)

[
log

2 · p(x; θ)

p(x) + p(x; θ)

]
− log 4 Take out the − log 2 of both expectations.

= DKL

(
p(x)

∥∥∥∥ p(x) + p(x; θ)

2

)
+ DKL

(
p(x; θ)

∥∥∥∥ p(x) + p(x; θ)

2

)
− log 4 DKL(p∥q) = Ep

[
log p(x)

q(x)

]
.

= 2DJS(p(x)∥p(x; θ))− log 4. DJS(p∥q) = 1
2 DKL(p∥ p+q

2) + 1
2 DKL(q∥ p+q

2).

In practice, we do not have access to p(x) and p(x; θ) to compute the
optimal discriminator π⋆. Despite this, it is not a hard job, so we can
expect a neural network, parametrized by ϕ, to perform well on this task.
This results in an adversarial loss function,

θ⋆ = argmin
θ

max
ϕ

ℓ(θ, ϕ), ϕ⋆ = argmax
ϕ

ℓ(θ⋆, ϕ).

This can be optimized by gradient descent where every step involves
optimizing both “players”. However, that is often non-converging. The
extragradient method usually performs better.

6.4 Diffusion models

Diffusion models represent the new state-of-the-art in generative models.
Instead of generating a full sample in one forward pass, it breaks it down
into many small iterative steps. It does so by starting from pure noise,

computational intelligence lab 45

xT ∼ N (0, I), and iteratively working toward a sample from the data
distribution, x0 ∼ p(x).

The forward diffusion process forms a Markov chain,

xt = αtxt−1 + βtϵt, ϵt ∼ N (0, I),

where αt, βt ∈ (0, 1). Typically, αt and βt are chosen to preserve signal
variance, i.e.,

α2
t + β2

t = 1, βt =
√

1− α2
t .

Given x0, we can directly compute xt for any t,

xt = ᾱtx0 + β̄tϵt, ϵt ∼ N (0, I),

where

ᾱt =
t

∏
τ=1

ατ , β̄t =
√

1− ᾱ2
t .

Because limt→∞ ᾱt = 0, we iteratively remove information in the diffu-
sion process. In the limit, all information of x0 is lost,

x∞ | x0 ∼ N (0, I).

The idea of diffusion models is to learn the time-reversed Markov
chain,

p(xt−1 | xt; θ).

Provided that limt→∞ βt = 0, then we can approximate this distribution
by a Gaussian,

xt−1 | xt ∼ N (µ(xt, t; θ), Σ(xt, t; θ)),

which we can simplify to only learn the mean,

xt−1 | xt ∼ N (µ(xt, t; θ), σ2
t I), σ2

t ∈ {βt, β̄t}.

Optimizing the log-likelihood with this model reduces to optimizing the
squared error criterion between xt−1 and µ, which is easy to optimize.
Because the next step xt−1 can be computed from the noise ϵt, this is
effectively the same as training a model to output the added noise and
optimizing w.r.t. the squared error on the noise. The learning algorithm
can be found in Algorithm 1 and the sampling algorithm can be found
in Algorithm 2. For image generation, ϵ(xt, t; θ) is typically modeled as
a U-net.

computational intelligence lab 46

Require: {βt}T
t=1

1: while not converged do
2: x0 ∼ q
3: t ∼ Unif([T])
4: ϵ ∼ N (0, I)
5: ℓ(θ) = 1

2

∥∥ϵ− ϵ
(
ᾱtx0 + β̄tϵ, t; θ

)∥∥2

6: θ← θ− η∇ℓ(θ)

7: end while

Algorithm 1. Diffusion model training algorithm.

Require: {βt}T
t=1, θ

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1 else z = 0

4: xt−1 = 1
αt

(
xt − β2

t
β̄t

ϵ(xt, t; θ)
)
+ σtz

5: end for
6: return x0

Algorithm 2. Diffusion model sampling algorithm.

	Preliminaries
	Dimensionality reduction
	Matrix completion
	Latent variable models
	Deep neural networks
	Generative models

