
Algorithms Lab
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes

algorithms lab ii

Contents

1 Overview 1

2 Binary search 1

3 Dynamic programming 1

4 Boost Graph Library 2

5 Computational Geometry Algorithms Library 3

6 Greedy algorithms 4

7 Split and list 5

8 Maximum flow 5

8.1 Minimum cut 6

8.2 Bipartite matching 6

8.3 Minimum cost maximum flow 7

9 Proximity structures 7

9.1 Delaunay triangulation 7

10 Linear programming 8

algorithms lab 1

1 Overview

In the Algorithms Lab course, tasks entail the following,

1. Find an appropriate model for the problem;

2. Design a suitable algorithm to solve it efficiently;

3. Implement (in C++) and test the algorithm on the given data.

In general, problems should take 2 hours to solve.

Problems are formatted such that they consist of a story, a precise def-
inition of the input and output, and then a point distribution. Make sure
to read the point distribution, because they often contain simplified ver-
sions of the task, which serve as a roadmap toward an efficient algorithm
to solve the problem.

2 Binary search
Before implementing binary search, first see
whether a simple for-loop would suffice. This saves
time.Whenever there is a monotonic relationship between values, i.e. if x1 ≥ x2,

then always f (x1) ≥ f (x2) or always f (x2) ≤ f (x1), binary search can
find a given element in O(log n).1 1 Instead of O(n) if you would iterate over all pos-

sible inputs.

1: function BinarySearch(a, n, T)
2: ℓ← 0
3: r ← n− 1
4: while ℓ ≤ r do
5: m←

⌊
ℓ+r

2

⌋
6: if am < T then
7: ℓ← m + 1 ▷ Search right side of m
8: else if am > T then
9: r ← m− 1 ▷ Search left side of m

10: else
11: return m ▷ am = T
12: end if
13: end while
14: return −1
15: end function

Algorithm 1. Binary search algorithm for finding
index containing value T in a sorted array a of
length n.

3 Dynamic programming
At worst, the table must be filled out fully, thus the
worst-time complexity of a dynamic programming
algorithm is O(st), where s is the size of the table,
and t the time complexity of computing a single
subsolution.

Dynamic programming solves a problem by reducing it to smaller sub-
problems of the same type. These subproblems are described by a state
s ∈ S. To get an answer to the problem, the same subproblems may need
to be solved many times. Thus, in dynamic programming, the solutions
to all subproblems are stored, in a table that maps state to solution value,
to be used later.2 2 Dynamic programming is essentially recursion

with memoization.

algorithms lab 2

1: function BinarySearchLeftMost(a, n, T)
2: ℓ← 0
3: r ← n
4: while ℓ < r do
5: m←

⌊
ℓ+r

2

⌋
6: if am < T then
7: ℓ← m + 1 ▷ Search right side of m
8: else
9: r ← m ▷ Search left side of m

10: end if
11: end while
12: return ℓ

13: end function

Algorithm 2. Binary search can also be used for
finding the minimum input value for which a con-
straint is still satisfied.

To apply dynamic programming, we need to find three things,

• A state space S that describes subproblems as succinctly as possible;

• A recurrence relationship r(s) = f (s, r(s1), . . . , r(sn)), where {s1, . . . , sn} ⊆
S are the necessary subproblem states to compute s;

• Base cases B ⊆ S with constant values that do not need to be com-
puted, i.e. r(b) = c(b) for all b ∈ B, where c(b) maps base cases to
their solution value.

Once we have those, we can easily construct a polynomial algorithm. If possible, always use std::vector if the state
space can be described by integers, since it has
constant insert/access time complexity. Remember
that std::map has O(log n) insert/find/access time
complexity.

Dynamic programming differentiates between a top-down and a bottom-
up approach. In the top-down approach, the values are computed recur-
sively, each time checking the table for a precomputed value and base
case condition before computing the state solution. In bottom-up, the
smaller problems are explicitly computed before computing the next
state. In general, the top-down approach is easier to implement. How-
ever, the bottom-up approach is more memory efficient, because it does
not need to keep track of function calls on the stack. Also, using the
bottom-up approach, it is easier to reason about the time complexity.

4 Boost Graph Library

The Boost Graph Library (BGL) is a library of common graph algorithms.
In BGL, graphs are represented as adjacency lists, i.e. a vector of vectors.

A list of BGL functions can be found in Table 1. See the tutorial slides
for how to use them. Also, the BGL documentation contains detailed
descriptions of how these algorithms work.

In the exam-like problems, Dijkstra’s is the only function actually used
commonly. Dijkstra’s algorithm computes the distance, in a weighted

algorithms lab 3

#include <boost/graph/adjacency_list.hpp>

typedef boost::adjacency_list<

boost::vecS,

boost::vecS,

boost::undirectedS, // Or boost::directedS

boost::no_property, // Vertex property

boost::property<boost::edge_weight_t, int>

> graph;

Listing 1. Basic type for a weighted graph.

graph, from a source node to all other nodes. A modified Kruskal’s al-
gorithm is often implemented with proximity structures to find whether
two vertices are reachable under some constraints.

Table 1 can also be found in the tutorial slides.3 So, in the exam, if 3 Also, the table contains links to the documentation
of the functions, which contains good descriptions
of the algorithms.

there is no way to solve a graph problem with the other methods, then
take a look at this table and figure out how to potentially apply these
algorithms.

Algorithm Runtime

boost::breadth_first_search O(n + m)

boost::depth_first_search O(n + m)

boost::dijkstra_shortest_path O(n log n + m)

boost::kruskal_minimum_spanning_tree O(m log m)

boost::edmonds_maximum_cardinality_matching O(mn · α(m, n))
boost::strong_components O(n + m)

boost::connected_components O(n + m)

boost::biconnected_components O(n + m)

boost::articulation_points O(n + m)

boost::is_bipartite O(n + m)

Table 1. Common graph algorithms that appear
throughout the course.

5 Computational Geometry Algorithms Library

Infinite precision and range. CGAL is a library that provides infinite pre-
cision and range types.4 However, large numbers also have a higher 4 As opposed to the default C++ types in Table 2.

computational cost in CGAL, so only use exactly as much algebra as
needed in problems that require infinite precision.

Type Bits (specific to this course) Minimum Maximum

int 32 −231 231 − 1
long 64 −263 263 − 1
double 64 −253 253 − 1

Table 2. C++ types with their representational
range.

algorithms lab 4

In general, the following guidelines should be followed to avoid un-
necessary computational cost,

1. Avoid square roots where possible, which is often possible, because
the function is monotonic, i.e.,5 5 This is especially useful when working with dis-

tances,

d((x1, y1), (x2, y2)) =
√
(x1 − x2)2 + (y1 − y2)2,

because we only need squared distances if we only
need them for comparison.

∀x, y ≥ 0 :
√

x <
√

y ⇐⇒ x < y;

2. Avoid divisions, which is often possible in comparisons, i.e.,6

6 To keep the code clean, you can also use the
CGAL::Gmpq type, which represents divisions by the
numerator and denominator, and does this under
the hood.

∀x, y > 0 :
a
b
<

c
d
⇐⇒ ad < bc;

3. Estimate to check if loss of precision may occur. I.e., first check whether
the values will fit within one of the default C++ types (Table 2). If we
need to multiply two values with a and b bits, respectively, we will
need a type with a + b bits. If we need to add two values, we need
max{a, b}+ 1 bits.

Geometretic computing. CGAL also provides predicates and construc-
tions for geometry. The library provides three kernels, shown in Table 3.

Kernel Feature

CGAL::Exact_predicates_inexact_constructions_kernel
Constructions use double,
so not exact

CGAL::Exact_predicates_exact_constructions_kernel
Exact constructions,
supporting +,×,÷.

CGAL::Exact_predicates_inexact_constructions_kernel_with_sqrt
Exact constructions,
supporting +,×,÷,

√
·.

Table 3. CGAL kernels, ordered by increasing com-
putational cost.CGAL has many different geometries that it can represent, e.g., K::Point_2,

K::Line_2, K::Ray_2, K::Segment_2. However, they are only necessary if
constructions are absolutely necessary.7 Usually, there is a more efficient

7 An edge case is K::Point_2, which does not re-
quire constructions and are often useful.

method that requires no constructions. See the CGAL documentation for
provided predicates and constructions.

If you need to take the floor of an infinite precision type, such as K::FT,
use the function in Listing 2.

6 Greedy algorithms
The greedy approach rarely yields optimal solu-
tions, but it is easy to convince yourself that the
greedy approach “works“. This is why the proof
step is important, but, in this course, there is no
time to construct a proof. Thus, first exhaust all
other options before resorting to a greedy ap-
proach.

A greedy algorithm can be applied if locally optimal choices result in a
globally optimal solution. Usually, these are tasks that require the construc-
tion of a set that is in some sense globally optimal. In general, a greedy
approach has the following steps,

1. Greedy choice: Given already chosen elements c1, . . . , ck−1, decide how
to choose ck, based on some local optimality criterion;

algorithms lab 5

typedef CGAL::

Exact_predicates_inexact_constructions_kernel K;

double floor_to_double(const K::FT& x)

{

double a = std::floor(CGAL::to_double(x));

while (a > x) a -= 1;

while (a+1 <= x) a += 1;

return a;

}

Listing 2. Floor of infinite precision type. If the
ceiling must be computed, the following identity
can be used,

⌈x⌉ = −⌊−x⌋.

2. Proof : Prove that the elements obtained in this way result in a globally
optimal set;8 8 We can prove that a greedy solution works using

an exchange argument or a staying ahead argument.
We can disprove one via a counterexample.3. Implementation: Implement the greedy choice to be as efficient as pos-

sible.

The hard part lies in the first step, where we need to figure out how to
pick the next element of the set, given already chosen elements.

7 Split and list
Only use split and list of n ≤ 50, where n is the
amount of elements in the set. It is often necessary
for NP-hard problems to get full points.For some problems, we need to consider every possible “configuration“

to solve it, resulting inO(c · 2n) time complexity, which is okay for n ≈ 25
in this course, where O(c) is the runtime of checking whether a config-
uration satisfies some condition. In some cases, using split and list, we
can get it down to O(c · 2n/2), which is okay for n ≈ 50 in this course.

Split and list can be used if the elements S can be split into S1 and
S2 such that the results of the configurations of S1 and S2 make up the
result of a full configuration of S.

We iterate over all configurations of S1 and S2 and compute their re-
sults, stored in L1 and L2, respectively. Sort L2. Then, for each k1 ∈ L1,
check if there is a k2 ∈ L2 (using binary search) such that their combina-
tion make up the target.

8 Maximum flow
Tip. The max flow from u to v is the same as from
v to u in the reversed graph.

In maximum flow problems, we have a graph where the edges are given
flow capacity, which is how much can flow through an edge. Then, the
question becomes how much flow can go from a source vertex to a sink
vertex in such a graph. Using BGL, we compute the maximum flow of a
graph with the push-relabel algorithm (O(V3)).9 9 You also need to add residual connections to all

edges, but this is done with the edge_adder struct
that is given in the maximum flow example of the
course documentation.

Common techniques that are very useful in such problems are the
following,

algorithms lab 6

• Multiple sources/sinks: If you need multiple sources (or sinks), you can
simply add a supernode that has infinite capacity to all the sources
(or sinks);

• Vertex capacities: If vertices should have a certain capacity that is al-
lowed to flow through it, use two vertices to represent it. The input
vertex should take all inputs of the vertex and the output vertex should
take all outputs. Then, add an edge from input to output with the ver-
tex capacity;

• Undirected edges: If you need an undirected edge between a and b with
capacity c, just add directed edges from a to b and b to a, both with
capacity c;10 10 This works because if flow goes both ways, they

might as well both stay on their original side (which
the algorithm will do). So, the maximum flow
through this undirected edge is achieved if c goes
from a to b and 0 goes from b to a (or vice versa).

• Minimum edge constraint: If we need the following constraint on an
edge e = (u, v),

cmin(e) ≤ f (e) ≤ cmax(e),

where f (e) is the flow through edge e, we need to adjust the demand,
supply, and capacity as follows,

du ← du + cmin

sv ← sv + cmin

c(e)← cmax − cmin,

where du is the demand of u, i.e., the amount of capacity to the target,
sv is the supply of v, i.e., the amount of capacity from the source, and
c(e) is the capacity of e.

8.1 Minimum cut

The maximum flow between two vertices can also be seen as the bot-
tleneck between them. Thus, we can also see this as the minimum cut,
where we need to cut/block the bottleneck to disconnect the two vertices.
The actual vertices that are on the two sides of the cut can then be found
by breadth-first search on the edges with non-zero residual capacity (see
slides).

8.2 Bipartite matching

In a bipartite matching problem, we want to compute to take as many
non-adjacent edges as possible, i.e., make as many assignments as pos-
sible. This can also be computed by maximum flow. First, we need to
construct the bipartite graph. Assign the source to one side with 1 flow,
and the target to the other side with 1 flow. Then, connect all pairs with
1 flow. The maximum flow is then the maximum amount of matchings
that can be made.

algorithms lab 7

Theorem 8.1 (König). In a bipartite graph, the number of edges in a
maximum matching is equal to the number of vertices in a minimum
vertex cover.

The maximum independent set I ⊆ V is the largest set of vertices,
such that none of them are connected by an edge,

̸ ∃ u, v ∈ I : (u, v) ∈ E.

The minimum vertex cover C ⊆ V is the smallest set of vertices, such that
every edge is connected to one of the vertices in this set,

∀(u, v) ∈ E : u ∈ C ∨ v ∈ C.

Using Theorem 8.1, we can compute the size of the minimum vertex
cover |C| of a bipartite graph by computing the maximum flow. Then, we
can compute the size of the maximum independent set by |I| = |V| − |C|.

8.3 Minimum cost maximum flow Only use minimum cost maximum flow if number
n ≤ 1000, where n is the amount of vertices. If there
are negative costs, only use it if n ≤ 600.We can also associate cost with flow on the edges. In minimum cost

maximum flow problems, we then want to first maximize the flow, and
then, as a second priority, compute the minimum cost. I.e., we want to
find the cheapest among all maximum matchings.

We could also maximize the cost by making them negative. However,
the non-negative solver is much faster than the one that allows negative
costs. Thus, if we need a negative cost, we should compute some upper-
bound U, and give B− c cost, such that the costs become positive. Then,
afterward, we need to remove the added B in some way. This can usually
be done as a function of the maximum flow, since that is how many times
B was added to the cost.

9 Proximity structures

In this course, we often have geometry problems with many points on
an x, y coordinate system. In these cases, we also want to be efficient. In
a problem, we might have points with some radius, where we need to
find the minimum radius such that some condition is satisfied. Or, we
might need to find the maximum distance a point can remain from all
points when moving out of the convex hull. Or, we might need to find the
closest point for m points in a large list of n points. In this case, naively
computing the closest point would result in O(mn) complexity, but we
can do better. If we precompute a triangulation in O(n log n), we can
find closest points in O(log n). This results in a O((n + m) log n) time
complexity, which is much better than the naive version.

9.1 Delaunay triangulation

algorithms lab 8

typedef CGAL::

Exact_predicates_inexact_constructions_kernel K;

typedef CGAL::Delaunay_triangulation_2<K> Triangulation;

std::vector<K::Point_2> points(n);

// Read in points...

Triangulation t;

t.insert(points.begin(), points.end());

Listing 3. Delaunay triangulation in C++. The exact
constructions kernel is necessary if access to the
Voronoi diagram is needed.

Delaunay triangulation for a set of discrete points is a triangulation
such that no point is inside the circumcircle of any triangle in the triangu-
lation. Let a disk be of maximal radius if it passes through three points,
its center is inside the convex hull of the points, and the disk does not
contain any other points. The maximal empty disks of the graph make
up a Delaunay triangulation.

Delaunay triangulation has the following properties,

• It contains the Euclidean minimum spanning tree;

• Each point has an edge to all closest other points;

• It can be constructed efficiently in O(n log n).

Furthermore, Delaunay triangulation is the straight-line dual of the
Voronoi diagram. The Voronoi diagram for a set of points P partitions
the plane into regions for which the closest point from P is the same. If
you move along these edges, you will always be as far away as possible
from the points P .

The dual of a face, can be found with t.dual(f). However, this is in-
efficient, because it uses constructions. Often, we do not need to explicitly
compute the dual vertex. We could often simply use t.nearest_vertex(p),
which only uses predicates. In the exam-like problems, we only needed
the dual vertex for a problem where we needed to compute the maximal
radius of a face. We can compute this by computing the distance between
the dual and any vertex of the face, CGAL::squared_distance(t.dual(f), f.vertex(0)).

10 Linear programming
Only use linear programming if min{n, m} ≤ 200,
where n is the amount of variables, and m the
amount of constraints.Linear programming is a linear optimization problem subject to m linear

constraints on n variables. In general, a linear program looks like the

algorithms lab 9

// Let 0 be the infinite vertex

auto f = t.incident_faces(t.infinite_vertex());

do {

f->info() = 0;

} while (++f != t.incident_faces(t.infinite_vertex()));

// Give each face a unique index

size_t num_faces = 1;

for (auto f = t.finite_faces_begin(); f != t.

finite_faces_end(); ++f)

f->info() = num_faces++;

std::vector<std::vector<std::pair<size_t, K::FT>>> adj(

num_faces);

// Iterate over faces

for (

auto f = t.finite_faces_begin();

f != t.finite_faces_end();

++f

)

{

size_t index = f->info();

for (int i = 0; i < 3; i++)

{

size_t n_index = f->neighbor(i)->info();

K::FT length = t.segment(f, i).squared_length();

// Construct graph outside the DT

adj[index].push_back({ n_index, length });

// Infinite vertices

if (n_index == 0)

adj[0].push_back({ index, length });

}

}

// Locate face in which point ‘p‘ is by ‘t.locate(p)‘

Listing 4. If we need the graph where the faces
are vertices and the minimum radius that can go
between faces as edge weights, we can use this snip-
pet. This is needed when doing motion planning
between points, where we want to know how to
move a disk without colliding with any points.

algorithms lab 10

following,

minimize c⊤x + c0

subject to a1x ≤ b1

...

amx ≤ bm.

Note that we can also form constraints of the form ajx ≥ bj by adding
the following constraint,

−ajx ≤ −bj.

Furthermore, we can also specify a maximization objective by minimizing
the following,

−(c⊤x + c0),

and then flipping the sign after solving the problem.

Geometrically, a linear program defines an n-dimensional convex poly-
hedron with m faces. The optimum objective value is found at one of the
vertices of this polyhedron. There are an exponential amount of vertices,
thus the worst-case time complexity is exponential in n and m, but for
small min{n, m}, the complexity is O(max{n, m}).

The following are tips when working with linear programming,

• If you want to maximize a minimum value that is a function f (xi) of
the linear programming variables xi, you need to add a variable, fmin,
and the following constraints,

∀xi : fmin ≤ f (xi).

Then maximize this variable. Ditto if you want to minimize the maxi-
mum value;

• If any of the constraints contain fractional coefficients, multiply the
constraints such that all coefficients are whole numbers;

• The signed distance from a point x to a hyperplane a⊤x + b = 0 is
computed as follows,

a⊤x + b
∥a∥2

2
.

This is not specific to linear programming, but often appears in linear
programming problems in this course.

	Overview
	Binary search
	Dynamic programming
	Boost Graph Library
	Computational Geometry Algorithms Library
	Greedy algorithms
	Split and list
	Maximum flow
	Proximity structures
	Linear programming

