
Advanced Machine Learning
Cristian Perez Jensen

January 12, 2025

Note that these are not the official lecture notes of the course, but only
notes written by a student of the course. As such, there might be mis-
takes. The source code can be found at github.com/cristianpjensen/
eth-cs-notes. If you find a mistake, please create an issue or open a pull
request.

github.com/cristianpjensen/eth-cs-notes
github.com/cristianpjensen/eth-cs-notes

advanced machine learning ii

Contents

1 Paradigms of data science 1

2 Anomaly detection 2

3 Density estimation 6

4 Regression 9

4.1 Linear regression 9

4.2 Polynomial regression 10

4.3 Regularization 11

5 Causality 12

5.1 Counterfactual invariance 12

6 Gaussian processes 14

6.1 Kernels 15

6.2 Prediction 16

7 Uncertainty quantification 17

7.1 Statistical model validation 17

7.2 Bayesian neural networks 17

7.3 Transductive active learning 17

8 Convex optimization 18

8.1 Support vector machine 18

9 Ensembles 19

9.1 Bagging 19

9.2 Random forests 19

9.3 AdaBoost 19

10 Stable diffusion 20

10.1 Diffusion models 20

10.2 U-net 21

10.3 Latent diffusion models 21

10.4 Text embeddings 22

10.5 Cross-attention 22

advanced machine learning iii

List of symbols

.
= Equality by definition

≈ Approximate equality

∝ Proportional to

N Set of natural numbers

R Set of real numbers

i : j Set of natural numbers between i and j. I.e., {i, i+ 1, . . . , j}

f : A → B Function f that maps elements of set A to elements of
set B

1{predicate} Indicator function (1 if predicate is true, otherwise 0)

v ∈ Rn n-dimensional vector

M ∈ Rm×n m × n matrix

M⊤ Transpose of matrix M

M−1 Inverse of matrix M

det(M) Determinant of M

d
dx f (x) Ordinary derivative of f (x) w.r.t. x at point x ∈ R

∂
∂x f (x) Partial derivative of f (x) w.r.t. x at point x ∈ Rn

∇x f (x) ∈ Rn Gradient of f : Rn → R at point x ∈ Rn

∇2
x f (x) ∈ Rn×n Hessian of f : Rn → R at point x ∈ Rn

advanced machine learning 1

1 Paradigms of data science

Let {x1, . . . , xn} be i.i.d. samples, generated by an unknown distribution
P. Assume that this distribution is in a distribution family,

H = {p(· | θ) | θ ∈ Θ}.

The goal is to learn the parameters θ that fit the data {x1, . . . , xn} best.

Frequentism. In frequentism, the maximum likelihood estimator (MLE)
parameters maximize the following,

θ⋆ ∈ argmax
θ∈Θ

log p({x1, . . . , xn} | θ)

= argmax
θ∈Θ

n

∑
i=1

log p(xi | θ).

Bayesianism. Bayesianism assumes that there is a prior over distributions.
The maximum a posteriori (MAP) parameters maximize the following,

θ⋆ ∈ argmax
θ∈Θ

log p(θ | X)

= argmax
θ∈Θ

log p({x1, . . . , xn} | θ) · p(θ) Bayes’ rule.

= argmax
θ∈Θ

log p(θ) +
n

∑
i=1

log p(xi | θ).

In practice, the prior acts as a regularization term.

Statistical learning. Now, assume that we have labeled samples {(x1, y1), . . . , (xn, yn)} ⊆
X × Y , where y is the target variable. Let ℓ : Y × Y → R be a loss func-
tion. For a predictor function f : X → Y , we define its risk as the
expected loss,

R(f) .
= EX,Y[ℓ(y, f (x))].

In statistical learning, we want to find a function that minimizes the
risk. However, since the distribution over X, Y is unknown, we cannot
compute R(f) directly. Instead, we use the empirical risk as a surrogate,

R̂(f) .
=

1
n

n

∑
i=1

ℓ(yi, f (xi)).

The goal is to obtain the empirical risk minimizer,

f ⋆ ∈ argmin
f∈F

R̂(f),

where F is a family of functions that we assume f belongs to.

advanced machine learning 2

2 Anomaly detection

In anomaly detection, we are given a sample of objects X ⊆ Rd with a
normal class N ∈ X—the data points that we wish to keep. We wish to
construct a function ϕ : X → {0, 1}, such that

ϕ(x) = 1 ⇐⇒ x ̸∈ N .

Formally, an anomaly is an unlikely event. Hence, the strategy is to fit a
model of a parametric family of distributions to the data X ,

H = {p(· | θ) | θ ∈ Θ}.

Then, we define the anomaly score of x as a low probability p(x | θ⋆)

according to the optimal model in this hypothesis class.

Anomaly detection in a high-dimensional space is hard, because the
normal class can be very complex. The idea is to project X down to a
lower dimensionality and perform anomaly detection there—hopefully
the projected version of the normal class Π(N) is less complex. In order
to find the optimal linear projection, we will use principal component
analysis (PCA).

Furthermore, it has been observed that linear projections of high-
dimensional distributions onto low-dimensional spaces resemble Gaus-
sian distributions. Hence, after performing PCA, we will fit a Gaussian
mixture model (GMM) to the projected data.

Principal component analysis. The goal of PCA is to linearly project Rd to
Rd− such that the maximum amount of variance of the data is preserved.1 1 Components with larger variance are more infor-

mative.Consider the base case d− = 1. Let u ∈ Rd with ∥u∥ = 1, we project onto
u by inner product,

x 7→ u⊤x.

The sample mean of the reduced dataset is computed by

1
n

n

∑
i=1

u⊤xi = u⊤ x̄,

where x is the sample mean of the original dataset. Further, the sample
variance of the reduced dataset is

1
n

n

∑
i=1

(
u⊤xi − u⊤ x̄

)2
=

1
n

n

∑
i=1

u⊤(xi − x̄)(xi − x̄)⊤u

= u⊤
(

1
n

n

∑
i=1

(x − x̄)(x − x̄)⊤
)

u

= u⊤Σu,

where Σ is the covariance matrix of the dataset. Since we want the pro-
jection that preserves the maximum variance, we have the following
objective,

u⋆ ∈ argmax
∥u∥=1

u⊤Σu.

advanced machine learning 3

The Lagrangian of this problem is

L(u; λ) = u⊤Σu + λ
(

1 − ∥u∥2
)

with gradient
∂L(u; λ)

∂u
= 2Σu − 2λu !

= 0.

So, u must satisfy Σu = λu—u is an eigenvector of Σ. It is easy to see
that this must be the principal eigenvector by rewriting the objective,

u⋆ ∈ argmax
∥u∥=1

u⊤Σu

= argmax
∥u∥=1

(u,λ)∈eig(Σ)

λ∥u∥2

= argmax
u∈Rd

(u,λ)∈eig(Σ)

λ

= u1.

For d− > 1, the remaining principal components can be computed with
a similar idea. Iteratively, we factor out the previous principal compo-
nents and do as above on the transformed dataset. For example, to get
the second principal component, we first factor out the first principal
component,

X1
.
= {x − proju1

(x) | x ∈ X} = {x − u⊤
1 x · u1 | x ∈ X}.

Then, we do the same as above.

Gaussian mixture model. The probability density function (PDF) of a
Gaussian mixture model with k components is formalized as a convex
combination of Gaussians,

p(x; θ) =
k

∑
j=1

πjN (x; µj, Σj).

The parameters of this model are

θ = {πj, µj, Σj | j ∈ [k]},

where ∑k
j=1 πj = 1 and {Σj | j ∈ [k]} are positive definite. We fit the

parameters of this model by maximizing the log-likelihood,

θ⋆ ∈ argmax
θ∈Θ

log p({x1, . . . , xn}; θ)

= argmax
θ∈Θ

n

∑
i=1

log p(xi; θ)

= argmax
θ∈Θ

n

∑
i=1

log
k

∑
j=1

πjN (xi; µj, Σj).

advanced machine learning 4

1: Initialize θ0

2: for t ∈ [T] do
3: q⋆ ∈ argminq E(q, θt−1)

4: θt ∈ argmaxθ M(q⋆, θ)

5: end for
6: return θT

Algorithm 1. The expectation-maximization algo-
rithm, where

M(q, θ)
.
= Ez∼q

[
log

p(X, z; θ)

q(z)

]

E(q, θ)
.
= Ez∼q

[
log

q(z)
p(z | X; θ)

]
.

Note that the above is intractable, so we would like to decompose it
into tractable terms that can be computed. Let’s assume that we know
from which latent variable each data point was generated, then we can
compute the MLE of the extended dataset {(xi, zi) | i ∈ [n]} as

log p(X, z; θ) =
n

∑
i=1

log p(xi, zi)

=
n

∑
i=1

log(πziN (xi; µzi , Σzi))

=
n

∑
i=1

log πzi +
n

∑
i=1

logN (xi; µzi , Σzi),

which is tractable to maximize. Let q be a distribution over [k], then we
can rewrite the log-likelihood into tractable terms,

log p(X; θ) = Ez∼q[log p(X; θ)]

= Ez∼q

[
log
(

p(X, z; θ)

p(z | X; θ)

)]

= Ez∼q

[
log
(

p(X, z; θ)

p(z | X; θ)

q(z)
q(z)

)]

= Ez∼q

[
log

p(X, z; θ)

q(z)

]

︸ ︷︷ ︸.
=M(q,θ)

+Ez∼q

[
log

q(z)
p(z | X; θ)

]

︸ ︷︷ ︸.
=E(q,θ)

.

These terms have the following two properties,

log p(X; θ) ≥ M(q, θ), ∀q, θ

log p(X; θ) = M(q⋆, θ), q⋆ = p(· | X; θ), ∀θ.

Hence, we can use M(q⋆, θ) as an approximation of log p(X; θ) around
θ.

Theorem 2.1 (EM algorithm convergence). Using the expectation-
maximization algorithm, {log p(x; θt)}T

t=0 is non-decreasing.

Proof. Given a data point x and current parameters θ, we have the fol-
lowing update,

θ′ ∈ argmax
θ∈Θ

M(q⋆, θ).

advanced machine learning 5

Hence, we have

log p(x) = M(q⋆, θ) ≤ M(q⋆, θ′) ≤ log p(x; θ′).

Thus, {log p(x; θt)}T
t=0 is non-decreasing. ■

Summary. In conclusion, given a set of data points X with normal points
N ⊆ X , we train an anomaly detector as follows,

1. Fit a projector π : Rd → Rd− using PCA;

2. Fit a probability density function p(· | θ) with k components to {π(x) |
x ∈ X} using the EM algorithm;

3. For a point x ∈ X , its “anomaly score” is computed by − log p(π(x); θ).

advanced machine learning 6

3 Density estimation

In this section, we will consider parametric models,

{p(x; θ) | θ ∈ Θ}.

The problem we concern ourselves with is finding the best parameter θ.
The most common method of finding the best parameters is maximum
likelihood estimation (MLE),

θ̂MLE ∈ argmax
θ∈Θ

n

∏
i=1

p(xi; θ)

= argmin
θ∈Θ

−
n

∑
i=1

log p(xi; θ).

The following properties makes the MLE estimator attractive,

1. Consistency—in the limit of n, θ̂MLE converges to the true parameter
θ⋆;

2. Equivariance—if θ̂ is the MLE of θ, then g
(
θ̂
)

is the MLE of g(θ) for
any function g;

3. Asymptotically normal—in the limit of n, θ̂MLE−θ/√
n converges to a

random variable with distribution N (0, I(θ)−1), where I is the Fisher
information matrix;

4. Asymptotically efficient—in the limit of n, the MLE estimator has the
smallest variance of all unbiased estimators.

We can understand the asymptotic efficiency (property 4) of estima-
tors better by the Rao–Cramér bound, which provides a bound on the
variance of the estimator. We will only consider the general scalar case,
but it generalizes to the multivariate case.

Theorem 3.1 (Rao–Cramér bound (scalar case)). For any (scalar) un-
biased estimator θ̂ : Yn → R, given n data points, of θ ∈ R, we have
the following bound on its variance,

Var
[
θ̂(y)

]
≥

(
∂
∂θ bθ̂ + 1

)2

In(θ)
+ b2

θ̂
,

where In(θ) is the Fisher information,

In(θ)
.
= Ey|θ

[(
∂

∂θ
log p(y | θ)

)2
]

iid
= n · I(θ),

and bθ̂ is the bias of θ̂,

bθ̂
.
= Ey|θ

[
θ̂(y)

]
− θ.

advanced machine learning 7

Proof. Let the “score” be defined as follows,

Λ(y, θ)
.
=

∂

∂θ
log p(y | θ) =

1
p(y | θ)

∂

∂θ
p(y | θ). Then we have In(θ) = Ey|θ

[
Λ(y, θ)2].

The expected score is equal to zero,

Ey|θ [Λ(y, θ)] =
∫

p(y | θ)Λ(y, θ)dy

=
∫

∂

∂θ
p(y | θ)dy

=
∂

∂θ

∫
p(y | θ)dy

=
∂

∂θ
1

= 0.

(Hence, the Fisher information is equivalent to the variance of the score.)
Furthermore, the cross-correlation between Λ(y, θ) and θ̂(y) can be com-
puted as

Covy|θ
(
Λ(y, θ), θ̂(y)

)
= Ey|θ

[
(Λ(y, θ)− E[Λ(y, θ)])

(
θ̂(y)− E

[
θ̂(y)

])]

= Ey|θ
[
Λ(y, θ)θ̂(y)

]
− Ey|θ [Λ(y, θ)]Ey|θ

[
θ̂(y)

]

= Ey|θ
[
Λ(y, θ)θ̂(y)

]

=
∫

p(y | θ)Λ(y, θ)θ̂(y)dy

=
∫

∂

∂θ
p(y | θ)θ̂(y)dy

=
∂

∂θ

∫
p(y | θ)θ̂(y)dy

=
∂

∂θ

(
Ey|θ

[
θ̂(y)

]
− θ
)
+ 1

=
∂

∂θ
bθ̂ + 1.

Using the Cauchy-Schwarz inequality, we have the following bound,

Covy|θ
(
Λ(y, θ), θ̂(y)

)2
=
(

Ey|θ
[
Λ(y, θ)

(
θ̂(y)− E

[
θ̂(y)

])])2

(
∂

∂θ
bθ̂ + 1

)2
≤ Ey|θ

[
Λ(y, θ)2

]
· Ey|θ

[(
θ̂(y)− E

[
θ̂(y)

])2
]

= In(θ) · Ey|θ
[(

θ̂(y)− θ − E
[
θ̂(y) + θ

])2
]

= In(θ) ·
(

Ey|θ
[(

θ̂(y)− θ
)2
]
+
(

Ey|θ
[
θ̂
]
− θ
)2

− 2Ey|θ
[
θ̂(y)− θ

]2)

≤ In(θ) ·
(

Ey|θ
[(

θ̂(y)− θ
)2
]
− b2

θ̂

)
.

Re-arranging yields

Ey|θ
[(

θ̂(y)− θ
)2
]
≥

(
∂
∂θ bθ̂ + 1

)2

In(θ)
+ b2

θ̂
.

■

advanced machine learning 8

Note the trade-off between variance and bias. If ∂
∂θ bθ̂ < 0, then the

variance might be smaller than the variance of the best unbiased estima-
tor.

Corollary. Let θ̂ be an unbiased estimator—i.e., bθ̂ = 0—then

Var
[
θ̂(y)

]
≥ 1

In(θ)
.

Lemma 3.2. The maximum likelihood estimator θ̂ML is asymptoti-
cally efficient,

lim
n→∞

Var
[
θ̂ML

]
=

1
In(θ)

.

However, the MLE estimator is not necessarily efficient for finite sam-
ples.

advanced machine learning 9

4 Regression

In regression, we try to estimate a function f : Rd → R that best fits a
given dataset {(xi, yi)}n

i=1 ⊆ Rd × R. I.e., we try to minimize the follow-
ing loss function,

ℓ(β) =
1
n

n

∑
i=1

∥ f (xi)− yi∥2.

4.1 Linear regression

In linear regression, we assume the underlying data to be linear with a
fixed noise,

Y | X = x ∼ N
(

β⊤
⋆ x, σ2

)

for some ground truth β⋆. We parametrize f as a linear function,

f (x; β) = β⊤x.

Under these assumptions, the minimizer of the loss function is analyti-
cally tractable—the ordinary least squares estimator (OLSE),

β̂ =
(

X⊤X
)−1

X⊤y,

where X ∈ Rd×n is the design matrix with respective outputs y ∈ Rn.

In practice, it is important to remove outliers, because linear models
can be heavily influenced by them. Also, the data should be standardized,
such that all features are on the same scale, because differences in scale
can make matrix inversion unstable.

TODO: Curse of dimensionality [Sur and Candès, 2019], Figures 4.1
and 4.2.

0 10 20

−40

−20

0

20

40

i

β
i

Figure 4.1. β⋆ is shown as black marks and β̂ is
indicated by the marks. As can be seen, β̂ is overes-
timated for indices where β⋆

i ̸= 0.

0 0.5 1

0

0.5

1

σ
(

β⊤
⋆ x
)

σ
(β̂

⊤
x)

Figure 4.2. True vs. predicted probability—the esti-
mator is overconfident in its predictions.

Further, if features are collinear, then the model might only learn the
correlation with the target variable of one of them and discard the other.
In addition, some singular values will equal zero. This makes matrix
inversion unstable. This can easily be shown by considering the singular
value decomposition X = UDV⊤, then

β̂ =
(

X⊤X
)−1

X⊤y

=
(

V D⊤U⊤UDV⊤
)−1

V D⊤U⊤y

=
(

V D⊤DV⊤
)−1

V D⊤U⊤y

= V
(

D−1
)⊤

D−1V⊤V D⊤U⊤y

= V
(

D−1
)⊤

D−1D⊤U⊤y

= V D−1U⊤y.

The inversion of D is unstable if the singular values are small. The solu-
tion to this is to remove collinear features and/or to add regularization.

advanced machine learning 10

Consider the mean-squared error loss. The risk (expected loss) can be
decomposed as follows into bias, variance, and noise terms,

E
[
(f (x)− y)2

]
= (E[f (x)]− E[y])2

︸ ︷︷ ︸
squared bias

+Var[f (x)]︸ ︷︷ ︸
variance

+E
[
(E[y]− y)2

]

︸ ︷︷ ︸
noise

.

The OLSE is the minimum variance unbiased estimator.2 However, this 2 This is proven by the Gauss-Markov theorem.

does not mean it is the best, because introducing some bias may con-
siderably decrease the variance. Bayesianism adds bias by introducing a
prior—priors often induce a regularizing term.3 3 E.g., a Gaussian prior induces an ℓ2-norm regular-

izing term.

4.2 Polynomial regression

In polynomial regression, we construct a feature function of all possible
polynomials, e.g.,

ϕ([x1, x2]) = [1, x1, x2, x2
1, x1x2, x2

2, x3
1, x2

1x2, . . .].

We then perform linear regression in this space,

ψ(x; β) = ⟨β, ϕ(x)⟩.

The problem is that this space is infinitely dimensional, and the inner
product is ill-defined in an infinitely dimensional space.4 We can solve 4 This is due to ⟨ϕ(x), ϕ(x′)⟩ = ∞ for some x, x′,

e.g., x = x′ = [1, 1].this by transforming the vector such that inner products cannot diverge
by introducing a data-dependent scalar,

ϕ(x) = α(x) · ϕ̃(x), α(x) > 0. ϕ̃ contains all polynomials in this equation.

An inner product w.r.t. this feature function is a valid inner product.
Such transformations can have a closed form for the inner product, called
kernelization. Commonly, the radial basis function (RBF) kernel is used,

⟨ϕ(x), ϕ(x′)⟩ = exp
(
−∥x − x′∥2

2σ2

)
, σ ∈ R.

Let Φ ∈ Rn×∞ contain all feature vectors, then the OLSE for polynomial
regression can be computed by

β̂ =
(

Φ⊤Φ
)−1

Φ⊤y, Φ ∈ Rn×∞.

However, Φ⊤Φ cannot be computed, because it is ∞ × ∞-dimensional.
We can fix this by observing that ΦΦ⊤ ∈ Rn×n and rewriting the OLSE
as

β̂ =
(

Φ⊤Φ
)−1

Φ⊤y

=
(

Φ⊤Φ
)−1

Φ⊤
(

ΦΦ⊤
)(

ΦΦ⊤
)−1

y

=
(

Φ⊤Φ
)−1

Φ⊤ΦΦ⊤
(

ΦΦ⊤
)−1

y

= Φ⊤
(

ΦΦ⊤
)−1

y.

advanced machine learning 11

Let K = ΦΦ⊤, then it only contains kernel evaluations—kij = ⟨ϕ(xi), ϕ(xj)⟩.
The next problem is that Φ⊤ is still infinitely dimensional. However, this
is not a problem, since when we want to make a prediction, we do the
following,

ψ(x̂) = ⟨ϕ(x̂), β̂⟩
= ϕ(x̂)⊤Φ⊤K−1y.

Let k(x̂) = ϕ(x̂)⊤Φ⊤, then it only contains kernel evaluations with the
new point—ki(x̂) = ⟨ϕ(x̂), ϕ(xi)⟩. In conclusion, we can make predic-
tions by

ψ(x̂) = k(x̂)K−1y, k(x̂) ∈ R1×n, K ∈ Rn×n, y ∈ Rn.

However, the problem with this approach is that it takes O(n3) to make
a prediction—it scales in the amount of data points.

4.3 Regularization

TODO: Ridge regression—ℓ2-norm.

TODO: LASSO—ℓ1-norm induces sparsity. Better interpretability prop-
erties.

TODO: Figure showing coefficient weights under different regulariza-
tion factors.

advanced machine learning 12

5 Causality

In general, models do not distinguish between causal and non-causal fac-
tors in the feature space. Therefore, they might identify non-causal factors
as highly correlating with the output variable. E.g., when classifying im-
ages as either depicting a cow or a camel, the model might identify the
background as an important feature, because cows are usually in grass
and camels are usually in the desert. However, if this classifier were to
see a cow with a different background, it would fail.

The following are examples of causal fallacies, where one might con-
clude that X causes Y,

• Reverse causality, where Y actually predicts X and not the other way
around;

• Third-cause fallacy, where there is a confounding factor Z that influ-
ences both X and Y;

• Bidirectional causation, where X influence each other;

A domain shift happens when the test samples are drawn from a
different distribution than the training samples. E.g., COVID-19 detection
models trained on a western population might not perform well on an
eastern population.

Shortcut learning happens when there is a spurious correlation be-
tween causal and non-causal features in the training dataset. The result-
ing estimator abuses the non-causal features to generalize in the testing
dataset. The solution to this is to encode the features such that they do
not depend on the environment.

5.1 Counterfactual invariance

W

Y

XW⊥

XW∩Y

XY⊥

X

Figure 5.1. Causal graph.

W

Y

XW⊥

XW∩Y

XY⊥

X

Figure 5.2. Anti-causal graph.

Let X be the feature vector representing the object and let Y be a target
variable of interest, and let f be the function that estimates Y from X.
Further, let W describe features that influence X, but should not influence
the estimator f . Let a counterfactual be denoted as X(w), which is the
feature vector we would have obtained if we would have had W = w,
after the fact. Then, the estimator f is counterfactually invariant if

f (X(w)) = f (X(w′)), ∀w, w′ ∈ range(W).

In words, f is not influenced by the value of W . One way of obtaining a
counterfactually invariant estimator is by extending the training dataset
to contain enough counterfactuals. This can, for example, be achieved by
data augmentation. However, this is not always possible.

Let XA be the parts of X causally influenced by A, and let A⊥ be the
set of variables independent of A. Then, f is counterfactually invariant
if and only if f only depends on XW⊥ .

advanced machine learning 13

Theorem 5.1 (Necessary conditions for counterfactual invariance
[Veitch et al., 2021]). If f is a counterfactually invariant predictor,
then

• In the anti-causal scenario, f (X) ⊥ W | Y;

• In the causal scenario without selection (but possibly confounded),
f (X) ⊥ W ;

• In the causal scenario without confoundedness (but possibly with
selection), f (X) ⊥ W | Y, as long as X ⊥ Y | XW⊥ , W .

Proof. This can be proven by using d-separation. ■

advanced machine learning 14

6 Gaussian processes

Let the inputs be X ∈ Rn×d, the outputs be y ∈ Rn, and the weight
matrix be β ∈ Rd, then linear regression models the generative process
as

y = Xβ + ϵ, ϵ ∼ N
(

0, σ2 I
)

.

This is equivalent to defining a Gaussian over the predictions,

y | X, β ∼ N
(

Xβ, σ2 I
)

.

BLR (Bayesian Linear Regression) extends linear regression by defining a
prior over the regression coefficients,

β ∼ N
(

0, Λ−1
)

, Λ ∈ Rd×d.

The posterior can be analytically computed as

β | X, y ∼ N (µ, Σ),

where
µ =

1
σ2 ΣX⊤y, Σ = σ2

(
X⊤X + σ2Λ

)−1
.

Proof.

p(β | X, y) ∝ p(y | X, β) · p(β) Bayes’ rule.

= N
(

y; Xβ, σ2 I
)
· N
(

β; 0, Λ−1
)

∝ exp
(
−1

2

(
1
σ2 ∥y − Xβ∥2 + β⊤Λβ

))

= exp
(
−1

2

(
1
σ2

(
∥y∥2 + ∥Xβ∥2 − 2y⊤Xβ

)
+ β⊤Λβ

))
Cosine theorem.

= exp
(
−1

2

(
1
σ2 y⊤y +

1
σ2 β⊤X⊤Xβ − 2

σ2 y⊤Xβ + β⊤Λβ

))

= exp
(
−1

2

(
β⊤
(

1
σ2 X⊤X + Λ

)
β − 2

σ2 y⊤Xβ +
1
σ2 y⊤y

))

= exp
(
−1

2

(
β⊤Σ−1β − 1

σ2 β⊤X⊤y − 1
σ2 y⊤Xβ +

1
σ2 y⊤y

))

= exp
(
−1

2

(
β⊤Σ−1

(
β − 1

σ2 ΣX⊤y
)
− 1

σ2 y⊤X
(

β − 1
σ2 ΣX⊤y

)))

= exp
(
−1

2

((
β − 1

σ2 ΣX⊤y
)

Σ−1
(

β − 1
σ2 ΣX⊤y

)))

∝ N
(

β;
1
σ2 ΣX⊤y, Σ

)
.

■

In general, we do not know the true weights that generated the data
points. But, we can now define a joint distribution over output variables
with unknown weights,

y | X ∼ N
(

0, XΛ−1X⊤ + σ2 I
)

.

advanced machine learning 15

Proof. As we saw earlier, we compute outputs as follows,

y = Xβ + ϵ, ϵ ∼ N
(

0, σ2 I
)

.

However, now the weights are unknown, so we make use of its prior to
compute the distribution over y,

E[y] = E[Xβ + ϵ]

= XE[β] + E[ϵ]

= 0.

Cov[y] = E
[
(Xβ + ϵ)(Xβ + ϵ)⊤

]

= E
[

Xββ⊤X⊤
]
+ E

[
Xβϵ⊤

]
+ E

[
ϵβ⊤X⊤

]
+ E

[
ϵϵ⊤

]

= XE
[

ββ⊤
]

X⊤ + XE[β]E
[
ϵ⊤
]
+ E[ϵ]E

[
β⊤
]

X⊤ + σ2 I β and ϵ are independent.

= XΛ−1X⊤ + σ2 I.

■

GPs (Gaussian Processes) generalize BLR by observing that we can
kernelize the covariance matrix,

k(xi, xj) = x⊤i Λ−1xj.

We could instead use any other kernel function to model other functions.

6.1 Kernels

Kernel functions specify the similarity between any two data points. They
encode assumptions about the function that is to be learned.

Definition 6.1 (Kernel function). A kernel function k : X ×X → R

over X ⊂ R must satisfy the following properties,

k(x, x′) = k(x′, x) Symmetry.
∫

k(x, x′) f (x) f (x′)dxdx′ ≥ 0, ∀ f ∈ L2. Positive semi-definiteness.

Definition 6.2 (Stationary and isotropic). A kernel k(x, x′) is station-
ary if it only depends on x − x′. Further, it is isotropic if it only
depends on ∥x − x′∥2.

The following are common kernels,

k(x, x′) = x⊤x′ Linear kernel.

k(x, x′) =
(

x⊤x′ + 1
)p

, p ∈ N Polynomial kernel.

k(x, x′) = exp

(
−∥x − x′∥2

2
ℓ2

)
, ℓ ∈ R RBF (Radial Basis Function) kernel.

k(x, x′) = tanh
(

κx⊤x′
)
− b, κ, b ∈ R Sigmoid kernel.

advanced machine learning 16

Different kernels have different invariance properties, such as invariance
to rotation or translation. In order to learn invariances from data, many
samples are needed. So, it might be better to encode them if we know
them a priori.

Given two kernel functions k1, k2 defined on the same data space and
positive scalar c > 0, the following are also valid kernels,

k(x, x′) = k1(x, x′) + k2(x, x′)

k(x, x′) = k1(x, x′) · k2(x, x′)

k(x, x′) = c · k1(x, x′)

k(x, x′) = exp(k1(x, x′)).

In practice, the kernels are often composed together and hyperparame-
ters are determined by performance on a held out validation dataset.

6.2 Prediction

As we saw earlier in the case of BLR, the marginal is jointly Gaussian,
[

y
y⋆

]
| X, x⋆ ∼ N

(
0,

[
K + σ2 I k(X, x⋆)
k(x⋆, X) k(x⋆, x⋆)

])
.

Theorem 6.3 (Conditional Gaussian distribution). Given
[

x1

x2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
.

Then, the conditional Gaussian is given by

x2 | x1 = z ∼ N
(

µ2 + Σ21Σ−1
11 (z − µ1), Σ22 − Σ21Σ−1

11 Σ12

)
.

0 2 4 6 8 10

−5

0

5

10

Observations
GP mean

f (x) = x · sin(x)

Figure 6.1. Fitted Gaussian process (RBF kernel,
ℓ = 1.86) with its 95% confidence interval.

Using the above theorem, we can easily compute the predictive distri-
bution,

y⋆ | x⋆, X, y ∼ N
(

k⊤
(

K + σ2 I
)−1

y, c − k⊤
(

K + σ2 I
)−1

k
)

,

where
K = K(X, X), k = k(X, x⋆), c = k(x⋆, x⋆).

Now, we can compute a prediction along with its uncertainty. However,
the problem with this approach is that it has O

(
n3) runtime.

advanced machine learning 17

7 Uncertainty quantification

TODO

7.1 Statistical model validation

TODO

7.2 Bayesian neural networks

TODO

7.3 Transductive active learning

TODO

advanced machine learning 18

8 Convex optimization

TODO

8.1 Support vector machine

TODO

advanced machine learning 19

9 Ensembles

TODO

9.1 Bagging

TODO

9.2 Random forests

TODO

9.3 AdaBoost

TODO

advanced machine learning 20

10 Stable diffusion

xt, t ϵ

Convolution
Cross-attention

c Figure 10.1. Architecture of stable diffusion.

10.1 Diffusion models

An SDE (Stochastic Differential Equation) is a differential equation in which
one or more terms is a stochastic process, resulting in a solution that is
also stochastic. Typically, the SDE of a diffusion process is of the follow-
ing form,

dXt = µ(Xt, t)dt + σ(Xt, t)dWt,

where Wt is a Wiener process (or Brownian motion). This equations
tells us that the change in Xt is driven by a deterministic factor µ(Xt, t)
and a stochastic factor σ(Xt, t)dWt. Note that µ(·, ·) and σ(·, ·) induce a
probability distribution over time, pt of Xt.

Anderson [1982] showed that the reverse SDE of the diffusion process
can be computed as follows,

dXt =
[
µ(Xt, t)− σ2(Xt, t)∇X log pt(Xt)

]
dt + σ(Xt, t)dW̄t,

where W̄t is a standard Wiener process when time flows backwards from
T to 0, and dt is an infinitesimal negative timestep.

Using the DDPM scheduler, diffusion models have the following for-
ward process,

xt+1 =
√

1 − βtxt +
√

βtϵ, ϵ ∼ N (0, I).

advanced machine learning 21

Conditioned on xt, we can reconstruct xt−1 as follows with a predicted
noise ϵθ,

xt−1 =
1√
αt

(
xt −

1 − αt√
1 − ᾱt

ϵθ(xt, t)
)
+
√

1 − αtz, z ∼ N (0, I), (1)

where αt = 1− βt and ᾱt = ∏t
τ=1 αt. Thus, we need to learn this function.

It can be shown that a diffusion model with the DDPM scheduler is
an approximation of a discretization of the following SDE,

dxt = −1
2

βtxtdt +
√

βtdwt. Drift term µ(xt, t) .
= − 1

2 βtxt; diffusion term

σ(t) .
=
√

βt. dwt is a Gaussian with variance dt.
We can show that this approximates the diffusion
model by discretizing,

xt+1 − xt = − 1
2

βtxt +
√

βtϵ, ϵ ∼ N (0, I)

xt+1 =

(
1 − 1

2
βt

)
xt +

√
βtϵ

≈
√

1 − βtxt +
√

βtϵ.

The reverse process is thus given by the following reverse SDE,

dxt =

[
−1

2
βtxt − βt∇xt log p(xt)

]
dt +

√
βtdw̃t.

In practice, we train a diffusion model by randomly sampling x0 ∼
p0, t ∼ Unif([T]), ϵ ∼ N (0, I) and performing a gradient step on the
following loss function,

ℓ =
∥∥∥ϵ − ϵθ

(√
1 − βtx0 +

√
βtϵ
)∥∥∥

2
.

We can sample by iteratively denoising using Equation (1), starting from
xT ∼ N (0, I).

10.2 U-net

U-nets [Ronneberger et al., 2015] are models used for image-to-image
translation tasks. In the case of diffusion models, we have such a task,
where we get xt as input and want to predict ϵ. This framework is used
to model ϵθ. U-nets work by downsampling the input in stages and then
upsampling back to the original space in the same stages. At every step
of upsampling, the output of the corresponding downsampling step is
concatenated to its input. In this way, we get low-level and high-level
information.

10.3 Latent diffusion models

Stable diffusion [Rombach et al., 2022] performs diffusion modeling in
the latent space of a pretrained VAE [Kingma, 2013]. During training, we
thus first map the input image x0 ∈ Rd to its latent encoding,

z0 = E(x0), z0 ∈ Rd′ , d′ ≪ d.

Then, we use the same loss function as above, where we sample a random
timestep and noise,

ℓ =
∥∥∥ϵ − ϵθ

(√
1 − βtz0 +

√
βtϵ
)∥∥∥

2
, ϵ ∼ N (0, Id′).

advanced machine learning 22

Then, during inference, we sample a noise vector in the latent space
zT ∼ N (0, Id′) and denoise using Equation (1) to get z̃0. Lastly, we
decode the latent vector back into pixel space,

x̃0 = D(z̃0).

This process requires a well-behaving latent space, so the regularization
term that the VAE framework places on the latent space is very important.

10.4 Text embeddings

In order to perform text-to-image generation, we will need a continuous
high-dimensional representation of the input text. For this, we use CLIP
[Radford et al., 2021]. CLIP trains image and text transformer models
to align text-image pairs. Because of this, they contain more semantic
embeddings than other methods of training models to obtain text em-
beddings. Given a text input sequence of size Tc, the CLIP text model
returns a sequence of embeddings,

C ∈ RTc×dc . We denote this matrix by C, because we use it for
conditioning.

This sequence is contextualized, because CLIP makes use of self-attention.

10.5 Cross-attention

Now the question becomes how to condition a U-net on the input text
sequence C ∈ RTc×dc . Stable diffusion [Rombach et al., 2022] does this by
making use of cross-attention blocks, which it places at the end of every
downsampling stage of the U-net. It first rearranges the output of the
downsampling block into timesteps,

X ∈ RT×d.

Then, it computes queries from X, and keys and values from C,

Q = XWQ, WQ ∈ Rdk×d

K = CWK, WK ∈ Rdk×dc

V = CWV , WV ∈ Rdv×dc .

It uses these to perform the attention mechanism with a residual connec-
tion,

Ξ = X + softmax

(
QK⊤
√

dk

)
V ,

where Ξ denotes the conditioned representation of X. Note that this
architecture is agnostic to the type of the condition. As long as we can
embed the conditioning variable, we can condition on it in this way—e.g.,
we can additionally condition on images [Ye et al., 2023].

advanced machine learning 23

References

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic
Processes and their Applications, 12(3):313–326, 1982.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel
Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela
Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine
learning, pages 8748–8763. PMLR, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. High-resolution image synthesis with latent diffusion
models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Medical image
computing and computer-assisted intervention–MICCAI 2015: 18th interna-
tional conference, Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015.

Pragya Sur and Emmanuel J Candès. A modern maximum-likelihood
theory for high-dimensional logistic regression. Proceedings of the Na-
tional Academy of Sciences, 116(29):14516–14525, 2019.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein.
Counterfactual invariance to spurious correlations in text classification.
Advances in neural information processing systems, 34:16196–16208, 2021.

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text
compatible image prompt adapter for text-to-image diffusion models.
arXiv preprint arXiv:2308.06721, 2023.

	Paradigms of data science
	Anomaly detection
	Density estimation
	Regression
	Causality
	Gaussian processes
	Uncertainty quantification
	Convex optimization
	Ensembles
	Stable diffusion

