
JUSTIFY EVERY STEP IN DERIVATIONS!

Projection: projb(a) =
a⊤b
∥b∥2 b.

Cholesky decomp: If A is PD, then ∃L s.t. A = L⊤L.

Geometric series: ∑∞
k=0 ark = a/1−r if |r| < 1.

1− x ≤ exp(−x) =⇒ (1− ϵ)n ≤ exp(−nϵ).
limn→∞(1− 1/n)n = 1/e ≈ 0.368.
exp(x) = ∑∞

n=0 xn/n!.
Cov(x, y) = E[(x −E[x])(y −E[y])⊤] = E[xx⊤]−E[x]E[x]⊤.

Information theory:

H(p) = Ep[− log p(X)]

DKL(p ∥ q) = Ep[log p(X)/q(X)]

H(p, q) = Ep[− log q(X)] = H(p) + DKL(p ∥ q)

I(X; Y) = E[log p(X,Y)/p(X)p(Y)] = H(X)− H(X | Y).

Gaussian:
(2π)−n/2|Σ|−1/2 exp

(
− 1

2 (x − µ)⊤Σ−1(x − µ)
)

.

Conditional: If
[x1
x2

]
∼ N

([
µ1
µ2

]
,
[
Σ11 Σ12
Σ21 Σ22

])
.

Then: x2 | x1 = z ∼ N (µ̄, Σ̄), where µ̄ =

µ2 + Σ21Σ−1
11 (z − µ1) and Σ̄ = Σ22 − Σ21Σ−1

11 Σ12.
Information theory:

DKL =
1
2

[
log

|Σ2|
|Σ1|

− d + tr(Σ−1
2 Σ1) + (µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1)

]
H =

d
2

log(2πe) +
1
2

log |Σ|.

Paradigms of data science
Frequentism (optimize likelihood, MLE):
θ⋆ ∈ argmaxθ∈Θ ∑n

i=1 log p(xi | θ).
Bayesianism (optimize posterior, MAP):
θ⋆ ∈ argmaxθ∈Θ log p(θ) + ∑n

i=1 log p(xi | θ).
Statistical learning (optimize risk):
f ⋆ ∈ argmax f∈F R( f ) .

= EX,Y[ℓ(Y, f (X))]

f̂n ∈ argmax f∈F R̂n( f ) .
= 1

n ∑n
i=1 ℓ(yi, f (xi)).

Anomaly detection

Objects X ⊆ Rd with normal class N ⊆ X . Con-
struct ϕ : X → {0, 1} such that ϕ(x) = 1{x ̸∈ N}.
Anomaly is an “unlikely event” ⇒ Fit distribu-
tion to X and score according to p(x).
PCA: Proj. X to low-dim. ⇒ Π(N ) is simpler.

Linearly project Rd to Rd− such that maximum
variance is preserved.
■ Base case d− = 1: Find u with ∥u∥ = 1 s.t.
x 7→ u⊤x. Sample mean and variance of reduced
dataset: E[u⊤x] = u⊤E[x] and V[u⊤x] =
u⊤Cov(x)u. We want maximum variance so we
have: u⋆ ∈ argmax∥u∥=1 u⊤Cov(x)u. Solvable by
vanishing Lag. grad. Easy to find that u⋆ is eigen-
vector with maximum eigenvalue. Then project it
out (X1 = {x − proju1

(x)} = {x − u⊤1 x · u1}) and
do the same for next dimension
GMM: Lin. proj. onto low-dim. spaces resemble
Gaussian dist. ⇒ Fit GMM to Π(X ).

Fit p(x; θ) = ∑k
j=1 πjN (x; µj, Σj) to data with EM

algorithm. Can derive log p(X; θ) = M(q, θ) +
E(q, θ), where M(q, θ)

.
= Eq[log p(X,z;θ)/q(z)]

and E(q, θ)
.
= Eq[log q(z)/p(z|X;θ)]. Properties:

log p(X; θ) ≥ M(q, θ) and log p(X; θ) = M(q⋆, θ)
where q⋆ = p(· | X; θ). Alg.: Iteratively q⋆ ∈
argminq E(q, θt−1) and θt ∈ argmaxθ M(q⋆, θ).
These can be done in closed form for GMM.
Density estimation

MLE properties: (1) Consistency: limn→∞ θ̂MLE
n = θ;

(2) Equivariance: If θ̂ is the MLE of θ, then g(θ̂) is
the MLE of g(θ); (3) Asymptotically normal: In the
limit of n, θ̂−θ/√n converges to N (0,I(θ)−1); (4)
Asymptotically efficient: In the limit of n, MLE has
smallest variance among unbiased estimators.

Rao-Cramér bound: For any unbiased estimator:

V[θ̂(y)] ≥
( ∂

∂θ bθ̂ + 1)2

In(θ)
+ b2

θ̂
,

where In(θ)
.
= Ey|θ[(

∂
∂θ log p(y | θ))2] and

bθ̂
.
= Ey|θ[θ̂(y)]− θ. If unbiased: V[θ̂(y)] ≥ 1/In(θ).

And MLE: limn→∞ V[θ̂MLE(y)] = 1/In(θ).
■ Cov. Λ(θ, y) = ∂ log p(y|θ)

∂θ = 1
p(y|θ)

∂p(y|θ)
∂θ and

θ̂(y) is ∂bθ̂
∂θ + 1. Square, Cauchy-Schwarz, ±θ.

Regression

Minimize loss: ℓ( f ) = 1
n ∑n

i=1( f (xi)− yi)
2.

Linear regression: Assume Y | X = x ∼
N (β⊤

⋆ x, σ2). We parameterize f (x; β) = β⊤x.

OLSE: β̂ = (X⊤X)−1X⊤y s.t. X ∈ Rn×d, y ∈ Rn.
1. Remove outliers, because linear models are

heavily influenced by them;
2. Standardize data, because features on different

scales result in unstable matrix inversion;
3. “Curse of dimensionality”: In high dimension-

ality, logistic regression outputs overconfident
outputs, due to overestimation of weights;

4. Collinear data/features result in unstable
matrix inversion due to small eigenvalues.

E[( f̂ (X)−Y)2] = (E[ f̂ (X)]−E[y])2 +V[ f̂ (X)] +V[y].
■ Use Y = f (X) + ϵ and show E[ϵ2] = V[Y]
where E[ϵ] = 0 ⇒±E[ f̂ (X)] and finalize.

Gauss-Markov: V[a⊤β̂] ≤ V[a⊤β̃] for any a ∈ Rd

and β̃ = Cy for C ∈ Rd×n. (OLSE β̂ is unique
min.-var. unbiased linear estimator.) This does
not mean it is best, because adding some bias
may decrease variance considerably.
Regularization: Ridge: Gaussian prior β ∼ N (0, λI).
LASSO: Laplacian Gaussian β ∼ Lap(0, λI).
ℓ1 results in sparse weights (better interpretation)
and the sign of features remain.
Polynomial regression: Feature map with all
polynomials ϕ(x) and perform lin. reg. in this
space: ψ(x; β) = β⊤ϕ(x). Problem: Infinitely
dimensional ⇒ Ill-defined inner product. Solu-
tion: Fix by data-dependent scalar, specifically:
ϕ(x) = exp(−∥x∥2/2)

[
∏d

i=1 xαi
i /
√

∏d
i=1 αi!

]
α∈Nd .

⇒ RBF kernel: ⟨ϕ(x), ϕ(x′)⟩ = exp(−∥x−x′∥2/2).
Now compute OLSE in this space: β̂ =

(Φ⊤Φ)−1Φ⊤y, Φ ∈ Rn×∞. Problem: Can-
not compute Φ⊤Φ ∈ R∞×∞. Solution: Rewrite
OLSE: β̂ = Φ⊤(ΦΦ⊤)−1y. Prediction only
contains kernel evaluations: ψ(x) = k(x)⊤K−1y.
Problem: O

(
n3) runtime.

Causality
Causal fallacies where one might conclude X
causes Y: (1) Reverse causality: Y causes X; (2)
Third-cause fallacy: Z causes X and Y; (3) Bidirec-
tional causation: X causes Y and Y causes X.
Domain shift: Test samples are drawn from differ-
ent distribution than training set.
Shortcut learning: Spurious correlation between
causal and non-causal features in the training
depend on environment.

W

Y

XY⊥

XW∧Y

XW⊥

W

Y

XY⊥

XW∧Y

XW⊥

Anti-causal Causal

Necessary conditions for counterfactual invari-
ance (W must be d-separated from XW⊥): Anti-
causal: f (X) ⊥ W | Y. Causal without selection
(but possibly confounded): f (X) ⊥ W. Causal
without confounded (but possibly selection):
f (X) ⊥ W | Y as long as X ⊥ Y | XW⊥ , W.

Gaussian processes
Outputs are modeled as y = Xβ + ϵ, ϵ ∼ N (0, I).
Thus: y | X, β ∼ N

(
Xβ, σ2I

)
. BLR extends linear

reg. with prior on β: β ∼ N
(
0, Λ−1).

Posterior: β | X, y ∼ N (µ̃, Σ̃), where

µ̃ = − 1
σ2 Σ̃X⊤y and Σ̃ = σ2

(
X⊤X + σ2Λ

)−1
.

Joint distribution over outputs (using prior):

y | X ∼ N
(

0, XΛ−1X⊤ + σ2I
)

. Predic-

tion: y⋆ | x⋆, X, y ∼ N (µ⋆, Σ⋆), where µ⋆ =

k⊤(K + σ2I)−1y and Σ⋆ = k − k⊤(K + σ2I)−1k.
Problem: O

(
n3) runtime.

Kernels: Kernel k must satisfy symmetry and PSD:∫ ∫
f (x)k(x, x′) f (x′)dxdx′ ≥ 0, ∀ f ∈ L2. Or

there exists ϕ s.t. k(x, x′) = ϕ(x)⊤ϕ(x′).

Linear kernel: k(x, x′) = x⊤x′; Polynomial kernel:
k(x, x′) = (x⊤x′ + 1)p; RBF kernel: k(x, x′) =
exp(−∥x−x′∥2/ℓ2); Sigmoid kernel: tanh(κx⊤x′)− b.
If k1 and k2 are valid kernels and c > 0, then the
following are: k1 + k2, k1 · k2, c · k1, and exp◦k1.

Uncertainty quantification
Statistical model validation: Methods to evaluate
f̂ (or algorithm A) that is trained on data Z: Cross-
validation: Partition Z =

⋃K
k=1 Zk and produce K

estimators f̂−k from Z\Zk. Then estimate risk by
RCV(A) = 1

n ∑n
i=1 ℓ(yi f̂−k(i)(xi)), where k maps

i to the partition such that xi ∈ Zk(i).

Bootstrap: Used for measuring dist. over
stat. params. Draw B bootstrap samples ⇒
Compute parameter for each ⇒ Compute
statistics. Can also use for empirical risk:
R̂BS(A)

.
= 1

n·B ∑B
b=1 ∑n

i=1 ℓ(yi, f̂ ∗b(xi)).
Problem: Overly optimistic. Solution:
RBS(A)

.
= 1

n ∑n
i=1

1
|C−i| ∑b∈C−i ℓ(yi, f̂ ∗b(xi)).

Correct for optimism of R̂BS by combining with
RBS: R(0.632) = 0.368R̂BS + 0.632RBS.
Uncertainty in linear models: OLSE has distribution
over estimators: β̂ ∼ N (β⋆, σ2(X⊤X)−1). Unbi-
ased estimator of σ2: σ̂2 = 1

n−d ∑n
i=1(β̂

⊤xi − yi).
Then we have 1 − α confidence interval for β⋆j :

β̂j ± zα/2ϵ(β̂j), where zα/2 = Φ−1(α/2), Φ is stan-
dard Gaussian CDF, and ϵ(β̂j) = σ̂2(X⊤X)−1

jj .

Statistical testing: Null hypothesis: H0 : θ⋆ ∈ Θ.
Alternative hypothesis H1 : θ⋆ ∈ Θ. We are
given n samples x1, . . . , xn ∼ p(· | θ⋆) and a test
statistic t : X n → R. The goal is to find a critical
value c ∈ R such that P(t(X1, . . . , Xn) ≥ c | θ) is
low when θ ∈ Θ0 and high when θ ∈ Θ1.
We want to minimize the prob. of choos-
ing H1 when H0 holds (worst possible sit-
uation). We quantify this notion of risk as
αc

.
= supθ∈Θ0

P(t(x1, . . . , xn) ≥ c | θ). Prob-
lem: αc → 0 as c → ∞, so c⋆ → ∞ minimizes the
risk, but then we never accept H1. Solution: Run
test on realization t(x1, . . . , xn) and compute risk
of least risky critical value that would incorrectly
reject H0: p = infc∈R{αc | t(x1, . . . , xn) ≥ c}.
This is the p-value:
p .
= supθ∈Θ0

P(t(X1, . . . , Xn) ≥ t(x1, . . . , xn) | θ).
Intuition: Inverse prob. of x1:n being an outlier.
Wald: W = (θ̂−θ0)2/σ̂2; H0 : θ = θ0, H1 : θ ̸= θ0.
Bayesian neural networks: (S)GD only yields
single point estimate of weights ⇒ Define prior
θ ∼ N (0, σ2I) and likelihood p(Z | θ) =
∏x,y∈Z p(y | x, θ)⇒ Posterior with Bayes rule.
Problem: p(Z) is intractable. Solution: Varia-
tional inference with isotropic Gaussians and
find q⋆ ∈ argminµ,σ>0 DKL(N (µ, σ2I) ∥ p(θ |
Z)) = argminµ,σ>0 Eθ∼N [F(µ, σ, θ)], where

F(µ, σ, θ) = logN (θ; µ, σ2I) − log p(Z |

1



θ)− log p(θ). Then, we can apply SGD with the
following gradients:

∇µ = Eϵ[∇θF(µ, σ, θ) +∇µF(µ, σ, θ)]

∇σ = Eϵ[ϵ
⊤∇θF(µ, σ, θ)] +∇σF(µ, σ, θ)],

where ϵ ∼ N (0, I) and θ = µ + σϵ.
Information-based transductive learning: We are
given domain X that contains safe area S ⊆ X
and area of interest A ⊆ X . We have an un-
known f ⋆ that we want to explore within A, but
we can only query (noisy) observations in S:

yx = f ⋆(x) + ϵx, E[ϵx] = 0.
We are given a history of points Dn−1 and need
to compute which point will give the most
additional information. ITL selects the next
point as: xn ∈ argmaxx∈S I( fA; yx | Dn−1). If
f ∼ GP(µ, k), then

I( fA; yx | Dn−1) =
1
2

log
V[yx | Dn−1]

V[yx | fA,Dn−1]
.

■ Use entropy of Gaussian.

Convex optimization and SVMs

min f (x), s.t. gi(x) = 0, hj(x) ≤ 0.
where f and hj are convex and gi are affine.

Lagrangian: L(x, λ, α)
.
= f (x) + ∑n

i=1 λigi(x) +
∑m

j=1 αjhj(x). Lagrange dual function:
θ(λ, α)

.
= infx∈X L(x, λ, α).

Weak duality: Let x ∈ C, α ≥ 0, then θ(λ, α) ≤
f (x). Thus: maxλ,α≥0 θ(λ, α) ≤ minx∈C f (x).
If there is a Slater point (exists x ∈ C such
that hj(x) < 0 for all j) then strong duality:
maxλ,α≥0 θ(λ, α) = minx∈C f (x).
If all gi and hj are differentiable, KKT conditions
provide necessary (and sufficient for convex
programming) conditions for strong duality:

α⋆j hj(x
⋆) = 0, ∇xL(x⋆, λ⋆, α⋆) = 0.

Or, condition 2: x⋆ ∈ argminx∈X L(x, λ⋆, α⋆).
Support vector machine: We want to linearly sep-
arate a dataset with maximum margin ⇒ Model
as convex program with constraint for each data
point: f [w, b](x, y) = y(w⊤x + b) ≥ ϵ > 0.
Margin (x+ and x− are support vectors):

2 · m(w, b) = ∥projw(x+)− projw(x−)∥
= |w̄⊤(x+ − x−)|.

Ill-posed problem because infinite number of
solutions ⇒ Only one solution satisfies

w⊤x+ + b = 1, w⊤x− + b = −1.
Then, m(w, b) = 1/∥w∥:

min
1
2
∥w∥2, s.t. 1− yi

(
w⊤xi + b

)
≤ 0.

w⋆ = ∑n
i=1 α⋆i yixi, b⋆ = − 1

2

(
w⊤

⋆ x+ + w⊤
⋆ x−

)
,

where α⋆ is the dual solution.
SVM variations: Soft-margin uses slackness for non-
linearly separable data (C → ∞ ⇒ Hard SVM):

minimize
1
2
∥w∥2 +C ∑n

i=1 ξi

subject to yi

(
w⊤xi + b

)
≥ 1− ξi, ξi ≥ 0.

Solution: ξ⋆i = max
{

0, 1− yi

(
w⊤

⋆ xi + b⋆
)}

.

Or use kernels: w⊤
⋆ ϕ(x) = ∑n

i=1 α⋆i yik(xi, x).
We can generalize the margin notion to multi-
class by introducing weights wz per class. The
margin is defined as the maximum m ∈ R s.t.

m ≤
(

w⊤
zi

yi + bzi

)
−max

z̸=zi

{
w⊤

z yi + bz

}
.

New optimization problem:

min
1
2
∥w∥2 =

1
2 ∑k

z=1 ∥wz∥2

s.t.
(

w⊤
zi

yi + bzi

)
−max

z̸=zi

{
w⊤

z yi + bz

}
≥ 1.

Structural SVMs can have infinitely many classes.
So, we need to define a joint feature map ψ such
that fw(x, y) = w⊤ψ(x, y). This is used to per-
form classification: c(x) = argmaxy∈Y fw(x, y).

We need to construct an algorithm to efficiently
compute this argmax and an algorithm to com-
pute the max in the below optimization problem.
Some structures are closer than others ⇒ Intro-
duce a loss function ∆:

min
1
2
∥w∥2 s.t. w⊤ψ(xi, yi)

−max
y̸=yi

{
w⊤ψ(xi, y) + ∆(y, yi)

}
≥ 0.

Ensembles
Average B estimators into f̂ ⇒ avg. bias and:

V[ f̂ ] =
1

B2

B

∑
b=1

V[ f̂b] +
1

B2

B

∑
b=1

B

∑
b′ ̸=b

Cov( f̂b, f̂b′).

If the covariances are low, the variance is signifi-
cantly decreased while the bias remains the same.
Bagging: B times take a bootstrap sample and train
a classifier. This works well because covariances
are small due to using different subsets for train-
ing and the variances are similar because each
subsample behaves similarly on average.
Random forests do this with (very deep) decision
trees. Very deep because they have low bias and
high variance, which is reduced by ensembling.
AdaBoost: AdaBoost reduces cov. by using a differ-
ent weighting for each estimator. The weights are
determined by error of prev. classifiers.

w(b+1)
i = w(b)

i exp(αb1{cb(xi) ̸= yi})
αb = log(1−ϵb/ϵb)

ϵb =
n

∑
i=1

w(b)
i

∑n
j=1 w(b)

j

1{cb(xi) ̸= yi}.

Final classifier: ĉ(x) = sgn(∑B
b=1 αbcb(x)).

AdaBoost fits an additive model in base learners
optimizing the exponential loss E[exp(−y f (x))]
via Newton-like updates.
■ 2nd Taylor around c(x) = 0 on J( f + αc),
where J( f ) is E exp. loss ⇒ Weighted Ew where
w = exp(−y f (x)).

Stable diffusion
Diffusion models:
dx+t = µ(xt, t)dt + σ(xt, t)dωt

dx−t =
[
µ(xt, t)− σ2(xt, t)∇x log pt(xt)

]
dt + σ(xt, t)dω̄t

xt+1 =
√

1− βtxt +
√

βtϵ, ϵ ∼ N (0, I)

xt =
√

1− ᾱtx0 +
√

ᾱtϵ, ϵ ∼ N (0, I)

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)
)
+

√
βtz, z ∼ N (0, I),

where αt = 1− βt and ᾱt = ∏t
τ=1 αt.

Diffusion models are trained by sampling
x0 ∼ p0, t ∼ Unif({1, . . . , T}), ϵ ∼ N (0, I) and
performing gradient step on ℓ = ∥ϵ − ϵθ(xt, t)∥2.

Non-parametric Bayesian methods
Beta distribution (x ∈ [0, 1], α, β > 0):
Beta(x; α, β) ∝ xα−1(1 − x)β−1. Dirichlet
generalizes (x ∈ ∆n−1): Dir(x; α) ∝ ∏n

k=1 xαk−1
k .

Problem: Need to know K (#clusters) beforehand.
A Dirichlet process DP(α, H) is a distribution
over probability distributions on a space Θ,
where α is a concentration parameter. A sample
G ∼ DP(α, H) is a function G : Θ → R≥0
such that

∫
Θ G(θ)dθ = 1. For every partition

(T1, . . . , Tk) of Θ and G ∼ DP(α, H), we have
(G(T1), ., G(Tk)) ∼ Dir(αH(T1), ., αH(Tk)).

Dir can be sampled recursively by stick-breaking:

βi ∼ beta
(

αi, ∏K
k=i+1 αk

)
, ρi = βi ∏i−1

j=1(1− βj)

(ρi+1, . . . , ρK) ∼ Dir(αi+1, . . . , αK).
Still limited to fixed K. GEM distribution fixes
this by fixing α such that βi ∼ Beta(1, α) for all i.
Recursion: βi ∼ Beta(1, α) and

ρi = βi ∏i−1
j=1(1− βj), ρK = βk

(
1−∑K−1

i=1 ρi

)
.

Keep sampling cluster probs until satisfied.

If (ρ1, ρ2, . . .) ∼ GEM(α) and θk ∼ H, then this is
sample from DP(α, H): G(θ) = ∑∞

k=1 ρkδθk
(θ).

Chinese restaurant process:

P(n + 1 joins table θ | P) =

{
|θ|

α+n θ ∈ P
α

α+n else.
Probability of partition P can be written as

P(P) = α|P| α!
(N + α)! ∏τ∈P(|τ| − 1)!.

Problem is exchangeable. E[|P|] ∈ O(α log N).
DPMM: Assume Θ = R with µ ∈ Θ corresponding
to N (µ, σ) for fixed σ > 0 and H = N (µ0, σ0) for
fixed µ0, σ0. DPMM: Cluster probs are sampled
from GEM: (ρ1, ρ2, . . .) ∼ GEM(α). Cluster cen-
ters are sampled from base measure: µ1, µ2, . . . ∼
N (µ0, σ0). Clusters are assigned: zi ∼
Cat(ρ1, ρ2, . . .),∀i ∈ [n]. Data points are sampled:
xi ∼ N (µzi , σ),∀i ∈ [n]. This process is exchange-
able. To fit a DPMM, we use a collapsed Gibbs
sampling formulation: p(zi = k | z−i, x, α, µ) ∝
p(zi = k | z−i, α)p(xi | x−i, zi = k, z−i, µ).
■ Bayes, product rule, x−i ⊥ zi | z−i by d-sep.
Prior is as in CRP:

p(zi = k | z−i, α) =

{
N−i

k
α+N−1 existing k

α
α+N−1 else.

Likelihood (right term) is cond. on cluster k:

ℓ =

{
p(xi | x−i

k , µ) =
p(xi,x−i

k |µ)
p(x−i

k |µ) existing k

p(xi | µ) else.

Statistical learning theory

PAC learning:
R(ĉ) .

= P(ĉ(X) ̸= c(X)) = E[1{ĉ(X) ̸= c(X)}].
R̂n

.
= 1

n ∑n
i=1 1{ĉ(xi) ̸= c(xi)}.

Definition: A learning algorithm A can learn
a concept c ∈ C if there exists poly(·, ·, ·)
such that for any distribution p on X and
ϵ, δ ∈ (0, 1/2), if A receives a sample of size
n ≥ poly(1/ϵ, 1/δ, size(c)), then A outputs ĉ such
that P(R(ĉ) ≤ ϵ) ≥ 1 − δ. This probability is
taken over the randomness of Z and A.
C is PAC learnable from H if there is an A that
can learn any c ∈ C.
A runs polynomial in 1/δ and 1/ϵ ⇒ efficient.
In the stochastic setting, y is also random
and not deterministically decided by a
concept c ∈ C. Now the criterium is
PZ∼p(R(ĉ)− infc∈C R(c) ≤ ϵ) ≥ 1− δ.

Vapnik-Chervonenkis: VC dimension is the cardinal-
ity of the largest set of points that C can shatter.
Vapnik and Chervonenkis: Assume a finite
concept class and R(c⋆) = 0 and define
c⋆n ∈ {c ∈ C | R̂n(c) = 0}. Then, for every
n ∈ N and ϵ > 0: P(R(ĉ⋆n) > ϵ) ≤ |C| exp(−nϵ)

and E[R(ĉ⋆n)] ≤
1+log |C|

n .
■≤ using max ⇒ 1 on cond of max ⇒ E w. 2 1s
⇒≤ ∑ ⇒ E[1{A}] = P(A)⇒≤ |C|(1− ϵ)n.
VC inequality: P(R(ĉ⋆n)− infc∈C R(c) > ϵ) ≤
P(supc∈C |R̂n(c)−R(c)| > ϵ

2 ).
■±R̂n(ĉ⋆n)⇒ R̂n(ĉ⋆n) ≤ R̂n(c⋆)⇒≤ sup of 2
terms |R̂n −R(c)| and add.
Hoeffding: Let Xi ∈ [ai, bi] be i.i.d. and
Sn = ∑n

i=1 Xi, then for any t > 0: P(Sn −E[Sn] ≥
t) ≤ exp

(
− 2t2

∑n
i=1(bi−ai)2

)
. Same bound for ≤ −t.

As a result: P(S̃n − E[S̃n] ≥ ϵ) ≤
exp

(
− 2nϵ2

∑n
i=1

(bi−ai)
2/n

)
, where S̃n = Sn/n.

Assume |C| ≤ N, then for all ϵ > 0,
P(sup

c∈C
|R̂n(c)−R(c)| > ϵ) ≤ 2N exp(−2nϵ2).

We can deal with infinite |C| by representing
hypotheses by the classifications that they yield.
Or measuring the VC dimension of C.
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